

EXSEV BEARINGS AND CERAMIC BEARINGS FOR EXTREME SPECIAL ENVIRONMENTS

Koyo EXSEV BEARINGS AND CERAMIC BEARINGS FOR EXTREME SPECIAL ENVIRONMENTS

Products and Applications Development and Manufacturing Facilities EXSEV Bearings: Composition and Selection 1

1 Cera 2 Lubi 3 How 4 EXS

CONTENTS

2 1 EXS

2 EXS 3 Rad 4 K Se 5 Line 6 Higł 7 Cera 8 EXS 9 Grea 10 Tol

3

ar

1 Clea 2 Vaci 3 Cor 4 High

5 Mag 6 Elec

7 High

8 Abra 9 Low

4

1 Sha 2 Hou

3 Nur

4 Ste 5 SI U

6 Inch 7 Clea

amic Bearings and Special Steel Bearings	. 3
ricants for EXSEV Bearings	11
v to Select EXSEV Bearings	14
SEV Bearings with Special Characteristics	19

EXSEV Bearings and Other **EXSEV** Products

SEV Bearings and Ceramic Bearings: Table of Specifications	- 25
SEV Bearings and Ceramic Bearings: Table of Characteristics	- 27
lial Ball Bearings	. 31
eries Full Complement Hybrid Ceramic Ball Bearing	- 69
ear Motion Bearings	. 71
n Ability Angular Contact Ball Bearings	. 91
amic Balls	. 93
SEV®-EX (Grease)	. 94
ase-filled Bearings for Food Machinery	. 94
lerance and Internal Clearance of EXSEV Bearings	
d Ceramic Bearings	. 95

Application Examples

n Environments	99
um Environments	02
osive Environments 10	03
Temperature Environments 10	06
netic Field Environments 10	
ric Field Environments 10	
Speed Applications 1	11
sion Resistance 1	14
Torque	15

Supplementary Tables

aft Tolerances	117
using Bore Tolerances	119
merical Values for Standard Tolerance Grades IT	121
el Hardness Conversion	122
Units and Conversion Factors	123
h / millimeter Conversion	127
anliness Classes	128

Specifications Sheet

EXSEV BEARING SERIES

Products and Applications

Koyo EXSEV Bearings and Ceramic Bearings for Extreme Special Environments are used for a wide range of the state of the art technologies.

Grease-filled Bearings for Food Machinery

Hygiene • Grease-filled Bearings for Food Machinery

n Pro Bearing-PR Bearing-RZ Bearing-RB EX	 EXSEV[®]-FA K series Full Complement Hybrid Ceramic Ball Bearings
n Pro Bearing-PR	EXSEV [®] -WS
Bearing-RZ	EXSEV [®] -MG
Bearing-RB	EXSEV [®] -PN
ΞX	EXSEV [®] -MO
Ā	K series Full Complement
(T	Hybrid Ceramic Ball Bearings
Guard Pro Bearing-SC	Corrosion Guard Pro Bearing-ZO
Guard Pro Bearing-SN	Corrosion Guard Pro Bearing-MD
Bearings	● EXSEV [®] -SK
Bearing-RB	EXSEV [®] -MG
ment Ceramic Ball Bearings	EXSEV [®] -PN
(T	EXSEV [®] -MO
WS	

Non-magnetic Hybrid Ceramic Bearings

High Ability Angular Contact Ball Bearings

Development and Manufacturing Facilities

By continuously incorporating new improvements, Koyo **EXSEV** Bearings and Ceramic Bearings are applicable in more technologies than ever.

Technologies are advancing rapidly and bearings are required to satisfy more complicated and varied requirements under increasingly hostile operating conditions.

In response to such needs, JTEKT is committed to the development and manufacture of the EXSEV Bearing Series using the latest research / development and manufacturing facilities. JTEKT intends to supply products that live up to customers' expectations, while contributing to environmental conservation and energy saving through streamlined manufacturing.

1 Assembly in a clean room 2 Corrosion-resistant bearing evaluation equipment 3 Vacuum bearing evaluation

equipment

4 Ion plating facility5 High temperature bearing evaluation equipment 6 Ceramic ball manufacturing line

5

Bearing Operations Headquarters

DEVELOPMENT **RESEARCH AND**

Shikoku Plan

EXSEV Bearings: Composition and Selection

1

Conventional bearings, made from bearing steel, and lubricants such as oil and grease, may not be applicable in an extreme special environment such as a clean room, vacuum, high temperature application or corrosive environment, or when special characteristics are required, such as being non-magnetic, or insulating, or having superior high speed performance. Koyo EXSEV Bearings are a special bearing series, developed specifically to address such needs. Please consult JTEKT when using bearings in a new, unprecedented environment, or when bearings with special characteristics are required.

1 Ceramic Bearings and Special Steel	-
1-1 Ceramic Bearings	
Properties of ceramic materials	
Load ratings and service life of ceramic bearing	ıgs
1-2 Special Steel Bearings	
2 Lubricants for EXSEV Bearings	
2-1 Grease	······11
2-2 Solid Lubricants	
3 How to Select EXSEV Bearings	
3-1 Clean Environments	
3-2 Vacuum Environments	
3-3 High Temperature Environments	
3-4 Corrosive Environments	
4 EXSEV Bearings with Special Chara	cteristics
4-1 Non-magnetic Bearings	
4-2 Insulating Bearings	

			3		3				
4- 3	ligh	Sp	eed	Bea	arings	 	 	 	 21

1 Ceramic Bearings and Special Steel Bearings

1-1 Ceramic Bearings

speed of the apparatus.

Ceramic Bearings, including components made from ceramic,

have the special properties that steel bearings do not have, such

as being non-magnetic or insulating. They can be used in new

applications where conventional bearings have not been practical.

bearing to be practical in a high temperature environment. The

low density of ceramic decreases the centrifugal force induced by

rolling elements (balls or rollers), contributing to an increased

Ceramic Bearings are highly heat resistant, enabling a rolling

The EXSEV Bearing Series has been developed for use in special applications where conventional bearings are not practical.

The EXSEV Bearings incorporate components made from special material and use special lubricants, to be applicable in extreme special environments such as a clean room, vacuum, high temperature application, or corrosive condition, and to realize special characteristics, such as being non-magnetic, or insulating, or having superior high speed performance.

The EXSEV Bearing series consist of Ceramic Bearings and Special Steel Bearings, depending on the specific materials of the components.

Properties of ceramic materials

1) Material characteristics

Table 1-1 below lists the mechanical and physical properties of major ceramic materials used as bearing materials. Table 1-2 compares silicon nitride and high carbon chromium bearing steel.

• Table 1-1 Mechanical and physical properties of ceramic materials used as bearing materials

Ceramic Material	Silicon Nitride Si₃N4	Zirconia ZrO2	Silicon Carbide SiC
Property Unit	513114	2102	510
Density g/cm ³	3.2	6.0	3.1
Linear expansion coefficient K ⁻¹	3.2×10 ⁻⁶	10.5×10 ⁻⁶	3.9×10-6
Vickers hardness HV	1 500	1 200	2 200
Module of longitudinal elasticity GPa	320	220	380
Poisson's ratio	0.29	0.31	0.16
Three point bending strength MPa	1 100	1 400	500
$\label{eq:Fracture toughness} MPa \cdot m^{1/2}$	6	5	4
Heat resistance (in atmospheric air) °C	800	200	1 000 or higher
Thermal shock resistance °C	750 or higher	350	350
$Coefficient \ of \ thermal \ conductivity \qquad W/(m \cdot K)$	20	3	70
Specific heat J/(kg · K)	680	460	670

• Table 1-2 Comparison of characteristics of silicon nitride and high carbon chromium bearing steel

Property	Unit	Silicon Nitride Si ₃ N ₄	High Carbon Chromium Bearing Steel SUJ2	Advantages of Ceramic Bearings
Density	g/cm ³	3.2	7.8	Decrease in centrifugal force induced by rolling elements (balls or rollers) → Longer service life and reduced bearing temperature rises
Linear expansion coefficient	K-1	3.2×10 ⁻⁶	12.5×10 ⁻⁶	Decreased internal clearance change due to reduced bearing temperature rises \rightarrow Lowered vibration and reduced preload changes
Vickers hardness	HV	1 500	750	
Module of longitudinal elasticity	GPa	320	208	Less deformation in rolling contact areas → Higher rigidity
Poisson's ratio		0.29	0.3	
Heat resistance	°C	800	180	Retention of superior load carrying characteristics under high temperature
Corrosion resistance		High	Low	Useful in acid or alkaline solutions
Magnetism		Non-magnetic	Ferromagnetic	Decreased rotational fluctuation in ferromagnetic field due to non-magnetization
Conductivity		Insulator	Conductor	Prevents electrical pitting
Bond		Covalent bond	Metallic bond	Decrease in adhesion (or material transfer) due to oil film thinning in rolling contact areas

2) Rolling fatigue of ceramic materials

The individual ceramic materials were tested for rolling fatigue under oil lubrication and under water lubrication, to evaluate their applicability as bearing material. Figs. 1-1 and 1-2 show the results of the tests.

The figures indicate that each ceramic material has a certain level of rolling fatigue strength and that silicon nitride has the highest fatigue strength among the ceramic materials tested.

Fig. 1-2 Comparison in rolling fatigue life under water lubrication

Koyo

Test conditions

	Oil Iubrication	Water Iubrication	
Lubricant	Spindle oil	City water	
Ball	Bearing steel	Ceramic	
Load	Increased in stages at every 1.08×10^7 cycles		
Rotational speed	1 200 min ⁻¹		

Evaluation equipment appearance

Fig. 1-3 Rolling fatigue life test conditions and evaluation equipment

3) Ceramic materials suitable for rolling bearings

Table 1-3 shows the results of evaluating the ceramic materials in terms of their characteristics and the rolling fatigue strength. Among the ceramic materials tested, silicon nitride is the most suitable as rolling bearing material.

JTEKT uses the silicon nitride produced by the hot isostatic pressing (HIP) method as the standard ceramic material for bearings.

4) Composition of ceramic bearings

Koyo ceramic bearings are divided into Full Ceramic Bearings (with all components, namely, the outer ring, inner ring and rolling elements, made of ceramic) and Hybrid Ceramic Bearings (with only the rolling elements made of ceramic). The outer ring and inner ring of the Hybrid Ceramic Bearings are made from special steel, including high carbon chromium bearing steel. The cage may be made of a metallic material, resin, or composite material, depending on the intended operating conditions of the bearing.

Fig. 1-4 Composition of ceramic bearings

• Table 1-3 Ratings of ceramic materials as rolling bearing materials

		Application to rolling bearings						
	Rating	Performance and use	Characteristics					
Silicon nitride Si ₃ N ₄	O	 Comparable to bearing steel in load carrying capability and service life Suitable for high performance applications 	High speed · High vacuum · Corrosion resistant Heat resistant · Non-magnetic · High rigidity					
Zirconia ZrO2	0	Useful under a limited load Applicable in highly corrosive chemicals	· Highly corrosion resistant					
Silicon carbide SiC	0	Useful under a limited load Applicable in highly corrosive chemicals	Highly corrosion resistant Highly heat resistant					

Load ratings and service life of ceramic bearings

Silicon nitride, a ceramic material, is more rigid than high carbon chromium bearing steel; therefore, a bearing including silicon nitride components is subject to a higher contact stress on the area of contact between bearing raceways and rolling elements. Accordingly, to estimate the service life of ceramic bearings, whether the rolling bearing theory is applicable or not is critical.

Basic dynamic load rating

The ISO standard defines the basic dynamic load rating as the pure radial load (for radial bearings), constant in magnitude and direction, under which the basic rating life of 1 million revolutions can be obtained, when the inner ring rotates while the outer ring is stationary or vice versa. The basic dynamic load rating represents the resistance of a bearing against rolling fatigue.

Basic static load rating

The basic static load rating is defined as the static load which corresponds to the calculated contact stress shown below, at the center of the most heavily loaded raceway/rolling elements.

Self-aligning ball bearings	: 4 600 MPa
Other ball bearings	: 4 200 MPa
Roller bearings	: 4 000 MPa

JTEKT defines the dynamic load rating and static load rating of ceramic bearings based on the results of their service life tests, the maximum allowable static load of the ceramic materials, the elastic deformation test results of high carbon chromium bearing steel, and other related data, as shown in Table 1-4.

• Table 1-4 Load ratings of ceramic bearings

	Full Ceramic Bearing	Hybrid Ceramic Bearing
Dynamic load rating $C_{ m r}$	Comparable to steel bearings	Comparable to steel bearings
Static load rating C_{0r}	Comparable to steel bearings	85% that of steel bearings

The steel bearings here refer to bearings consisting of rings and rolling elements both made of high carbon chromium bearing steel.

Koyo

1) Rolling fatigue life of ceramic bearings

A typical service life test for Ceramic Bearings and steel bearings was performed under the conditions specified in Fig. 1-6.

The test results showed that the service life of Ceramic Bearings was equal to or longer than that of steel bearings, exceeding the calculated life.

The Ceramic Bearings were found to exhibit flaking (Fig. 1-5) when their service life terminated. The same phenomenon was observed on the steel bearings whose service life terminated.

Based on these findings, as the dynamic load rating of a Ceramic Bearing, that of a steel bearing of the same dimensions can be used.

Ceramic ball

Ceramic inner ring

Fig. 1-6 Rolling fatigue life of Full ceramic bearings and steel bearings

2) Static load rating of ceramic bearings

The basic static load rating of a steel bearing represents a load that produces a localized permanent deformation in the rolling element/raceway contact area, impeding smooth rotation.

However, ceramic materials, which are highly rigid, produce little permanent deformation. Therefore, the theory of the basic static load rating for steel bearings is not applicable to ceramic bearings.

Static load rating of Full Ceramic Bearings

When exposed to continuous excessive loads, ceramic materials may break down; however, before breakdown occurs, the materials develop cracking.

Fig. 1-7 compares the load measurements at which ceramic balls developed cracking with the basic static load ratings of steel bearings. Fig. 1-8 shows the measurement system.

As these results show, the loads at which cracks develop on the Full Ceramic Bearing are far higher than that of the basic static load rating of steel bearings. This means that the basic load ratings specified in the ISO standard can be used as the allowable static loads of the Full Ceramic Bearing.

Fig. 1-7 Crack developing loads for Full Ceramic Bearings

Static load rating of Hybrid Ceramic Bearings

The theory of the static load rating for steel bearings is applicable to Hybrid Ceramic Bearings because their outer and inner rings are made of steel and accordingly any deformation is permanent.

Table 1-5 shows the results of a test for which a high carbon chromium bearing steel ball and ceramic ball were pressed against a flat plate of high carbon chromium bearing steel and the resulting permanent deformations (indentation depths) on the flat plate and balls were measured.

• Table 1-5 Measurements of permanent deformation produced on flat steel plate and balls

Load kN		Permanent deforma	Permanent deformation	
		Flat plate (bearing steel) Ball		(sum of averages), mm
all	0.65	0.5	—	0.5
Ceramic ball	1.3	1.9	—	1.9
ram	2.6	5.2	—	5.2
Ce	3.9	9.3	—	9.3
=	0.65	0.4	—	0.4
l ba	1.3	1.3	0.11	1.41
Steel ball	2.6	4.0	0.41	4.41
	3.9	6.8	1.18	7.98

These results indicate that ceramic balls do not suffer permanent deformation and that the permanent deformation produced on the flat steel plate by the ceramic balls is approximately 1.2 times the sum of the deformation produced on the flat plate by steel ball and the deformation that the steel ball undergo.

Accordingly, the static load rating of Hybrid Ceramic Bearings can be determined based on the permanent deformation of their bearing steel rings. JTEKT uses the load equal to 85% of the static load rating of steel bearings as the static load rating of the Hybrid Ceramic Bearings.

3) Impact strength of ceramic bearings

To evaluate the impact strength of ceramic bearings, ceramic balls were crushed by two methods: by a static load and an impact load. The test results are shown in Fig. 1-9. Fig. 1-10 shows the testing methods.

This figure shows that the impact strength of the ceramic bearings is almost equal to the static load strength, which means the bearings possess sufficient impact strength.

Fig. 1-9 Comparison of static load and impact load that crush ceramic balls

EXSEV

Ceramic Bearings and Special Steel Bearings 1

Fig. 1-10 Ceramic ball crushing test method

4) Fitting of ceramic bearings

When using ceramic bearings, it should be noted that ceramic materials are largely different from steel materials in the coefficient of linear expansion. Attention should therefore be paid to fitting stresses and temperature rises.

The following are the results of evaluating the fitting of a Ceramic Bearing on a stainless steel shaft.

• Maximum stress produced by fitting Table 1-6 shows the results of a static strength test conducted on a ceramic ring fitted on a stainless steel shaft. Table 1-7 shows the results of a dynamic strength test (running test) conducted on a ceramic ring fitted on a stainless steel shaft.

Based on the results of these tests, JTEKT makes it a rule for the maximum stress produced by interference to be no greater than 150 MPa when a ceramic inner ring is fitted on a stainless steel shaft.

Consult JTEKT for applications requiring tighter fitting.

• Table 1-6 Typical results of static strength test on ceramic bearing shaft fitting

	Interference, L ₁₀ μm	Ring's fracture stress MPa
Solid shaft	50	399
Hollow shaft	68	332

• Table 1-7 Typical results of dynamic strength test on ceramic bearing shaft fitting

	Max. allowable interference µm	Max. allowable stress for ring MPa
Solid shaft	31	243
Hollow shaft	43	204

Fig. 1-12 Ceramic inner ring damaged by dynamic strength test

Influence of temperature

During operation, bearing temperature exceeds the ambient temperature. When a ceramic bearing is operated on a stainless steel shaft or in a stainless steel housing, the interference with the shaft increases due to the difference in linear expansion coefficient while the interference with the housing decreases. (When the outer ring is loose-fitted, the clearance increases.)

To determine the class of fit for a ceramic bearing, the maximum temperature during operation should be assessed carefully.

The maximum stress generated on the inner ring of determined from the following equation:	due to	the interference with the shaft can be	
$\sigma = P_{\rm m} \cdot \frac{Di^2 + d^2}{Di^2 - d^2}$	σ	:Maximum circumferential stress to interference	(MPa)
$D_1 = a$	$P_{ m m}$:Pressure of contact on fitting surface	(MPa)
$P_{\rm m} = \Delta_{deff} \left[\frac{d}{E_{\rm B}} \left(\frac{D_{\rm i}^2 + d^2}{D_{\rm i}^2 - d^2} + \nu_{\rm B} \right) + \frac{d}{E_{\rm S}} \left(\frac{d^2 + d_0^2}{d^2 - d_0^2} - \nu_{\rm s} \right) \right]^{-1}$	$d, D_{\rm i}$:Inner ring bore diameter and outside diameter	(mm)
$E_{\rm B} \left[E_{\rm B} \left(D_{\rm i}^2 - d^2 + \beta \right) + E_{\rm S} \left(d^2 - d_0^2 + \beta \right) \right]$	$\Delta d e f f$:Effective interference of inner ring	(mm)
	d_0	:Bore diameter of hollow shaft	(mm)
	<i>Е</i> в, ив	:Bearing's modulus of longitudinal elasticity and Poisson's ratio	o (MPa)
	Es, νs	:Shaft's modulus of longitudinal elasticity and Poisson's rati	o (MPa)

1-2 Special Steel Bearings

Table 1-8 lists the typical special steels used to produce the bearing rings and rolling elements of EXSEV Bearings.

• Table 1-8 Characteristics of the typical special steels used for EXSEV

	Hardness HRC	Modulus of longitudinal elasticity GPa	Coefficient of linear expansion ×10 ⁻⁶ K ⁻¹	Load carrying capability	Applications
High carbon chromium bearing steel SUJ2	61	208	12.5	O	Hybrid Ceramic Bearings for insulation, etc.
Martensitic stainless steel SUS440C	60	208	10.5	O	Clean environments and vacuum environments
Precipitation hardening stainless steel SUS630	40	196	11.0	0	Corrosive environments
High speed tool steel M50	61	207	10.6	O	High temperature environments
High speed tool steel SKH4	64	207	12.0	O	High temperature environments
Non-magnetic stainless steel	43	200	18.0	0	Magnetic field environments

1) Bearings for use in clean and/or vacuum environments

The rings and rolling elements of conventional bearings are made of high carbon chromium bearing steel (JIS SUJ2), which is resistant to rolling fatigue. However, due to a relatively low corrosion resistance, this steel requires application of anticorrosive oil or other suitable rust preventive measure.

Applying anticorrosive oil to bearings is not favorable for use in a clean and / or vacuum environment, due to the possibility of contamination. Accordingly, EXSEV Bearings use martensitic stainless steel (JIS SUS440C), which is highly corrosion resistant, as a standard material for use in a clean environment.

2) Bearings for use in corrosive environments

For a highly corrosive environment where the SUS440C is not enough to prevent corrosion, precipitation hardening stainless steel (JIS SUS630) is used. However, SUS630 has a hardness of 40 HRC, which is inferior to other materials in load carrying capability and rolling fatigue strength.

3) Bearings for use in high temperature environments

Fig. 1-13 shows the high temperature hardness of various materials. SUS440C has a hardness of 55 HRC at 300°C, which means it can be used in a high temperature environment of up to approximately 300°C. In an environment heated in excess of 300°C, high speed tool steel (JIS SKH4, AISI M50, etc.) should be used.

7	Bearings	

 ${\ensuremath{\bigcirc}}$: Superior, ${\ensuremath{\bigcirc}}$: Good

Fig. 1-13 High temperature hardness of various bearing materials

2 Lubricants for **EXSEV** Bearings

Bearing performance depends on lubrication; it is no exaggeration to say that lubrication determines the service life of bearings. Grease or a solid lubricant is properly used to lubricate the EXSEV bearings.

Compared with solid lubricants, grease is superior for the high speed performance, load carrying capability, and service life of bearings. Therefore, it is recommended to use grease as much as possible.

Grease cannot be used for some application in an ultrahigh vacuum, high temperature, or clean environment. In an application where oil evaporation from grease is unacceptable, solid lubricants should be used.

2-1 Grease

1) High temperature, vacuum or clean environments

Fluorinated greases are known as useful for high temperature applications. Its base oil is perfluoropolyether (PFPE) and its thickener is polytetrafluoroethylene (PTFE).

Fluorinated grease has a low evaporation pressure, and can be used in a vacuum environment of approximately 10⁻⁵ Pa at room temperature. Another advantage of this grease is low particle emissions, and is applicable in a clean environment. Owing to these excellent characteristics, fluorinated grease is used as the standard grease for the EXSEV Bearings.

2) High vacuum environments

Fluorinated greases are classified according to whether the base oil includes an acetal bond (-O-CF2-O-) and whether side chains are included (Table 2-1).

Note that when a fluorinated grease is used in a vacuum, these differences in molecular structure may cause the molecular chains to be disconnected and decompose, resulting in a difference in the amount of gas emissions in the vacuum.

For the PFPE of the three greases listed in Table 2-1, Fig. 2-1 shows the results of gas emissions evaluation, using four ball type vacuum test equipment.

As can be seen Fig. 2-1, oil A, which originally has the acetal structure, apparently emits a great amount of oxide components, such as CF₂O⁺, C₂F₃O⁺ and C₂F₅O⁺, which are attributed to the decomposition of the acetal structure. It emits a greater amount of gas than other oils.

As the standard grease for the EXSEV Bearings, JTEKT uses fluorinated grease containing oil B or PFPE, whose molecular chains are not easily torn off.

Fig. 2-2 Four ball type vacuum test equipment

• Table 2-1 Tested PFPEs and their characteristics

Oil	Molecular structure	Viscosity, 20°C mm²/s	Mean molecular weight	Vapor pressure, 20°C Pa
А	$CF_3 - (OCF_2CF_2) p - (OCF_2) q - OCF_3$	255	9 500	4 × 10 ⁻¹⁰
В	$F - (CF_2CF_2CF_2O) n - CF_2CF_3$	500	8 400	7 × 10 ⁻⁹
С		2 700	11 000	4 × 10 ^{- 12}

In an environment where oil and grease cannot be used, a solid lubricant is used to lubricate bearings.

Solid lubricants can roughly be classified into soft metals, layer lattice materials, and polymeric materials.

Table 2-2 shows the characteristics of major solid lubricants used for the EXSEV Bearings, along with the major applications where the individual solid lubricants are used.

1) Soft metals

Soft metals, such as silver (Ag) and lead (Pb), are coated on balls by the ion plating method (refer to Fig. 2-3). These lubricants are effective for use in ultrahigh vacuum environments where gas emissions from bearings should be avoided.

Silver coated components require careful handling because silver is susceptible to oxidization and durability deteriorates rapidly once oxidized. Lead is seldom used as a lubricant because it is hostile to the environment.

2) Layer lattice materials

Among layer lattice materials, molybdenum disulfide (MoS2) is coated to the cage and bearing rings, or is used as an additive for composite materials, while tungsten disulfide (WS2) is not used as a coating material but used only as an additive for composite materials (refer to Fig. 2-4).

These lubricants are superior to polymeric materials in heat resistance and load carrying capability, and are used for high temperature applications or applications where a large load carrying capability is required.

Layer lattice materials should not be used in a clean environment because they emit an excessive amount of particles.

3) Polymeric materials

Polymeric materials are coated to the cage and/or bearing rings. They are also used to make cages (refer to Fig. 2-5).

Polymeric materials are suitable for applications where cleanliness is critical or the environment is corrosive. Because they are relatively independent of ambient conditions, they are suitable for applications where bearings are repeatedly exposed to atmospheric air and a vacuum.

• Table 2-2 Characteristics of major solid lubricants used for EXSEV Bearings					© : S	uperior,	○ : Good	d, $ riangle$: Acceptable	
		Thermals	Thermalstability, °C		Coefficient of friction		Particle	Gas	A
	Solid lubricant		Vacuum	Atmospheric air	Vacuum	MPa	emissions	emissions	Applications
Soft met	Silver (Ag)	-	600 or higher	-	0.2 to 0.3	2 500 max.		O	Ultrahigh vacuum
Solumer	Lead (Pb)	-	300 or higher	0.05 to 0.5	0.1 to 0.15	2 500 max.		O	environments
Laver	Molybdenum disulfide (MoS2)	350	1 350	0.01 to 0.25	0.001 to 0.25	2 000 max.		0	Vacuum environments.
lattice	Tungsten disulfide (WS2)	425	1 350	0.05 to 0.28	0.01 to 0.2	2 500 max.		0	High temperature
materia	Is Graphite (C)	500	-	0.05 to 0.3	0.4 to 1.0	2 000 max.		0	environments
Polyme	ic Polytetrafluoroethylene (PTFE)	260	260	0.04 to 0.2	0.04 to 0.2	1 000 max.	0		Clean, vacuum, and/or
materials	ls Polyimide (PI)	300	300	0.05 to 0.6	0.05 to 0.6	1 000 max.	0		corrosive environments

Fig. 2-5 Cage made from fluorocarbon resin

4) Service life of solid lubricants

Bearings lubricated with a solid lubricant can provide stable running performance as long as the lubricant is supplied continuously. When the lubricant is used up, the metal components become in contact with each other, rapidly increasing running torgue and reducing the service life of the bearing. The service life of bearings is greatly influenced by the operating conditions. As a consequence, it is not always possible to accurately estimate the service life of bearings lubricated with solid lubricant because of the variations in operating conditions.

When a solid lubricant is used to lubricate a bearing, the bearing is generally used under a relatively light load, such as 5% or less of the basic dynamic load rating. Based on the results of various experiments under the above mentioned operating conditions, JTEKT provides the following experimental equation to enable an estimation of the service life of a deep groove ball bearing lubricated with a solid lubricant. For details, refer to the following product pages.

Polymeric materials

The average service life of clean pro coated bearings can be estimated by the following equation:

$$L_{av} = b_2 \cdot \left(\frac{C_r \times 0.85}{P_r}\right)^q \times 0.016667/n$$

Where.

- $L_{\rm av}$: Average life, h
- b₂ : Lubrication factor
 - b2 = 420 (New Clean Pro Bearing-PR, Clean Pro Bearing-RZ)
- Cr : Basic dynamic load rating, N
- Pr : Dynamic equivalent radial load, N
- : Exponential coefficient, q = 3q
- : Rotational speed, min-1 п

Clean Pro Bearing-RZ	Page 31
New Clean Pro Bearing-PR	Page 35

Layer lattice materials

The average service life of the EXSEV Bearings whose cage is coated with molybdenum disulfide (EXSEV®-MO) can also be estimated by the above equation, supposing that b_2 equals to 6.

EXSEV [®] -MO	 Page 63

Soft metal materials

The average service life of the EXSEV Bearing whose balls are silver ion plated (EXSEV®-MG) can be estimated using the following equation:

$L_{\rm vh} = b_1 \cdot b_2 \cdot b_3 \left(\frac{C_r}{13 \times P_r}\right)^q \times 16\ 667/n$

- $L_{\rm vh}$: 90% reliability service life, h
- Cr : Basic dynamic load rating, N
- Pr : Dynamic equivalent radial load, N
- q : Exponential coefficient, q = 1
- *n* : Rotational speed, min⁻¹ ($10 \le n \le 10000$)
- b1 : Speed factor
- $b_1 = 1.5 \times 10^{-3} n + 1$
- b₂ : Lubrication factor $h_2 = 1$
- *b*³ : Ambient pressure/temperature factor $b_3 = 1$ (at 10⁻³ Pa and room temperature)

EXSEV®-MG Page 59

The basic dynamic load ratings and the permissible radial loads listed in this catalog are as follows.

Basic dynamic load rating: Strength against bearing rolling fatique

- Permissible radial load: They can be regarded as the maximum loads applicable to individual bearings. When an axial load is applied to the bearing, convert this axial load to a dynamic equivalent radial load, and then compare this value to the permissible radial load.
- * Bearings lubricated with a solid lubricant are generally damaged by friction and not by rolling fatigue. For this reason, the permissible radial load is listed on each page for bearings lubricated with a solid lubricant.

3 How to Select **EXSEV** Bearings

3-1 Clean Environments

In a clean environment, bearings made of high carbon chromium bearing steel applied with rust preventive oil cannot be used. Accordingly, stainless steel bearings are used without applying rust preventive oil. A low particle emission type lubricant should be used for these bearings.

Fig. 3-1 shows an EXSEV Bearing selection chart on the basis of the cleanliness class and temperature of the environment. In this chart, each numerical value has a margin.

The amounts of particle emissions from bearings differ depending on operating conditions such as temperature, load and rotational speed. Please consult JTEKT for applications who's operating conditions are near the bearing applicability divisions specified in Fig. 3-1.

Table 3-1 compares the particle emissions of various lubricants provided for major EXSEV Bearings.

For an unlubricated EXSEV Bearing, more than 3 million particles are found for every 20 hours. When silver or molybdenum disulfide is used as a lubricant, 10 000 or more particles are emitted, indicating that neither is suitable for clean environments.

Bearings using a fluorine polymer are low in particle emissions and suitable for use in clean environments.

• Table 3-1 Particle emissions from major EXSEV Bearings

Bearing	g material co	Lubrication			
earing rings	Balls	Balls Cage		Lubricant	
	SUS440C	SUS304		(Nama)	
	Silicon nitride	SUS304	_	(None)	
			Balls	Silver ion plating	
SUS440C		SUS304	Cage	Baking of molybdenu disulfide	
	SUS440C		Cage	Baking of PTFE	
	0001100	Fluorocarbon resin (FA)	Cage	Fluorine polyme	
		01100004	Whole component surfaces	New Clean Pro Bearing-PR coatin	
		SUS304	_	Fluorinated greas	
	SUS440C		Cage Whole component	Fluorine polym New Clean Pro Bearing-PR coati	

For the properties of the EXSEV Bearings shown in Fig. 3-1, refer to the pages listed below.

Polymeric materials
Clean Pro Bearing-RZ 31
Clean Pro Bearing-RB 33
New Clean Pro Bearing-PR 35
EXSEV®-FA

Bearings lubricated with a New Clean Pro Bearing-PR coating or fluorinated grease are also useful in clean environments because they are low in particle emissions.

Fluorinated grease is superior to solid lubricants in load carrying capability and high speed operation. This grease can be used in applications where a slight amount of scattering of fluorinated oil is acceptable.

Fig. 3-1 EXSEV Bearings suitable for clean environments

3-2 Vacuum Environments

Bearing materials

Outer/inner rings and balls of the bearings for use in a vacuum environment are usually made of martensitic stainless steel (SUS440C). For the bearings requiring corrosion resistance, precipitation hardening stainless steel (SUS630) is used. When high temperature resistance is required, high speed tool steel (SKH4, M50, etc.) can be used. For a special operating condition, ceramic having excellent heat/corrosion resistance may be used.

Lubricants

A bearing used in an ordinary vacuum chamber is repeatedly exposed to atmospheric air and vacuum. There is no rolling bearing lubricant that is effective for use under such a wide pressure range. The lubricant should optimally be selected in consideration of principal ambient pressure and temperature as well as required cleanliness and corrosion resistance when necessary.

1) When cleanliness is not critical:

Fig. 3-2 shows the EXSEV Bearings that are suitable for vacuum applications that do not require cleanliness.

Fig. 3-2 EXSEV Bearings useful for vacuum applications where cleanliness is not critical

When the ambient temperature is near normal room temperature and vacuum is 10⁻⁵ Pa or less, fluorinated grease is used for lubrication. However, since the fluorinated oil contained in the grease gradually begins to evaporates, a solid lubricant should be used in applications where oil scattering should not occur.

In an ultrahigh vacuum environment with pressure lower than

10⁻⁵ Pa, gas emissions from bearings may pose a problem. For this pressure range, EXSEV®-MG lubricated with silver, a soft metal lubricant, should be used.

2) When cleanliness is critical:

When bearings should be clean, solid lubricants such as soft metal materials and layer lattice materials cannot be used because of excessive particle emissions. In such a case, a polymeric material or fluorinated grease is used.

Figs. 3-3 and 3-4 show the EXSEV Bearings applicable for vacuum environments with cleanliness classes 100 and 10, respectively.

57

61 63

3-3 High Temperature Environments

Bearing materials

Fig. 3-5 shows bearing materials for high temperature applications.

SUS440C can withstand temperatures up to approximately 300°C.

In the range from 300°C to approximately 500°C, High Temperature Hybrid Ceramic Bearings, whose bearing rings are made of highly heat resistant high speed tool steel (SKH4 or M50) and rolling elements made of ceramic, should be used.

In a high temperature environment in excess of 500°C, full ceramic bearings should be used.

Lubricants

Fig. 3-5 shows lubricants for high temperature applications. In a temperature range of up to approximately 200°C, fluorinated grease can be used. At temperatures over 200°C, a layer lattice material should be used.

Because all layer lattice materials emit a large amount of particles, they are not suitable for applications where cleanliness is required. Graphite cannot be used in a vacuum environment because it does not serve as a lubricant in a vacuum.

In a high temperature environment over 500°C, there is no lubricant that can work perfectly. Unlubricated full ceramic bearings are used for such a high temperature application.

Fig. 3-5 Bearing materials and lubricants for high temperature applications

For the properties of the individual EXSEV Bearings shown in the figures, refer to the applicable pages shown below:

Fluorinated grease		Polymeric materials		Layer lattice materials
EXSEV®-EX	37	Clean Pro Bearing-RZ	31	EXSEV®-WS
EXSEV®-XT	55	Clean Pro Bearing-RB	33	EXSEV®-PN
		New Clean Pro Bearing-PR	35	EXSEV®-MO
		EXSEV®-FA	39	

Soft metal materials	No lubrication
EXSEV®-MG	Full Complement Ceramic Ball E

15

Koyo

Fig. 3-6 shows the EXSEV Bearings useful for high temperature applications.

The temperatures shown in the figure are approximate. When the operating temperature of your application is near a temperature division specified in this figure, consult JTEKT.

If a bearing is exposed to a high temperature in a clean or vacuum environment, please refer to the sections entitled "Clean Environments" or "Vacuum Environments".

Fig. 3-6 EXSEV Bearing applicable for high temperature environments

3-4 Corrosive Environments

1) Corrosion resistance of special steels

Table 3-2 shows the corrosion resistance of the special steels used for the EXSEV Bearings to major corrosive solutions.

In stainless steels, SUS630 is superior to SUS440C in corrosion resistance. However, in such a highly corrosive solution as an acid or alkaline solution, or if the solution must be kept free from rust, these special steels cannot be used.

2) Corrosion resistance of ceramic materials

Table 3-3 shows the corrosion resistance of ceramic materials. Silicon nitride, which is used as the standard material of the ceramic bearings, is excellent in corrosion resistance. However, it may develop corrosion in a highly corrosive chemical, a high temperature, or other highly corrosive ambient condition. There are two types of ceramic corrosion: One is the corrosion of the alumina-yttria system sintering aid ($Al_2O_3 - Y_2O_3$), which is used to bake ceramic materials. To avoid this type of corrosion, corrosion resistant silicon nitride treated with a spinel sintering aid (MgAl₂O₄) should be used. Fig. 3-7 shows the mass reduction and bending strength deterioration of corrosion resistant silicon nitride dipped in an acid or alkaline solution for a given period of time.

The other type of corrosion is the corrosion of the silicon nitride itself. For use in a highly corrosive solution, bearings made of zirconia (ZrO_2) or silicon carbide (SiC) may be effective.

To select a ceramic bearing for use in a highly corrosive environment, its corrosion resistance to the specific condition should be carefully examined.

• Table 3-2 Corrosion resistance of special steels and materials for cages

			Ste		Materials for cages			
Solution	Concentration	Martensitic stainless steel SUS 440C	Precipitation hardening stainless steel SUS 630	Austenitic stainless steel SUS 304	High carbon chromium bearing steel SUJ 2	Concentration	Fluorocarbon resin FA	PEEK resin PN
Water	-	O	0	O	×	-	Good	Good
Hydrochloric	1%	\bigtriangleup	0	\bigcirc	×	5%	Good	Good
acid	10%	×	×	×	×	570	GOOG	0000
Sulfuric acid	1%	\bigcirc	O	O	×	5%	Good	Good
Sullui caciu	10%	\bigtriangleup	0	0	×	570	Guu	Guu
Nitric acid	20%	\bigcirc	O	\bigcirc	×	25%	Good	-
Caustic soda	5%	\bigcirc	0	\bigcirc	\bigtriangleup	5%	Good	Good
Seawater	-	0	0	O	×	-	Good	Good

Temperature 25°C Corrosion rate 🔘 : Up to 0.125 mm/year 🔷 : Over 0.125 to 0.5 mm/year 🗠 : Over 0.5 to 1.25 mm/year × : Over 1.25 mm/year

• Table 3-3 Corrosion resistance of ceramic materials

Ceramic materials Corrosive solutions	Silicon nitride (standard) Si3N4	Corrosion resistant silicon nitride Si ₃ N ₄	Zirconia ZrO ₂	Silicon Carbide SiC
Hydrochloric acid	\bigtriangleup	\bigcirc	\bigcirc	O
Nitric acid	\bigtriangleup	0	\bigcirc	0
Sulfuric acid	\bigtriangleup	0	0	0
Phosphoric acid	0	0	0	0
Fluorine acid	\bigtriangleup	\bigtriangleup	×	0
Sodium hydroxide	\bigtriangleup	\bigtriangleup	0	
Potassium hydroxide	\bigtriangleup	\bigtriangleup	\bigtriangleup	
Sodium carbonate	\bigtriangleup	\bigtriangleup	\bigtriangleup	
Sodium nitrate	\bigtriangleup	\bigtriangleup	\bigtriangleup	
Water and saltwater	0	O	O	0

Note) The corrosive natures of individual solutions differ largely depending on the concentration and temperature. Note that mixing two or more chemicals may increase the corrosivity.

Fig. 3-7 Anticorrosive performance of corrosion resistant silicon nitride

3) Service life of corrosion resistant bearings

Table 3-4 lists the bearings suitable for applications requiring corrosion resistance, along with their major applications.

• Table 3-4 Typical corrosion resistant EXSEV Bearings

	Applications	Bearing M	Dogo	
	Applications	Bearing Rings	Balls	Page
Corrosion Guard Pro Bearing-SC	In a strongly acidic environment, strongly alkaline environment and corrosive gas	Silicon carbide	Silicon carbide	41
Corrosion Guard Pro Bearing-SN	In a strongly acidic environment, strongly alkaline environment and reactive gas	Corrosion resistant silicon nitride	Corrosion resistant silicon nitride	43
Ceramic Bearings	In a slightly acidic environment, alkaline environment and reactive gas	Silicon nitride	Silicon nitride	45
Corrosion Guard Pro Bearing-ZO	In saltwater, a slightly acidic environment and alkaline environment	Zirconia	Zirconia	47
Corrosion Guard Pro Bearing-MD	In water, alkaline environment and reactive gas	SUS630	Silicon nitride	49

When EXSEV Bearings are operated in a solution, the solution serves as a lubricant. This means the solution is closely associated with the service life of the bearings. Fig. 3-8 shows the service life evaluation results for three types of EXSEV Bearings under water.

The Ceramic Bearings terminate their service life due to the flaking on the bearing ring or ball surfaces.

In case of the Hybrid Ceramic Bearings, ceramic balls do not develop flaking or wear. Their service life ends due to wear attributed to the minute corrosion of stainless steel bearing rings.

When bearings are used in a solution whose lubrication performance is not enough, such as in water, it is important to evaluate in advance the susceptibility of the bearings to corrosion and the relationship between the bearing load and wear in the solution.

SUS440C has a longer service life than SUS630; however, the former steel is not suitable for use in water because it may rust and cause contamination.

Ceramic Bearings may develop wear at an early stage of use depending on the characteristics of the solution, temperature, and load. Please contact JTEKT before using Ceramic Bearings in solutions.

Fig. 3-8 Comparison in underwater service life of EXSEV Bearings

4 EXSEV Bearings with Special Characteristics

4-1 Non-magnetic Bearings

Bearings may be exposed to magnetic fields in some applications, including equipment associated with super conductivity, semiconductor production facilities and medical examination facililies. If steel bearings are used for such applications, the running torque may fluctuate or the magnetic field may be disturbed. Non-magnetic bearings should be used for such applications. As a non-magnetic material for such bearings, beryllium copper has conventionally been used. However the use of beryllium copper should be avoided since it contains beryllium, a substance of environmental concern.

For such applications, JTEKT supplies Hybrid Ceramic Bearings, whose rings are made of non-magnetic stainless steel and rolling elements are made of a ceramic material, or the full ceramic bearings.

• Table 4-1 Non-magnetic bearings and relative permeability

	Relative permeability	Page
Non-magnetic Hybrid Ceramic Bearings	1.01 or lower	65
Ceramic Bearings	1.001 or lower	45
(Ref.) Beryllium copper	1.001 or lower	

Fig. 4-1 shows a rolling fatigue strength evaluation result for various non-magnetic materials. As can be seen from the figure, non-magnetic stainless steel is superior to beryllium copper in rolling fatigue strength.

Fig. 4-1 Comparison of non-magnetic materials in rolling fatigue strength

4-2 Insulating Bearings

A cause of bearing failure in motors or generators is electric pitting. Electric pitting occurs when a surface in rolling contact is locally molten due to sparks produced over the very thin lubricating oil film on the surface when electricity passes through the bearing in operation.

Electric pitting appears as a series of pits or a series of ridges on the surface in rolling contact, which is shown in Fig. 4-2 and Fig. 4-3.

An estimation of the mechanism that causes electric pitting on a bearing is shown in Fig. 4-4.

Fig. 4-2 Electric pitting generated on general purpose bearings (pits)

Fig. 4-3 Electric pitting generated on general purpose bearings (ridges)

Continuous sparks of weak current

Example of electric pitting on inner ring raceway surface

Estimation of the wave-like wear occurrence mechanism

Fig. 4-4 Estimation of electric pitting (wave-like wear) occurrence mechanism

Koyo

To avoid such pitting, a bypass is provided to ensure that no electric current passes through the bearing. Another method is to use an insulating bearing that can block electric current.

Since ceramic materials exhibit an excellent insulation performance, Hybrid Ceramic Bearings consisting of ceramic rolling elements can be used as insulating bearings. (Fig.4-5)

Hybrid Ceramic Bearings prevent electric pitting, also reduce bearing temperature rise, and lengthen grease service life. For these reasons, Hybrid Ceramic Bearings assure long term maintenance free operation and high speed equipment operation.

Fig. 4-5 Insulating bearings (Hybrid Ceramic Bearings)

Also, ceramic materials have the same insulation performance as silicon nitride. In addition, we can now support Hybrid Ceramic Bearings that use oxide ceramics, which have the characteristic of having a coefficient of linear expansion that is close to that of the metal used in the inner and outer rings material, for their rolling elements. This has enabled us to reduce fluctuations in the clearances between the balls and the inner and outer rings due to temperature fluctuations to a higher level than was possible with conventional bearings. This makes it possible to use these bearings in environments spanning an even larger range of temperatures.

Fig. 4-6 Insulating bearings (oxide ceramic balls)

4-3 High Speed Bearings

Hybrid Ceramic Bearings, whose rolling elements are made of a ceramic material with a density lower than that of bearing steel, are most suitable for high speed applications. This is because reduced mass of rolling elements suppresses the centrifugal force of the rolling elements, as well as slippage attributable to the gyro-moment, when the bearings are in operation.

Thanks to their superior high speed performance, Hybrid Ceramic Bearings are used in turbochargers and on machine tool spindles.

• Power losses at high speed

Fig. 4-7 compares power losses between the Hybrid Ceramic Bearings and steel bearings.

When compared to steel bearings, the Hybrid Ceramic Bearings lose smaller power during high speed operation. The power loss decreases with increasing rotational speed.

The Hybrid Ceramic Bearings also have superior antiseizure characteristics, which means that they consume smaller amount of lubrication oil and thereby reduce rolling resistance (power loss).

			Hybrid Ceramic Bearings	Steel bearings					
	B	earing rings	High speed tool steel (M50)						
	Balls	Material	Ceramic (Si ₃ N ₄)	High speed tool steel (M50)					
		Dia.	6.35 mm						
		Number of balls	9						
		Cage	Polyimide resin						

Condition	Specification
Axial load	200 N
Rotational speed (max.)	100 000 min ⁻¹
Lubricating oil	AeroShell Turbine Oil 500
Ambient temperature	Room temp.

Fig. 4-7 Comparison in power loss between Hybrid Ceramic Bearings and steel bearings

• Seizure limit at high speed

Fig. 4-8 shows the seizure limits of Hybrid Ceramic Bearings and steel bearings. The limits were measured by gradually reducing lubricating oil feed rate.

Compared with general purpose steel bearings, Hybrid Ceramic Bearings consume smaller amount of lubricating oil under the same speed condition, while they can run at a higher speed under the same luburicating oil feed rate condition.

Fig. 4-8 Comparison between Hybrid Ceramic Bearings and steel bearings in seizure limit

EXSEV Be

Koyo

EXSEV Bearings with Special Characteristics **b**

2 **EXSEV** Bearings and Other **EXSEV** Products

For the use of bearings in an extreme, special environment, identifying the best combination of bearing materials and lubricants according to specific conditions is critical.

This chapter describes the component compositions and features of major EXSEV Bearing varieties.

For other EXSEV Bearings suited to more specialized applications, please consult JTEKT.

1 EXSEV Bearings and Ceramic Bearings : Table of Specifications	05
Table of Specifications 2 EXSEV Bearings and Ceramic Bearings:	- 25
Table of Characteristics	27
	21
3 Radial Ball Bearings 3-1 Clean Pro Bearing-RZ	
3-2 Clean Pro Bearing-RB	
3-3 New Clean Pro Bearing-PR	
3-4 EXSEV [®] -EX	
3-5 EXSEV [®] -FA	
3-6 Corrosion Guard Pro Bearing-SC	41
3-7 Corrosion Guard Pro Bearing-SN	43
3-8 Ceramic Bearings	
3-9 Corrosion Guard Pro Bearing-ZO	47
3-10 Corrosion Guard Pro Bearing-MD	49
3-11 EXSEV®-SK	51
3-12 Full Complement Ceramic Ball Bearings	53
3-13 EXSEV [®] -XT	- 55
3-14 EXSEV®-WS	57
3-15 EXSEV [®] -MG	- 59
3-16 EXSEV®-PN	- 61
3-17 EXSEV [®] -MO	63
3-18 Non-magnetic Hybrid Ceramic Bearings	- 65
3-19 Hybrid Ceramic Bearings	67
4 K Series Full Complement Hybrid Ceramic Ball Bearings	69
5 Linear Motion Bearings	74
5-1 Linear Motion Ball Bearings for Use in Extreme Special Environments	
5-2 Linear Way Bearing Units for Use in Extreme Special Environments	
5-3 Cross Roller Way Bearing Units for Use in Extreme Special Environments	
6 High Ability Angular Contact Ball Bearings	
7 Ceramic Balls	
8 EXSEV [®] -EX (Grease)	94
9 Grease-filled Bearings for Food Machinery	94
10 Tolerance and Internal Clearance of EXSEV Bearings and Ceramic Bearings	
10-1 Tolerance of Radial Ball Bearings	95
10-2 Clearance of Radial Ball Bearings	96
10-3 Tolerance and Internal Clearance of K Series Full Complement Hybrid Ceramic Ball Bearings	96

1 EXSEV Bearings and Ceramic Bearings: Table of Specifications

		Clean Pro	Clean Pro	New			Corrosion	Corrosion	Ceramic	Corrosion	Corrosion		Full Complement Ceramic Ball				
	Product	s Bearing-RZ		Clean Pro Bearing-PR	EXSEV®-EX	EXSEV®-FA	Guard Pro Bearing-SC	Guard Pro Bearing-SN	Bearing	Guard Pro Bearing-ZO	Guard Pro Bearing-MD	EXSEV [®] -SK	Bearing (angular contact ball bearing)	EXSEV®-XT	EXSEV [®] -WS	EXSEV®-MG	EXSEV®-I
	Pag	e p. 31	p. 33	p. 35	p. 37	p. 39	p. 41	p. 43	p. 45	p. 47	p. 49	p. 51	p. 53	p. 55	p. 57	p. 59	p.61
	Prefix	SE	SE	SE	SV	SE	NCZ	NCT	NC	NCB	3NC	SK	NC	sv	SE	SE	SE
-	Prefix Suffix Cage coo	ZZSTPRZ	ZZSTPRB	ZZSTPR	ZZST	ZZST	(None)	(None)	(None)	(None)	ZZMD4	ZZ (2RS) ST	v	ZZST	ZZST	ZZSTMG3	ZZST
c	Cage coo	le YS	YS	YS	YS	FA	FA	FA	FA	PN	FA	YS	(No cage)	YS	ws	YS	PN
	Outer ring	ring Martensitic stainless steel			Silicon carbide ceramic	Silicon nitride ceramic (corrosion resistant)	Silicon nitride ceramic (standard)	Zirconia	Precipitation hardening stainless steel	Martensitic stainless steel	Silicon nitride ceramic (standard)		Marte	ensitic stainles	ssteel		
	Inner ring	ng Martensitic stainless steel				Silicon carbide ceramic	Silicon nitride ceramic (corrosion resistant)	Silicon nitride ceramic (standard)	Zirconia	Precipitation hardening stainless steel	Martensitic stainless steel	Silicon nitride ceramic (standard)		Marte	ensitic stainless	s steel	
	Rolling elements	Martensitic stainless steel			Silicon carbide ceramic	Silicon nitride ceramic (corrosion resistant)	Silicon nitride ceramic (standard)	Zirconia	Silicon nitride ceramic (standard)	Martensitic stainless steel	Silicon nitride ceramic (standard)	ramic Martensitic stain			s steel		
	Cage or separator		Austenitic s	tainless steel			Fluoroca	rbon resin		PEEK resin	Fluorocarbon resin	Austenitic stainless steel	(None)	Austenitic stainless steel	(separator) Composite material including tungsten disulfide	Austenitic stainless steel	PEEK res
	Shield		Aust	tenitic stainless	steel		(None)				Austenitic stainless steel	Austenitic stainless steel (rubber seal)	(None)		Aust	enitic stainless	steel
:	Lubricar Componen coated wit	Clean Pro Bearing-RZ coating	Clean Pro Bearing-RB coating	New Clean Pro Bearing- PR coating	EXSEV®-EX		Fluorocarb	on polymer		Molybdenum disulfide, etc.	Fluorocarbon polymer	EXSEV [®] -KHD	(None)	EXSEV [®] -XT	Tungsten disulfide	Silver	Molybden disulfide, e
-	Componen coated wit or includin lubricant	g Raceway	s and balls	Entire surface of all components				Ca	ige			(Grease)		(Grease)	Separators	Balls	
						Vacuum e	nvironments								Vac	cuum environm	ents
					Clean en	vironments					Clean environments						
								Corr	osive environm	ients		Corrosive e	environments				
	Applicable		High temperature environments		High temperature environments									I	High temperatu	re environmen	ts
e	environments	5						Magnetic field	environments	·			Magnetic field environments				
								Electr	ic field environ	ments			Electric field environments				
_																	

2

PN	EXSEV [®] -MO	Non-magnetic Hybrid Ceramic Bearing	Hybrid Ceramic Bearing	K Series Full Complement Hybrid Ceramic Ball Bearing	Grease-filled Bearing for Food Machinery
	р. 63	p. 65	p. 67	p. 69	p. 94
	SE	3NC	3NC	3NC	(None)
	ZZSTMSA7	YH4	ZZ	VST-1	ZZ
	YS	FA	FG	(No cage)	FG
		Non-magnetic stainless steel	High carbon chromium bearing steel	Martensitic stainless steel	High carbon chromium bearing steel
		Non-magnetic stainless steel	High carbon chromium bearing steel	Martensitic stainless steel	High carbon chromium bearing steel
		Silicon ni	tride ceramic (s	standard)	High carbon chromium bearing steel
sin	Austenitic stainless steel	Fluorocarbon resin	Reinforced polyamide resin	(separators) Martensitic stainless steel	Reinforced polyamide resin
		(None)	Carbon steel	(None)	Carbon steel
num etc.	Molybdenum disulfide	Fluorocarbon polymer	Grease or oil	EXSEV [®] -EX	Grease for food
	Cage		Grease of OI	(Grease)	machinery
				Vacuum environments	
		Clean environments Corrosive environments		Clean environments	
		Magnetic field			
		environments			
		Electric field	High speed		
			applications		

2

2 EXSEV Bearings and Ceramic Bearings: Table of Characteristics (1)

			Applicable Environments									Has Sizes							
Majo	or Uses	Products	Limiting	Speeds		0	perating Temp. (°C)			Vacuum	(Pa)	Clear	nliness (cla	ISS) ²⁾	Bearing Number ³⁾	(Cage Code)	Corresponding Catalog Pages	Available
			dn value 1)	Max. (min ⁻¹)	< 120 < 200	< 260	< 300 < 350	< 400	< 500	< 800	Atmospheric 10 ⁻⁵	10 ⁻¹⁰	1000	100	10				from Stock
		Clean Pro Bearing-RZ	< 10 000	1 000											•		(YS)	31-32	0
		Clean Pro Bearing-RB	< 10 000	1 000											•	SE DOD ZZSTPRB	(YS)	33-34	
		New Clean Pro Bearing-PR	< 10 000	1 000											•	SE DOD ZZSTPR	(YS)	35-36	
		EXSEV [®] -EX	< 40 000	-										•		SV DDD ZZST	(YS) EX	37-38	
	Vacuum environment	EXSEV [®] -FA	< 10 000	1 000									•				(FA)	39-40	0
		Ceramic Bearing, Corrosion Guard Pro Bearing-SC, SN	< 10 000	1 000		•							•				(FA)	41-46	0
		Corrosion Guard Pro Bearing-ZO	< 10 000	1 000									•				(PN)	47-48	
		Corrosion Guard Pro Bearing-MD	< 10 000	1 000									•			3NC CONTRACTOR ZZMD4	(FA)	49-50	0
		Non-magnetic Hybrid Ceramic Bearing	< 10 000	1 000		•							•			3NC DDD YH4	(FA)	65-66	
Clean		Corrosion Guard Pro Bearing-SC	< 10 000	1 000									•				(FA)	41-42	
environmen	t Corrosive	Corrosion Guard Pro Bearing-SN	< 10 000	1 000									•				(FA)	43-44	0
	environment	Ceramic Bearing	< 10 000	1 000									•				(FA)	45-46	0
		Corrosion Guard Pro Bearing-MD	< 10 000	1 000									•			3NC DDD ZZMD4	(FA)	49-50	0
	High temperature environment	Clean Pro Bearing-RB	< 10 000	1 000											•	SE DOD ZZSTPRB	(YS)	33-34	
		Non-magnetic Hybrid Ceramic Bearing	< 10 000	1 000									•			3NC C YH4	(FA)	65-66	
	Magnetic field environment	Ceramic Bearing, Corrosion	< 10 000	1 000									•			(NCZ, NCT) NC	(FA)	41-46	0
		Corrosion Guard Pro Bearing-ZO	< 10 000	1 000									•				(PN)	47-48	
		Corrosion Guard Pro Bearing-MD	< 10 000	1 000									•			3NC DDD ZZMD4	(FA)	49-50	0
	Electric field environment	Non-magnetic Hybrid Ceramic Bearing	< 10 000	1 000									•			3NC C YH4	(FA)	65-66	
		Ceramic Bearing, Corrosion Guard Pro Bearing-SC, SN	< 10 000	1 000		•							•				(FA)	41-46	0
	,	Clean Pro Bearing-RZ	< 10 000	1 000											•	SE DOD ZZSTPRZ	(YS)	31-32	0
		Clean Pro Bearing-RB	< 10 000	1 000											•	SE DOD ZZSTPRB	(YS)	33-34	
		New Clean Pro Bearing-PR	< 10 000	1 000											•		(YS)	35-36	
		EXSEV®-EX	< 40 000	-										•		SV DDD ZZST	(YS) EX	37-38	
		EXSEV [®] -FA	< 10 000	1 000		•							•			SE DOD ZZST	(FA)	39-40	0
		Corrosion Guard Pro Bearing-SC, SN	< 10 000	1 000		•							•				(FA)	41-46	0
Vooruum	environment	Corrosion Guard Pro Bearing-ZO	< 10 000	1 000									•				(PN)	47-48	
vacuum	environment	Corrosion Guard Pro Bearing-MD	< 10 000	1 000		•							•			3NC DOD ZZMD4	(FA)	49-50	0
		Full Complement Ceramic Ball Bearing	< 4 000	500													(—)	53-54	
		EXSEV [®] -WS	< 4 000	500												SE DOD ZZST	(WS)	57-58	0
		EXSEV®-MG	< 10 000	1 000							Cannot be used under the atmosphere.					SE DOD ZZSTMG3	(YS)	59-60	0
		EXSEV [®] -PN	< 10 000	1 000												SE DOD ZZST	(PN)	61-62	0
		EXSEV [®] -MO	< 10 000	1 000												SE DOD ZZSTMSA7	(YS)	63-64	
		Non-magnetic Hybrid Ceramic Bearing	< 10 000	1 000									•				(FA)	65-66	

1) dn value: Bearing bore diameter (mm) \times Rotational speed (min⁻¹)

2) The cleanliness classes may vary depending on operating conditions.

queries to JTEKT.

2

Koyo

3) The four blank boxes represent the basic number of the bearing. A basic number consists of three or four alphanumeric characters. A bearing number may be used as a convenience in the case of any

EXSEV Bearings and Ceramic Bearings: Table of Characteristics (2)

				Ap	plicable	Environme	nts												Has Sizes		
Major Uses	Products	Limiting	Speeds			Ope	ating Te	emp. (°C	C)			V	acuum (Pa	a)	Clear	nliness (cla	ass) ²⁾	Bearing Number ³⁾	(Cage Code)	Corresponding Catalog Pages	Available
		dn value 1)	Max. (min ⁻¹)	< 120	< 200	< 260 <	300 <	< 350	< 400	< 500	< 800	Atmospheric air	10 ⁻⁵	10 ⁻¹⁰	1000	100	10				from Stock
	Corrosion Guard Pro Bearing-SC	< 10 000	1 000												•				(FA)	41-42	
	Corrosion Guard Pro Bearing-SN	< 10 000	1 000												•				(FA)	43-44	0
	Ceramic Bearing	< 10 000	1 000												•				(FA)	45-46	0
Corrosive environment	Corrosion Guard Pro Bearing-ZO	< 10 000	1 000												•			NCB	(PN)	47-48	
	Corrosion Guard Pro Bearing-MD	< 10 000	1 000												•			3NC DE ZZMD4	(FA)	49-50	0
	EXSEV [®] -SK	Equal to the dn value	e of standard bearings															<mark>SK</mark>	(YS) HX	51-52	0
	Full Complement Ceramic Ball Bearing	< 4 000	500																(—)	53-54	
	Clean Pro Bearing-RB	< 10 000	1 000														•	SE COC ZZSTPRB	(YS)	33-34	
	EXSEV [®] -EX	< 40 000	-													•			(YS) EX	37-38	
	Full Complement Ceramic Ball Bearing	< 4 000	500																(—)	53-54	
High temperature	EXSEV [®] -XT	< 40 000	-															SV ZZST	(YS) XT	55-56	
environment	EXSEV [®] -WS	< 4 000	500															SE DOD ZZST	(WS)	57-58	0
	EXSEV [®] -MG	< 10 000	1 000															SE DOD ZZSTMG3	(YS)	59-60	0
	EXSEV [®] -PN	< 10 000	1 000															SE DOD ZZST	(PN)	61-62	0
	EXSEV [®] -MO	< 10 000	1 000															SE DOD ZZSTMSA7	(YS)	63-64	
	Ceramic Bearing, Corrosion Guard Pro Bearing-SC, SN	< 10 000	1 000												•			(NCZ, NCT) NC	(FA)	41-46	0
Magnetic field environment	Full Complement Ceramic Ball Bearing	< 4 000	500																(—)	53-54	
	Non-magnetic Hybrid Ceramic Bearing	< 10 000	1 000												•			3NC	(FA)	65-66	
	Ceramic Bearing, Corrosion Guard Pro Bearing-SC, SN	< 10 000	1 000												•			(NCZ, NCT) NC	(FA)	41-46	0
	Corrosion Guard Pro Bearing-ZO	< 10 000	1 000												•				(PN)	47-48	
Electric field	Corrosion Guard Pro Bearing-MD	< 10 000	1 000												•			3NC DDD ZZMD4	(FA)	49-50	0
environment	Full Complement Ceramic Ball Bearing	< 4 000	500																(—)	53-54	
	Non-magnetic Hybrid Ceramic Bearing	< 10 000	1 000												•			3NC	(FA)	65-66	
	Hybrid Ceramic Bearing	No less than 1.2 time	s that of steel bearings															3NC ZZ	(FG)	67-68	0
High speed application	Hybrid Ceramic Bearing	No less than 1.2 time	s that of steel bearings															3NC ZZ	(FG)	67-68	0
Hygiene	Grease-filled Bearing for Food Machinery	Equal to the dn value	e of standard bearings		(General	purpose)	erature)											The same as standard bearings	4)		

1) dn value: Bearing bore diameter (mm) × Rotational speed (min⁻¹)

2) The cleanliness classes may vary depending on operating conditions.

3) The four blank boxes represent the basic number of the bearing. A basic number consists of three or four alphanumeric characters. A bearing number may be used as a convenience in the case of any queries to JTEKT.

4) Specify the bearing as a (general purpose or high temperature) grease-filled bearing for food machinery.

2

2 EXSEV Bearings and Ceramic Bearings: Table of Characteristics (2)

2

3 Radial Ball Bearings Clean Pro Bearing-RZ

Clean Pro Bearing Series Long-Service-Life Type

This bearing has a fluoropolymer gel coating on its rolling surfaces as the lubricant.

Semiconductor manufacturing equipment Vacuum motors Vacuum equipment

f_0F_a	е	$\frac{F_{\rm a}}{F_{\rm r}}$	<i>≦ ℓ</i>	$rac{F_{a}}{F_{r}} > e$		
$C_{0\mathrm{r}}$		X	Y	X	Y	
0.172 0.345 0.689	0.19 0.22 0.26				2.30 1.99 1.71	
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31	
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00	

50

20

5

40 68 15 18 80 requesting an estimate.

40

42

47

47

52

55

62

62

72

20

25

30

35

12

12

14

12

15

13 16

14 17

31

2

 Clean Pro Bearing-RZ has better characteristics in low gas emission than Clean Pro Bearings (conventional products).

Koyo

Lubricant service life expectancy equation The average service life of Clean Pro Bearing-RZ can be estimated with the following equation.

$$L_{\rm av} = b_2 \cdot \left(\frac{C_{\rm r} \times 0.85}{P_{\rm r}}\right)^q \times 0.016667/n$$

Where,

 $L_{\rm av}$: Average life, h

- b_2 : Lubrication factor
 - $b_2 = 420$
- $C_{
 m r}$: Basic dynamic load rating, N
- $P_{\rm r}$: Dynamic equivalent radial load, N
- : Exponential coefficient, q = 3q
- : Rotational speed, min-1

For the service life of solid lubricants, refer to page 13.

ns			d ratings ¹⁾	Factor	Permissible	Limiting
	Bearing No.	KIN			radial load 2)	speed
r (min.)		$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	N	min ⁻¹
0.2	SE605ZZSTPRZM5 YS	1.30	0.49	12.3	50	1 000
0.3	SE625-5ZZSTPRZM5 YS	1.75	0.67	12.4	90	1 000
0.3	SE606ZZSTPRZM5 YS	1.95	0.74	12.2	100	1 000
0.3	SE626ZZSTPRZM5 YS	2.60	1.05	12.3	130	1 000
0.3	SE607ZZSTPRZM5 YS	2.60	1.05	12.3	130	1 000
0.3	SE627ZZSTPRZM5 YS	3.30	1.35	12.4	165	1 000
0.3	SE608ZZSTPRZM5 YS	3.30	1.35	12.4	165	1 000
0.3	SE628ZZSTPRZM5 YS	3.35	1.40	12.8	170	1 000
0.3	SE609ZZSTPRZM5 YS	3.35	1.40	12.8	170	1 000
0.6	SE629ZZSTPRZM5 YS	4.55	1.95	12.4	230	970
0.5	SEEE3SZZSTPRZM5 YS	3.35	1.40	12.8	170	1 000
0.3	SE6000ZZSTPRZC3 YS	4.55	1.95	12.3	230	1 000
0.6	SE6200ZZSTPRZC3 YS	5.10	2.40	13.2	255	860
0.3	SE6001ZZSTPRZC3 YS	5.10	2.40	13.2	255	830
0.6	SE6201ZZSTPRZC3 YS	6.80	3.05	12.3	340	770
0.3	SE6002ZZSTPRZC3 YS	5.60	2.85	13.9	280	660
0.6	SE6202ZZSTPRZC3 YS	7.65	3.75	13.2	385	610
0.3	SE6003ZZSTPRZC3 YS	6.00	3.25	14.4	300	580
0.6	SE6203ZZSTPRZC3 YS	9.55	4.80	13.2	480	530
0.6	SE6004ZZSTPRZC3 YS	9.40	5.05	13.9	470	500
1	SE6204ZZSTPRZC3 YS	12.8	6.65	13.2	640	450
0.6	SE6005ZZSTPRZC3 YS	10.1	5.85	14.5	505	400
1	SE6205ZZSTPRZC3 YS	14.0	7.85	13.9	700	360
1	SE6006ZZSTPRZC3 YS	13.2	8.25	14.7	660	330
1	SE6206ZZSTPRZC3 YS	19.5	11.3	13.9	975	300
1	SE6007ZZSTPRZC3 YS	15.9	10.3	14.9	795	280
1.1	SE6207ZZSTPRZC3 YS	25.7	15.4	13.9	1285	250
1	SE6008ZZSTPRZC3 YS	16.7	11.5	15.2	835	250
1.1	SE6208ZZSTPRZC3 YS	29.1	17.8	14.0	1455	220

Notes 1) The basic load ratings are those of standard bearing (used to calculate lubrication life).

2) The permissible radial loads can be regarded as the maximum loads applicable to individual bearings.

When an axial load is applied to the bearing, convert this axial load to a dynamic equivalent radial load, and then compare this value to the permissible radial load.

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.

2) Please note that you may be asked to provide information on applications and usage conditions when

EXSEV Products

Other

and

Bearings a

EXSEV

Clean Pro Bearing-RB

Supports 260°C Clean, **Vacuum Environments**

This bearing has a fluoropolymer coating on its rolling surface as the lubricant.

Applications

Semiconductor manufacturing equipment LCD manufacturing equipment Transfer systems

Vacuum equipment Sputtering equipment

f_0F_a	е	$\frac{F_{\rm a}}{F_{\rm r}}$	<i>≦ ℓ</i>	$\frac{F_a}{F_r}$	$\frac{\mathbf{h}}{\mathbf{r}} > \boldsymbol{e}$
C_{0r}		X	Y	X	Y
0.172 0.345 0.689	0.19 0.22 0.26				2.30 1.99 1.71
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00

The static lsod ratings are those of standard bearing.

mn

D

9.525 22.225

Radial Ball Bearings

Koyo

• Compatible with temperatures of up to 260°C in a vacuum.

Bearing No. radial load ² speed B r fo N minin 4 0.2 SE604ZZSTPRBM5 YS 12.4 30 1000 5 0.2 SE604ZZSTPRBM5 YS 12.3 40 1000 5 0.2 SE605ZZSTPRBM5 YS 12.3 40 1000 5 0.3 SE605ZZSTPRBM5 YS 12.4 55 1000 6 0.3 SE606ZZSTPRBM5 YS 12.2 60 1000 6 0.3 SE607ZZSTPRBM5 YS 12.3 80 1000 6 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE609ZZSTPRBM5 YS 12.4 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.4 135 970 6.7.142 0.5 SEE23ZZSTPRBC								
B /n N min-1 4 0.2 SE604ZZSTPRBM5 YS 12.4 30 1000 5 0.2 SE624ZZSTPRBM5 YS 12.3 40 1000 5 0.2 SE605ZZSTPRBM5 YS 12.3 40 1000 5 0.3 SE625-5ZZSTPRBM5 YS 12.4 55 1000 6 0.3 SE606ZZSTPRBM5 YS 12.3 80 1000 6 0.3 SE606ZZSTPRBM5 YS 12.3 80 1000 6 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE608ZZSTPRBM5 YS 12.8 100 1000 8 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.8 100 1000 8 0.3 SE6000ZZSTPRBC3 YS 13.2 155 860 8			ons	Bearing No.	Factor		Limiting speed	
5 0.2 SE624ZZSTPRBM5 YS 12.3 40 1000 5 0.2 SE605ZZSTPRBM5 YS 12.3 40 1000 5 0.3 SE605ZZSTPRBM5 YS 12.4 55 1000 6 0.3 SE606ZZSTPRBM5 YS 12.2 60 1000 6 0.3 SE606ZZSTPRBM5 YS 12.3 80 1000 6 0.3 SE607ZZSTPRBM5 YS 12.3 80 1000 6 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1000 8 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.3 135 1000 8 0.6 SE620ZZSTPRBC3 YS 12.3 135 1000 8 0.3 SE600ZZSTPRBC3 YS 13.2 155 860		В			fo	N	min ⁻¹	
5 0.2 SE605ZZSTPRBM5 YS 12.3 40 1000 5 0.3 SE625-5ZZSTPRBM5 YS 12.4 55 1000 6 0.3 SE606ZZSTPRBM5 YS 12.2 60 1000 6 0.3 SE606ZZSTPRBM5 YS 12.3 80 1000 6 0.3 SE607ZZSTPRBM5 YS 12.3 80 1000 7 0.3 SE607ZZSTPRBM5 YS 12.3 80 1000 7 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1000 8 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE620ZZSTPRBC3 YS 12.3 135 1000 9 0.6 SE620ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE600ZZSTPRBC3 YS 13.2 155 86		4	0.2	SE604ZZSTPRBM5 YS	12.4	30	1 000	
5 0.3 SE625-5ZZSTPRBM5 YS 12.4 55 1000 6 0.3 SE606ZZSTPRBM5 YS 12.2 60 1000 6 0.3 SE606ZZSTPRBM5 YS 12.3 80 1000 6 0.3 SE607ZZSTPRBM5 YS 12.3 80 1000 7 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE607ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1000 8 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE620ZZSTPRBC3 YS 13.2 135 860 8 0.3 SE6000ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 860 10 0.6 SE6201ZZSTPRBC3 YS 13.2 230 <t< td=""><td></td><td>5</td><td>0.2</td><th>SE624ZZSTPRBM5 YS</th><td>12.3</td><td>40</td><td>1 000</td></t<>		5	0.2	SE624ZZSTPRBM5 YS	12.3	40	1 000	
6 0.3 SE606ZZSTPRBM5 YS 12.2 60 1 000 6 0.3 SE626ZZSTPRBM5 YS 12.3 80 1 000 6 0.3 SE626ZZSTPRBM5 YS 12.3 80 1 000 7 0.3 SE627ZZSTPRBM5 YS 12.3 80 1 000 7 0.3 SE627ZZSTPRBM5 YS 12.4 100 1 000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1 000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1 000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1 000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1 000 8 0.6 SE629ZZSTPRBM5 YS 12.8 100 1 000 8 0.3 SE600ZZSTPRBC3 YS 12.3 135 1 000 9 0.6 SE620ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 860 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 860 11 0.6		5	0.2	SE605ZZSTPRBM5 YS	12.3	40	1 000	
6 0.3 SE626ZZSTPRBM5 YS 12.3 80 1 000 6 0.3 SE607ZZSTPRBM5 YS 12.3 80 1 000 7 0.3 SE607ZZSTPRBM5 YS 12.4 100 1 000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1 000 8 0.3 SE608ZZSTPRBM5 YS 12.4 100 1 000 8 0.3 SE608ZZSTPRBM5 YS 12.8 100 1 000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1 000 8 0.6 SE629ZZSTPRBM5 YS 12.4 135 970 6 7.142 0.5 SEEE3SZZSTPRBM5 YS 12.8 100 1 000 8 0.3 SE6000ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE600IZZSTPRBC3 YS 13.2 155 860 10 0.6 SE620IZZSTPRBC3 YS 13.2 205 770 9 0.3 SE6003ZZSTPRBC3 YS 13.2		5	0.3	SE625-5ZZSTPRBM5 YS	12.4	55	1 000	
6 0.3 SE607ZZSTPRBM5 YS 12.3 80 1 000 7 0.3 SE627ZZSTPRBM5 YS 12.4 100 1 000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1 000 8 0.3 SE608ZZSTPRBM5 YS 12.8 100 1 000 8 0.3 SE609ZZSTPRBM5 YS 12.8 100 1 000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1 000 8 0.6 SE629ZZSTPRBM5 YS 12.4 135 970 6 7.142 0.5 SEEE3SZZSTPRBM5 YS 12.3 135 1 000 8 0.3 SE600ZZSTPRBC3 YS 12.3 135 1 000 9 0.6 SE620ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE620IZZSTPRBC3 YS 13.2 205 770 9 0.3 SE6002ZZSTPRBC3 YS 13.2 230 610 11 0.6 SE6203ZZSTPRBC3 YS 13.2 <td></td> <td>6</td> <td>0.3</td> <th>SE606ZZSTPRBM5 YS</th> <td>12.2</td> <td>60</td> <td>1 000</td>		6	0.3	SE606ZZSTPRBM5 YS	12.2	60	1 000	
7 0.3 SE627ZZSTPRBM5 YS 12.4 100 1000 7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1000 8 0.3 SE608ZZSTPRBM5 YS 12.8 100 1000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.4 135 970 6 7.142 0.5 SEEE3SZZSTPRBM5 YS 12.8 100 1000 8 0.3 SE6000ZZSTPRBC3 YS 12.3 135 1000 9 0.6 SE6200ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6002ZZSTPRBC3 YS 13.2 205 770 9 0.3 SE6002ZZSTPRBC3 YS 13.2 205 770 9 0.3 SE6003ZZSTPRBC3 YS 13.2		6	0.3	SE626ZZSTPRBM5 YS	12.3	80	1 000	
7 0.3 SE608ZZSTPRBM5 YS 12.4 100 1000 8 0.3 SE628ZZSTPRBM5 YS 12.8 100 1000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.4 135 970 6 7.142 0.5 SEEE3SZZSTPRBM5 YS 12.4 135 970 9 0.6 SE6200ZZSTPRBC3 YS 12.3 135 1000 9 0.6 SE6000ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6000ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6202ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6003ZZSTPRBC3 YS 13.2		6	0.3	SE607ZZSTPRBM5 YS	12.3	80	1 000	
8 0.3 SE628ZZSTPRBM5 YS 12.8 100 1000 7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZZSTPRBM5 YS 12.4 135 970 5 7.142 0.5 SEEE3SZZSTPRBM5 YS 12.3 135 1000 1000 8 0.3 SE6000ZZSTPRBC3 YS 12.3 135 1000 1000 9 0.6 SE6200ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6002ZZSTPRBC3 YS 13.2 230 610 11 0.6 SE6002ZZSTPRBC3 YS 13.2 280 500 11 0.6 SE6003ZZSTPRBC3 YS 13.2 280 500 12 0.6 SE		7	0.3	SE627ZZSTPRBM5 YS	12.4	100	1 000	
7 0.3 SE609ZZSTPRBM5 YS 12.8 100 1000 8 0.6 SE629ZSTPRBM5 YS 12.4 135 970 6 7.142 0.5 SEE33ZZSTPRBM5 YS 12.4 135 970 8 0.3 SE6000ZZSTPRBC3 YS 12.3 135 1000 1000 8 0.3 SE6000ZZSTPRBC3 YS 12.3 135 1000 9 9 0.6 SE6200ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6001ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6002ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 280 500 12 0.6 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6005		7	0.3	SE608ZZSTPRBM5 YS	12.4	100	1 000	
8 0.6 SE629ZZSTPRBM5 YS 12.4 135 970 3 7.142 0.5 SEEE3SZZSTPRBM5 YS 12.8 100 1000 8 0.3 SE6000ZZSTPRBC3 YS 12.3 135 1000 9 0.6 SE6200ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6202ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.2 280 500 14 1 SE6005ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 13.9		8	0.3	SE628ZZSTPRBM5 YS	12.8	100	1 000	
7.142 0.5 SEEE3SZZSTPRBM5 YS 12.8 100 1 000 8 0.3 SE6000ZZSTPRBC3 YS 12.3 135 1 000 9 0.6 SE6200ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6202ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 280 530 12 0.6 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.9 420 360 14 1 SE6205ZSTPRBC3 YS 13.9 420 </td <td></td> <td>7</td> <td>0.3</td> <th>SE609ZZSTPRBM5 YS</th> <td>12.8</td> <td>100</td> <td>1 000</td>		7	0.3	SE609ZZSTPRBM5 YS	12.8	100	1 000	
8 0.3 SE6000ZZSTPRBC3 YS 12.3 135 1 000 9 0.6 SE6200ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 12.3 205 770 9 0.3 SE6002ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6201ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 280 580 12 0.6 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.9 280 500 14 1 SE6205ZZSTPRBC3 YS 13.9 420 360 15 1 SE6206ZZSTPRBC3 YS 13.9 585		8	0.6	SE629ZZSTPRBM5 YS	12.4	135	970	
9 0.6 SE6200ZZSTPRBC3 YS 13.2 155 860 8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 12.3 205 770 9 0.3 SE6002ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6201ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 280 580 12 0.6 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.9 280 500 14 1 SE6205ZZSTPRBC3 YS 13.9 280 500 15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6206ZZSTPRBC3 YS 13.9 585	;	7.142	0.5	SEEE3SZZSTPRBM5 YS	12.8	100	1 000	
8 0.3 SE6001ZZSTPRBC3 YS 13.2 155 830 10 0.6 SE6201ZZSTPRBC3 YS 12.3 205 770 9 0.3 SE6002ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6202ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 14.4 180 580 12 0.6 SE6004ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6004ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 13.9 420 360 15 1 SE6206ZZSTPRBC3 YS 13.9 585 300 13 1 SE6206ZZSTPRBC3 YS 13.9 585		8	0.3	SE6000ZZSTPRBC3 YS	12.3	135	1 000	
10 0.6 SE6201ZZSTPRBC3 YS 12.3 205 770 9 0.3 SE6002ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6202ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 14.4 180 580 12 0.6 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 13.9 280 500 14 1 SE6205ZZSTPRBC3 YS 13.9 420 360 15 1 SE6206ZZSTPRBC3 YS 13.9 420 360 13 1 SE6206ZZSTPRBC3 YS 13.9 585 300 16 1 SE6206ZZSTPRBC3 YS 13.9 770		9	0.6	SE6200ZZSTPRBC3 YS	13.2	155	860	
9 0.3 SE6002ZZSTPRBC3 YS 13.9 170 660 11 0.6 SE6202ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 14.4 180 580 12 0.6 SE6203ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6004ZZSTPRBC3 YS 13.2 385 450 14 1 SE6204ZZSTPRBC3 YS 13.9 240 360 14 1 SE6005ZZSTPRBC3 YS 13.9 420 360 15 1 SE6006ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 13.9 585 300 16 1 SE6007ZZSTPRBC3 YS 14.7 395 330 14 1 SE6007ZZSTPRBC3 YS 14.9 475 <t< td=""><td></td><td>8</td><td>0.3</td><th>SE6001ZZSTPRBC3 YS</th><td>13.2</td><td>155</td><td>830</td></t<>		8	0.3	SE6001ZZSTPRBC3 YS	13.2	155	830	
11 0.6 SE6202ZZSTPRBC3 YS 13.2 230 610 10 0.3 SE6003ZZSTPRBC3 YS 14.4 180 580 12 0.6 SE6003ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 14.5 305 400 15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 13.9 585 300 16 1 SE6206ZZSTPRBC3 YS 14.7 395 330 14 1 SE6006ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 13.9 770		10	0.6	SE6201ZZSTPRBC3 YS	12.3	205	770	
10 0.3 SE6003ZZSTPRBC3 YS 14.4 180 580 12 0.6 SE6203ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6203ZZSTPRBC3 YS 13.2 280 500 14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6004ZZSTPRBC3 YS 13.2 385 450 14 1 SE6204ZZSTPRBC3 YS 14.5 305 400 15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 14.7 395 330 16 1 SE6206ZZSTPRBC3 YS 13.9 585 300 14 1 SE6007ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 13.9 770 250		9	0.3	SE6002ZZSTPRBC3 YS	13.9	170	660	
12 0.6 SE6203ZZSTPRBC3 YS 13.2 285 530 12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 14.5 305 400 15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 14.7 395 330 16 1 SE6206ZZSTPRBC3 YS 13.9 585 300 14 1 SE6206ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 15.2 500 250		11	0.6	SE6202ZZSTPRBC3 YS	13.2	230	610	
12 0.6 SE6004ZZSTPRBC3 YS 13.9 280 500 14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 14.5 305 400 15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 14.7 395 330 16 1 SE6206ZZSTPRBC3 YS 13.9 585 300 14 1 SE6206ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 13.9 770 250		10	0.3	SE6003ZZSTPRBC3 YS	14.4	180	580	
14 1 SE6204ZZSTPRBC3 YS 13.2 385 450 12 0.6 SE6005ZZSTPRBC3 YS 14.5 305 400 15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 14.7 395 330 16 1 SE6206ZZSTPRBC3 YS 13.9 585 300 14 1 SE6007ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 13.9 250 250		12	0.6	SE6203ZZSTPRBC3 YS	13.2	285	530	
12 0.6 SE6005ZZSTPRBC3 YS 14.5 305 400 15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 14.7 395 330 16 1 SE6206ZZSTPRBC3 YS 13.9 585 300 14 1 SE6007ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 15.2 500 250		12	0.6	SE6004ZZSTPRBC3 YS	13.9	280	500	
15 1 SE6205ZZSTPRBC3 YS 13.9 420 360 13 1 SE6006ZZSTPRBC3 YS 14.7 395 330 16 1 SE6006ZZSTPRBC3 YS 13.9 585 300 14 1 SE6007ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 15.2 500 250		14	1	SE6204ZZSTPRBC3 YS	13.2	385	450	
13 1 SE6006ZZSTPRBC3 YS 14.7 395 330 16 1 SE6206ZZSTPRBC3 YS 13.9 585 300 14 1 SE6007ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 15.2 500 250		12	0.6	SE6005ZZSTPRBC3 YS	14.5	305	400	
16 1 SE6206ZZSTPRBC3 YS 13.9 585 300 14 1 SE6007ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 15.2 500 250	_	15	1	SE6205ZZSTPRBC3 YS	13.9	420	360	
14 1 SE6007ZZSTPRBC3 YS 14.9 475 280 17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 15.2 500 250		13	1	SE6006ZZSTPRBC3 YS	14.7	395	330	
17 1.1 SE6207ZZSTPRBC3 YS 13.9 770 250 15 1 SE6008ZZSTPRBC3 YS 15.2 500 250		16	1	SE6206ZZSTPRBC3 YS	13.9	585	300	
15 1 SE6008ZZSTPRBC3 YS 15.2 500 250		14	1	SE6007ZZSTPRBC3 YS	14.9	475	280	
		17	1.1	SE6207ZZSTPRBC3 YS	13.9	770	250	
18 1.1 SE6208ZZSTPRBC3 YS 14.0 875 220		15	1	SE6008ZZSTPRBC3 YS	15.2	500	250	
		18	1.1	SE6208ZZSTPRBC3 YS	14.0	875	220	

[Remarks] 1) Bearings with a radial internal clearance of C4 are also available.

2) Sizes other than those listed in this table are also available. Contact JTEKT for details 3) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

New Clean Pro Bearing-PR

For Clean Rooms, Vacuum Equipment

This bearing is lubricated with a fluoropolymer coating over the entire surface of all bearing components.

Applications

Semiconductor manufacturing equipment LCD manufacturing equipment Vacuum equipment

Lithography equipment Sputtering equipment Vacuum motors

	to low Comp	particl arison	e emis of par	sions. ticle en	nments nissions n diameter		vacuum	1.		p to 200°C in a	The ave Bearin	erage ser	vice life o In be es	ectancy eq of New Cle timated I	an Pro
Beari	P [*]	••••• ions 08	100 Time	ean Pro B	earing-PR	Ambient pressure, Pa	10 ⁻³	ckground 100 Am	I pressure	Pa Pa 00 300 400 verature, 'C	$L_{av} = b_2 \cdot \left(\frac{C_r \times 0.85}{P_r}\right)^q \times 0.016667$ Where, $L_{av} : \text{Average life, h}$ $b_2 : \text{Lubrication factor}$ $b_2 = 420$ $C_r : \text{Basic dynamic load rating}$ $P_r : \text{Dynamic equivalent radial l}$ $q : \text{Exponential coefficient, } q$ $n : \text{Rotational speed, min^{-1}}$ For the service life of solid lubricants to page 13.				ng, N load, N q = 3
	tional spe														
D	imens	sions	Tabl	e		_									
						Βοι	undary d mr		ons	Bearing No.		d ratings ¹⁾ N	Factor	Permissible radial load 2)	Limitin speed
	ŀ	<u> </u>	-			d	D	В	<i>r</i> (min.)	Jan	$C_{ m r}$	$C_{0\mathrm{r}}$	fo	N	min ⁻¹
	4		r			4	12	4	0.2	SE604ZZSTPRM5 YS	0.97	0.36	12.4	30	1 000
							13	5	0.2	SE624ZZSTPRM5 YS	1.30	0.49	12.3	40	1 000
	r					5	14	5	0.2	SE605ZZSTPRM5 YS	1.30	0.49	12.3	40	1 000
							16	5	0.3	SE625-5ZZSTPRM5 YS	1.75	0.67	12.4	55	1 000
	ϕD –		φ φ α	l		6	17 19	6 6	0.3 0.3	SE606ZZSTPRM5 YS SE626ZZSTPRM5 YS	1.95 2.60	0.74 1.05	12.2 12.3	60 80	1 000 1 000
	·					7	19	6	0.3	SE607ZZSTPRM5 YS	2.60	1.05	12.3	80	1 000
						,	22	7	0.3	SE627ZZSTPRM5 YS	3.30	1.35	12.4	100	1 000
]			8	22	7	0.3	SE608ZZSTPRM5 YS	3.30	1.35	12.4	100	1 000
		K L	5				24	8	0.3	SE628ZZSTPRM5 YS	3.35	1.40	12.8	100	1 000
	<u> </u>					9	24	7	0.3	SE609ZZSTPRM5 YS	3.35	1.40	12.8	100	1 000
							26	8	0.6	SE629ZZSTPRM5 YS	4.55	1.95	12.4	135	970
Dynamic	equivalent					9.525	22.225	7.142	0.5	SEEE3SZZSTPRM5 YS SE6000ZZSTPRC3 YS	3.35	1.40	12.8	100	1 000
	$F_r + YF_a$ nd Y are as		elow)			10	26 30	8 9	0.3 0.6	SE600022STPRC3 YS	4.55 5.10	1.95 2.40	12.3 13.2	135 155	1 000 860
	uivalent loa	ad	.0.011.)			12	28	8	0.3	SE6001ZZSTPRC3 YS	5.10	2.40	13.2	155	830
(X ar Static equ	$0.6F_r + 0.8$	5 $F_{ m a}$ naller thai	1 <i>F</i> _				32	10	0.6	SE6201ZZSTPRC3 YS	6.80	3.05	12.3	205	770
(X ar) Static equ $P_{0r} = 0$						15	32	9	0.3	SE6002ZZSTPRC3 YS	5.60	2.85	13.9	170	660
(X ar) Static equ $P_{0r} = 0$				F	-		35	11	0.6	SE6202ZZSTPRC3 YS	7.65	3.75	13.2	230	610
(X ar Static equ $P_{0r} = 0$ When $P_{0r} =$		F	<u>-</u> ≤ <i>e</i>		<u>a</u> > <i>e</i>	17	35	10	0.3	SE6003ZZSTPRC3 YS	6.00	3.25	14.4	180	580
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = $ f_0F_a			-	X	Y	20	40	12	0.6	SE6203ZZSTPRC3 YS	9.55	4.80	13.2	285	530
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$	e e	$\frac{F_{a}}{F_{1}}$	Y			20	42 47	12 14	0.6 1	SE6004ZZSTPRC3 YS SE6204ZZSTPRC3 YS	9.40 12.8	5.05 6.65	13.9 13.2	280 385	500 450
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$ 0.172 0.345	<i>e</i> 0.19 0.22		-		2.30 1.99			• •	0.6	SE6005ZZSTPRC3 YS	10.1	5.85	14.5	305	400
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$ 0.172 0.345 0.689	<i>e</i> 0.19 0.22 0.26		-		1.99 1.71	25	47	12	0.0		1			1	
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$ 0.172 0.345 0.689 1.03 1.38	<i>e</i> 0.19 0.22 0.26 0.28 0.30		-	0.56	1.99 1.71 1.55 1.45	25		12 15	1	SE6205ZZSTPRC3 YS	14.0	7.85	13.9	420	360
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$ 0.172 0.345 0.689 1.03 1.38 2.07	<i>e</i> 0.19 0.22 0.26 0.28 0.30 0.34	X	Y	0.56	1.99 1.71 1.55 1.45 1.31	25 30	47			SE6205ZZSTPRC3 YS SE6006ZZSTPRC3 YS	14.0 13.2	7.85 8.25	13.9 14.7	420 395	
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$ 0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17	<i>e</i> 0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42	X	Y	0.56	1.99 1.71 1.55 1.45 1.31 1.15 1.04	30	47 52 55 62	15 13 16	1 1 1	SE6006ZZSTPRC3 YS SE6206ZZSTPRC3 YS	13.2 19.5		14.7 13.9	395 585	330 300
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{1}{C_{0r}}$ 0.172 0.345 1.03 1.38 2.07 3.45	<i>e</i> 0.19 0.22 0.26 0.28 0.30 0.34 0.38	X	Y	0.56	1.99 1.71 1.55 1.45 1.31 1.15		47 52 55 62 62	15 13 16 14	1 1 1 1	SE6006ZZSTPRC3 YS SE6206ZZSTPRC3 YS SE6007ZZSTPRC3 YS	13.2 19.5 15.9	8.25 11.3 10.3	14.7 13.9 14.9	395 585 475	330 300 280
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$ 0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17	<i>e</i> 0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42	X	Y	0.56	1.99 1.71 1.55 1.45 1.31 1.15 1.04	30 35	47 52 55 62 62 72	15 13 16 14 17	1 1 1 1 1.1	SE6006ZZSTPRC3 YS SE6206ZZSTPRC3 YS SE6007ZZSTPRC3 YS SE6207ZZSTPRC3 YS	13.2 19.5 15.9 25.7	8.25 11.3 10.3 15.4	14.7 13.9 14.9 13.9	395 585 475 770	360 330 300 280 250
(X ar Static equ $P_{0r} = 0$ When $P_{0r} = \frac{f_0 F_a}{C_{0r}}$ 0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17	<i>e</i> 0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42	X	Y	0.56	1.99 1.71 1.55 1.45 1.31 1.15 1.04	30	47 52 55 62 62	15 13 16 14	1 1 1 1	SE6006ZZSTPRC3 YS SE6206ZZSTPRC3 YS SE6007ZZSTPRC3 YS	13.2 19.5 15.9	8.25 11.3 10.3	14.7 13.9 14.9	395 585 475	33 30 28

requesting an estimate.

$$L_{\rm av} = b_2 \cdot (\frac{C_r \times 0.85}{P_r})^q \times 0.016667/n$$

Where.

2) The permissible radial loads can be regarded as the maximum loads applicable to individual bearings.

When an axial load is applied to the bearing, convert this axial load to a dynamic equivalent radial load, and then compare this value to the permissible radial load.

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.

2) Please note that you may be asked to provide information on applications and usage conditions when

2

The Lubricating Properties of Grease in **Clean / Vacuum Applications**

This bearing is lubricated with the packed fluorinated EXSEV®-EX (Grease), which is suitable for use in clean environments and vacuum environments.

Compliant with environmental regulations (does not contain PFOA)

Applicable Environments

3-4 EXSEV®-EX

Applications

Semiconductor manufacturing equipment LCD manufacturing equipment Transfer robots Vacuum pumps

Dynamic equivalent load

(X and Y are as shown below.)

When P_{0x} is smaller than F_x .

 $\frac{F_a}{F} \leq e$

0

X

1

>*e*

Y

2.30 1.99

1.71

1.55

1.45

1.31

1.15 1.04 1.00

X

0.56

 $P_r = XF_r + YF_a$

Static equivalent load

 $P_{0r} = F_r$

0.172 0.19 0.345 0.22

 $\frac{f_0 F_{\rm a}}{C_{0{\rm r}}}$

0.689

1.03

1.38 2.07

3.45

5.17 6.89

 $P_{0r} = 0.6F_r + 0.5F_a$

е

0.26

0.28

0.20 0.30 0.34

0.38 0.42 0.44

80 18 requesting an estimate.

68

15

40

Grease properties

Name	EXSEV®-EX (Grease)
Thickener	PTFE
Base oil	PFPE
Dropping point	None
Evaporation (99°C×24h)	0.1wt%max.
Oil separation (100°C×24h)	2wt%max.
Operating temperature range	–50 to 260°C

ions			d ratings 1)	Factor	Limiting ²⁾
	Bearing No.				speed
<i>r</i> (min.)		$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	min ⁻¹
0.2	SV604ZZSTM5 YS EX	0.80	0.30	12.4	10 000
0.2	SV624ZZSTM5 YS EX	1.10	0.40	12.3	9 000
0.2	SV605ZZSTM5 YS EX	1.10	0.40	12.3	8 000
0.3	SV625-5ZZSTM5 YS EX	1.45	0.55	12.4	6 700
0.3	SV606ZZSTM5 YS EX	1.65	0.60	12.2	6 600
0.3	SV626ZZSTM5 YS EX	2.20	0.85	12.3	5 900
0.3	SV607ZZSTM5 YS EX	2.20	0.85	12.3	5 700
0.3	SV627ZZSTM5 YS EX	2.80	1.10	12.4	4 900
0.3	SV608ZZSTM5 YS EX	2.80	1.10	12.4	5 000
0.3	SV628ZZSTM5 YS EX	2.85	1.10	12.8	4 700
0.3	SV609ZZSTM5 YS EX	2.85	1.10	12.8	4 400
0.6	SV629ZZSTM5 YS EX	3.90	1.55	12.4	3 900
0.5	SVEE3SZZSTM5 YS EX	2.85	1.10	12.8	5 600
0.3	SV6000ZZSTC3 YS EX	3.85	1.55	12.3	4 000
0.6	SV6200ZZSTC3 YS EX	4.35	1.90	13.2	3 400
0.3	SV6001ZZSTC3 YS EX	4.35	1.90	13.2	3 300
0.6	SV6201ZZSTC3 YS EX	5.75	2.45	12.3	3 100
0.3	SV6002ZZSTC3 YS EX	4.75	2.25	13.9	2 600
0.6	SV6202ZZSTC3 YS EX	6.50	3.00	13.2	2 400
0.3	SV6003ZZSTC3 YS EX	5.10	2.60	14.4	2 300
0.6	SV6203ZZSTC3 YS EX	8.15	3.85	13.2	2 100
0.6	SV6004ZZSTC3 YS EX	8.00	4.05	13.9	2 000
1	SV6204ZZSTC3 YS EX	10.9	5.35	13.2	1 800
0.6	SV6005ZZSTC3 YS EX	8.55	4.65	14.5	1 600
1	SV6205ZZSTC3 YS EX	11.9	6.30	13.9	1 400
1	SV6006ZZSTC3 YS EX	11.2	6.60	14.7	1 300
1	SV6206ZZSTC3 YS EX	16.5	9.05	13.9	1 200
1	SV6007ZZSTC3 YS EX	13.5	8.25	14.9	1 100
1.1	SV6207ZZSTC3 YS EX	21.8	12.3	13.9	1 000
1	SV6008ZZSTC3 YS EX	14.2	9.20	15.2	1 000
1.1	SV6208ZZSTC3 YS EX	24.8	14.3	14.0	900

Notes 1) The basic load ratings are those of bearing made from SUS440C.

To calculate dynamic equivalent radial loads, multiply the C_{0r} value in this table by 1.25.

2) The limiting speed is that determined based on the condition that the cleanliness requirement is class 100.

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details. 2) Please note that you may be asked to provide information on applications and usage conditions when 3 Radial Ball Bearings

2

EXSEV Products

and Other

gs

Beari

EXSEV

Basic Specification for Supporting Clean, Vacuum Environments

This bearing is lubricated with a solid fluoropolymer lubricant, which offers superior lubrication performance. The cage is made from a low-particle-emission fluorocarbon resin.

3-5 EXSEV[®]-FA

Applications

Semiconductor manufacturing equipment LCD manufacturing equipment Transfer systems Inspection systems

Performance

Test conditions	
Tested bearing	ML6012 equivalent (Ø6×12×3)
Rotational speed	200min ⁻¹
Radial load	2.9 N/2 bearings
Ambience	In Class 10 clean bench, room temperature
Test time	20h
Measured particle size	Particle size 0.3µm or larger

Dimensions Table
B r o d <po d<="" p=""> o d o d o d o</po>
ianic equivalent ioau

Dynamic equivalent load
$P_r = XF_r + YF_a$
(X and Y are as shown below.)
Static equivalent load
$P_{0r} = 0.6F_r + 0.5F_a$
When P_{0r} is smaller than F_r .
$P_{0r} = F_r$

f_0F_a	е	$\frac{F_{\rm a}}{F_{\rm r}}$	<i>≦ e</i>	$\frac{F_a}{F_1}$	$\frac{1}{2} > e$
$C_{0\mathrm{r}}$		X	Y	X	Y
0.172 0.345 0.689	0.19 0.22 0.26			2.30 1.99 1.71	
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00

The static lsod ratings are those of standard bearing.

nensions		Bearing No.	Factor	Permissible radial load	Limiting speed
В	<i>r</i> (min.)		fo	N	min ⁻¹
4	0.2	SE604ZZST FA	12.4	7.5	1 000
5	0.2	SE624ZZST FA	12.3	10	1 000
5	0.2	SE605ZZST FA	12.3	10	1 000
5	0.3	SE625-5ZZST FA	12.4	15	1 000
6	0.3	SE606ZZST FA	12.2	15	1 000
6	0.3	SE626ZZST FA	12.3	20	1 000
6	0.3	SE607ZZST FA	12.3	20	1 000
7	0.3	SE627ZZST FA	12.4	25	1 000
7	0.3	SE608ZZSTM5 FA	12.4	25	1 000
8	0.3	SE628ZZST FA	12.8	25	1 000
7	0.3	SE609ZZST FA	12.8	25	1 000
8	0.6	SE629ZZST FA	12.4	35	970
7.142	0.5	SEEE3SZZST FA	12.8	25	1 000
8	0.3	SE6000ZZST FA	12.3	35	1 000
9	0.6	SE6200ZZST FA	13.2	50	860
8	0.3	SE6001ZZST FA	13.2	40	830
10	0.6	SE6201ZZST FA	12.3	70	770
9	0.3	SE6002ZZST FA	13.9	45	660
11	0.6	SE6202ZZST FA	13.2	75	610
10	0.3	SE6003ZZST FA	14.4	50	580
12	0.6	SE6203ZZST FA	13.2	95	530
12	0.6	SE6004ZZST FA	13.9	70	500
14	1	SE6204ZZST FA	13.2	130	450
12	0.6	SE6005ZZST FA	14.5	75	400
15	1	SE6205ZZST FA	13.9	140	360
13	1	SE6006ZZSTC3 FA	14.7	95	330
16	1	SE6206ZZST FA	13.9	195	300
14	1	SE6007ZZST FA	14.9	110	280
17	1.1	SE6207ZZST FA	13.9	210	250
15	1	SE6008ZZST FA	15.2	135	250
18	1.1	SE6208ZZST FA	14.0	230	220

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details. 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

2

EXSEV Bearings

Corrosion Guard Pro Bearing-SC

For Extreme Corrosive Environments

This bearing uses a silicon carbide ceramic material, which is resistant to strong acids and alkalis.

Applications

Aluminum electrolytic capacitor manufacturing equipment

ſ	Di	imens	sions	Table				
			_					Bo
				r				d
			\bigcirc					4
								5
	$\phi D \longrightarrow \phi d$							6
								7
		<u> </u>)				8
	Dynamic (equivalent	load					9
	$P_r = X$	$F_{\rm r} + YF_{\rm a}$						9.525
	Static equ	the d Y are as ivalent los $.6F_r + 0.8$	ad	elow.)				10
		P_{0r} is sm		$F_{\rm r}$.				12
	f_0F_a	е	$\frac{F_a}{F_r}$	≤e	$\frac{F_a}{F_r}$	<u>+</u> > <i>e</i>		15
	C_{0r}	-	X	Y	X	Y		17
	0.172	0.19				2.30 1.99		20
	0.689 1.03	0.26 0.28				1.71 1.55		20
	1.38 2.07	0.30 0.34	1	0	0.56	1.45 1.31		25
	3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00		30
	The static	Isod ratin	gs are tho	se of stan	dard beari	ng.		35
								40

Koyo

nensions			Factor	Permissible	Limitina
		Bearing No.		radial load	speed
В	<i>r</i> (min.)		f_0	N	min ⁻¹
4	0.2	NCZ604 FA	12.4	7.5	1 000
5	0.2	NCZ624 FA	12.3	10	1 000
5	0.2	NCZ605 FA	12.3	10	1 000
5	0.2	NCZ625 FA	12.4	15	1 000
6	0.3	NCZ606 FA	12.2	15	1 000
6	0.3	NCZ626 FA	12.3	20	1 000
6	0.3	NCZ607 FA	12.3	20	1 000
7	0.3	NCZ627 FA	12.4	25	1 000
7	0.3	NCZ608 FA	12.4	25	1 000
8	0.3	NCZ628 FA	12.8	25	1 000
7	0.3	NCZ609 FA	12.8	25	1 000
8	0.6	NCZ629 FA	12.4	35	970
7.142	0.5	NCZEE3S FA	12.8	25	1 000
8	0.3	NCZ6000 FA	12.3	35	1 000
9	0.6	NCZ6200 FA	13.2	50	860
8	0.3	NCZ6001 FA	13.2	40	830
0	0.6	NCZ6201 FA	12.3	70	770
9	0.3	NCZ6002 FA	13.9	45	660
1	0.6	NCZ6202 FA	13.2	75	610
0	0.3	NCZ6003 FA	14.4	50	580
2	0.6	NCZ6203 FA	13.2	95	530
2	1	NCZ6004 FA	13.9	70	500
4	0.6	NCZ6204 FA	13.2	130	450
2	1	NCZ6005 FA	14.5	75	400
5	1	NCZ6205 FA	13.9	140	360
3	1	NCZ6006 FA	14.7	95	330
6	1	NCZ6206 FA	13.9	195	300
4	1	NCZ6007 FA	14.9	110	280
7	1.1	NCZ6207 FA	13.9	210	250
5	1	NCZ6008 FA	15.2	135	250
8	1.1	NCZ6208 FA	14.0	230	220

[Remarks] 1) Products manufactured using zirconia are also available. Contact JTEKT for details.
2) Sizes other than those listed in this table are also available. Contact JTEKT for details.
3) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

Bear

EXSEV

Corrosion Guard Pro Bearing-SN

Silicon Nitride with Increased **Corrosion Resistance**

This bearing has its components made of corrosion resistant silicon nitride and is lubricated with fluoropolymer. This bearing can be used even in a highly corrosive solution.

Applications

Liquid crystal film manufacturing equipment Aluminum electrolytic capacitor manufacturing equipment Plating equipment Synthetic fiber manufacturing equipment Food container washing machine

Performance

• In an acid or alkaline solution, this bearing has a longer service life than bearings made from standard silicone nitride.

Dimensions Table

80

Koyo

Test conditions

Lubricant : Spindle oil Ball : Bearing steel Load : Increased in stages at every 1.08 × 10⁷ cycles Rotational speed : 1 200 min-

2

nensions		Bearing No.	Factor	Permissible radial load	Limiting speed				
В	<i>r</i> (min.)		f_0	N	min ⁻¹				
4	0.2	NCT604 FA	12.4	7.5	1 000				
5	0.2	NCT624 FA	12.3	10	1 000				
5	0.2	NCT605 FA	12.3	10	1 000				
5	0.3	NCT625-5 FA	12.4	15	1 000				
6	0.3	NCT606 FA	12.2	15	1 000				
6	0.3	NCT626 FA	12.3	20	1 000				
6	0.3	NCT607 FA	12.3	20	1 000				
7	0.3	NCT627 FA	12.4	25	1 000				
7	0.3	NCT608 FA	12.4	25	1 000				
8	0.3	NCT628 FA	12.8	25	1 000				
7	0.3	NCT609 FA	12.8	25	1 000				
8	0.6	NCT629 FA	12.4	35	970				
7.142	0.5	NCTEE3S FA	12.8	25	1 000				
8	0.3	NCT6000 FA	12.3	35	1 000				
9	0.6	NCT6200 FA	13.2	50	860				
8	0.3	NCT6001 FA	13.2	40	830				
10	0.6	NCT6201 FA	12.3	70	770				
9	0.3	NCT6002 FA	13.9	45	660				
11	0.6	NCT6202 FA	13.2	75	610				
10	0.3	NCT6003 FA	14.4	50	580				
12	0.6	NCT6203 FA	13.2	95	530				
12	0.6	NCT6004 FA	13.9	70	500				
14	1	NCT6204 FA	13.2	130	450				
12	0.6	NCT6005 FA	14.5	75	400				
15	1	NCT6205 FA	13.9	140	360				
13	1	NCT6006 FA	14.7	95	330				
16	1	NCT6206 FA	13.9	195	300				
14	1	NCT6007 FA	14.9	110	280				
17	1.1	NCT6207 FA	13.9	210	250				
15	1	NCT6008 FA	15.2	135	250				
18	1.1	NCT6208 FA	14.0	230	220				

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details. 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

Geramic Bearings

Using Ceramics for Various Applications

This bearing has its components made of silicon nitride ceramic and uses fluoropolymer as the lubricant. It is typically used in vacuum and corrosive environments.

Applications

Semiconductor manufacturing equipment LCD manufacturing equipment Semiconductor inspection equipment Synthetic fiber manufacturing equipment Canning machinery Ultrasonic motors

Performance

 ϕD

 $P_{x} = XF_{x} + YF_{z}$

Static equivalent load

 $P_{0r} = F_r$

0.345 0.22 0.689 0.26

 $f_0 F_a$

 C_{0r}

0.172

1.03 1.38 2.07

3.45 5.17

6.89

 $P_{0r} = 0.6F_r + 0.5F_a$

е

0.19

0.28 0.30 0.34

0.38 0.42 0.44

 This Ceramic Bearing can be used under water; however, when used in a liquid with poor lubrication characteristics, the load exerted on the bearing should be no higher than 10% of the bearing's basic dynamic load rating. Also note that the fatigue life of the bearing is 3% of its rating life under water.

• When this Ceramic Bearing is not used under water, select one based on the permissible radial load and limiting speed specified in the Dimensions Table.

90

50

Fai 10

nm	mensio	ons	Bearing No.		ad ratings N	Factor	Permissible radial load	Limiting speed
	В	r (min.)	, C	$C_{ m r}$	$C_{0\mathrm{r}}$	fo	N	min ⁻¹
	4	0.2	NC604 FA	0.97	0.36	12.4	7.5	1 000
	5	0.2	NC624 FA	1.30	0.49	12.3	10	1 000
	5	0.2	NC605 FA	1.30	0.49	12.3	10	1 000
	5	0.3	NC625-5 FA	1.75	0.67	12.4	15	1 000
	6	0.3	NC606 FA	1.95	0.74	12.2	15	1 000
	6	0.3	NC626 FA	2.60	1.05	12.3	20	1 000
	6	0.3	NC607 FA	2.60	1.05	12.3	20	1 000
	7	0.3	NC627 FA	3.30	1.35	12.4	25	1 000
	7	0.3	NC608 FA	3.30	1.35	12.4	25	1 000
	8	0.3	NC628 FA	3.35	1.40	12.8	25	1 000
	7	0.3	NC609 FA	3.35	1.40	12.8	25	1 000
	8	0.6	NC629 FA	4.55	1.95	12.4	35	970
	7.142	0.5	NCEE3S FA	3.35	1.40	12.8	25	1 000
	8	0.3	NC6000 FA	4.55	1.95	12.3	35	1 000
	9	0.6	NC6200 FA	5.10	2.40	13.2	50	860
	8	0.3	NC6001 FA	5.10	2.40	13.2	40	830
	10	0.6	NC6201 FA	6.80	3.05	12.3	70	770
	9	0.3	NC6002 FA	5.60	2.85	13.9	45	660
	11	0.6	NC6202 FA	7.65	3.75	13.2	75	610
	10	0.3	NC6003 FA	6.00	3.25	14.4	50	580
	12	0.6	NC6203 FA	9.55	4.80	13.2	95	530
	12	0.6	NC6004 FA	9.40	5.05	13.9	70	500
	14	1	NC6204 FA	12.8	6.65	13.2	130	450
	12	0.6	NC6005 FA	10.1	5.85	14.5	75	400
	15	1	NC6205 FA	14.0	7.85	13.9	140	360
	13	1	NC6006 FA	13.2	8.25	14.7	95	330
	16	1	NC6206 FA	19.5	11.3	13.9	195	300
	14	1	NC6007 FA	15.9	10.3	14.9	110	280
	17	1.1	NC6207 FA	25.7	15.4	13.9	210	250
	15	1	NC6008 FA	16.7	11.5	15.2	135	250
	18	1.1	NC6208 FA	29.1	17.8	14.0	230	220

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

3 Radial Ball Bearings

2

Koyo

46

Corrosion Guard Pro Bearing-ZO

This bearing uses ceramic (zirconia) for its material and is lubricated with the solid lubricant of the molded PEEK resin cage. It can be used in corrosive liquids or water and also has excellent impact resistance.

Applications

EXSEV

Test conditions

Bearing No.	6205		
Load	250N (Radial)		
Rotational speed	20min ⁻¹		
Ambience	Submerged in solution		
Temperature	60 to 80°C		

Koyo

nensions			_		
		Bearing No.	Factor	Permissible radial load	Limiting speed
В	r	bearing No.	£	Tadiai load	Speed
Б	(min.)		f_0	Ν	min ⁻¹
4	0.2	NCB604 PN	12.4	7.5	1 000
5	0.2	NCB624 PN	12.3	10	1 000
5	0.2	NCB605 PN	12.3	10	1 000
5	0.3	NCB625 PN	12.4	15	1 000
6	0.3	NCB606 PN	12.2	15	1 000
6	0.3	NCB626 PN	12.3	20	1 000
6	0.3	NCB607 PN	12.3	20	1 000
7	0.3	NCB627 PN	12.4	25	1 000
7	0.3	NCB608 PN	12.4	25	1 000
8	0.3	NCB628 PN	12.8	25	1 000
7	0.3	NCB609 PN	12.8	25	1 000
8	0.6	NCB629 PN	12.4	35	970
7.142	0.5	NCBEE3S PN	12.8	25	1 000
8	0.3	NCB6000 PN	12.3	35	1 000
9	0.6	NCB6200 PN	13.2	50	860
8	0.3	NCB6001 PN	13.2	40	830
10	0.6	NCB6201 PN	12.3	70	770
9	0.3	NCB6002 PN	13.9	45	660
11	0.6	NCB6202 PN	13.2	75	610
10	0.3	NCB6003 PN	14.4	50	580
12	0.6	NCB6203 PN	13.2	95	530
12	0.6	NCB6004 PN	13.9	70	500
14	1	NCB6204 PN	13.2	130	450
12	0.6	NCB6005 PN	14.5	75	400
15	1	NCB6205 PN	13.9	140	360
13	1	NCB6006 PN	14.7	95	330
16	1	NCB6206 PN	13.9	195	300
14	1	NCB6007 PN	14.9	110	280
17	1.1	NCB6207 PN	13.9	210	250
15	1	NCB6008 PN	15.2	135	250
18	1.1	NCB6208 PN	14.0	230	220

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details. 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

High-performance film manufacturing equipment

Bear

EXSEV

Generation Guard Pro Bearing-MD

For Salt Water and **Chemical Environments**

This bearing uses a stainless steel variety that has excellent corrosion resistance. As the lubricant, fluoropolymer is used. It is compatible with underwater use.

Applications

Semiconductor manufacturing equipment Food machinery Cleaning equipment

Performance

 ϕD

Dynamic equivalent load

(X and Y are as shown below.)

When P_{0r} is smaller than F_r

 $\frac{F_{a}}{F_{n}} \leq e$

0

X

1

 $P_1 = XF_1 + YF_1$

Static equivalent load

 $P_{0r} = 0.6F_r + 0.5F_s$

е

0.19

0.28 0.30 0.34

0.38 0.42

0.44

 $P_{0r} = F_r$

 $f_0 F_a$

 $C_{0\mathrm{r}}$

0.172

1.03 1.38 2.07

3.45 5.17

6.89

0.345 0.22 0.689 0.26

- When this Corrosion Guard Pro Bearing-MD is used under water, its service life is determined depending on the rust and/or wear of bearing rings. The service life cannot be estimated correctly from the rating life.
- When this Corrosion Guard Pro Bearing-MD is not used under water, select one based on the allowable radial load and limiting speed specified in the Dimensions Table.

mm

90

2 3 Radial Ball Bearings

Test conditions

Bearing No.: 6206 equivalent Rotational speed: 1500min⁻¹ Load: Radial 196 N

dimensions າm		Bearing No.	Factor	Permissible radial load	Limiting speed		
E	3 <i>r</i> (min.)		f_0	N	min ⁻¹		
4	0.2	3NC604ZZMD4 FA	12.4	7.5	1 000		
5	0.2	3NC624ZZMD4 FA	12.3	10	1 000		
5	0.2	3NC605ZZMD4 FA	12.3	10	1 000		
5	0.3	3NC625-5ZZMD4 FA	12.4	15	1 000		
6	0.3	3NC606ZZMD4 FA	12.2	15	1 000		
6	0.3	3NC626ZZMD4 FA	12.3	20	1 000		
6	0.3	3NC607ZZMD4 FA	12.3	20	1 000		
7	0.3	3NC627ZZMD4 FA	12.4	25	1 000		
7	0.3	3NC608ZZMD4M5 FA	12.4	25	1 000		
8	0.3	3NC628ZZMD4 FA	12.8	25	1 000		
7	0.3	3NC609ZZMD4 FA	12.8	25	1 000		
8	0.6	3NC629ZZMD4 FA	12.4	35	970		
7.1	142 0.5	3NCEE3SZZMD4 FA	12.8	25	1 000		
8	0.3	3NC6000ZZMD4 FA	12.3	35	1 000		
9	0.6	3NC6200ZZMD4 FA	13.2	50	860		
8	0.3	3NC6001ZZMD4 FA	13.2	40	830		
10	0.6	3NC6201ZZMD4 FA	12.3	70	770		
9	0.3	3NC6002ZZMD4 FA	13.9	45	660		
11	0.6	3NC6202ZZMD4 FA	13.2	75	610		
10	0.3	3NC6003ZZMD4 FA	14.4	50	580		
12	0.6	3NC6203ZZMD4 FA	13.2	95	530		
12	0.6	3NC6004ZZMD4 FA	13.9	70	500		
14	1	3NC6204ZZMD4 FA	13.2	130	450		
12	0.6	3NC6005ZZMD4 FA	14.5	75	400		
15	1	3NC6205ZZMD4 FA	13.9	140	360		
13	1	3NC6006ZZMD4C3 FA	14.7	95	330		
16	1	3NC6206ZZMD4 FA	13.9	195	300		
14	1	3NC6007ZZMD4 FA	14.9	110	280		
17	1.1	3NC6207ZZMD4 FA	13.9	210	250		
15	1	3NC6008ZZMD4 FA	15.2	135	250		
18	1.1	3NC6208ZZMD4 FA	14.0	230	220		

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details. 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

311 EXSEV®-SK

The Standard for **Stainless Steel Bearings**

This bearing has its components made of stainless steel, and is lubricated with lithium containing EXSEV®-KHD (Grease), which is packed in adequate amounts. This bearing is suitable for use in slightly corrosive environments.

Applicable Environments Clean Magnetic field Vacuum Electric field High speed High temperature Corrosive Hygiene	 Temperature: - 30 to 120°C Ambient pressure: Atmospheric pressure Unsuitable for clean environments due to anticorrosive treatment.
Product Specifications Image: Signature state Signat Signature	Martensitic stainless steel Outer ring Inner ring Ball Austenitic stainless steel Cage Shield

 $f_0 F_a$

 C_{0r}

1.03 1.38 2.07

3.45 5.17 6.89

Grease Properties

Name

Thickener

Base oil

Dropping point

Evaporation (99 $^{\circ}$ C \times 22h)

Oil separation $(100^{\circ}C \times 24 h)$

Operating temperature range

Grease properties

SK6 0.6 9 0.3 SK6 6 0.3 SK6 28 8 32 10 0.6 SK6 7 0.3 SK6 0.3 SK6 32 9 35 11 0.6 SK6 **17** 30 7 0.3 SK6 35 10 0.3 SK6 40 12 0.6 SK6 9 0.3 SK6 42 12 0.6 SK6 47 14 1 SK6 **25** 42 9 0.3 SK6 47 12 0.6 SK6 52 15 1 SK6 **30** 47 9 0.3 SK6 SK6 55 13 1 SK6 62 16 1 **35** 55 10 0.6 SK6 62 14 SK6 1 72 17 1.1 SK6

80 18 1.1 SK62

requesting an estimate.

Chemical equipment Transfer systems

EXSEV®-SK

Applications

2

Koyo

Grease life can be estimated by the following equation

$$1.40 \times 10^{-6} d_m n - 2.50 \left(\frac{Fr}{C_r} - 0.05 \right) - (0.021 - 1.80 \times 10^{-6} d_m n) T$$

: grease life, h

 $\log L = 6.10 - 4$

where

L

 d_m

п

Р

 C_r

Т

b) Value of $d_m n$

JTEKT.

mm

6

8

(min.)

0.3 SK

0.3 SK

EXSEV®-KHD

(Grease)

Lithium soap

Poly α olefin

203°C

0.14wt%

0.1wt%

–30 to 120°C

 $=\frac{D+d}{2}$ (D : outside diameter, d : bore diameter), mm

: rotational speed, min-1 : dynamic equivalent radial load, N

: basic dynamic radial load rating, N

: operating temperature of bearing, °C

The conditions for applying equation are as follows :

a) Operating temperature of bearing : T °C Applicable when $T \leq 120$ [when T < 50, T = 50]When T > 120, please contact with JTEKT. c) Load condition : $\frac{P_r}{C_r}$ Applicable when $\frac{P_r}{C_r} \leq 0.2$ [when $\frac{P_r}{C_r} < 0.05, \frac{P_r}{C_r} = 0.05$] When $\frac{P_r}{C_r}$ > 0.2, please contact with JTEKT.

Applicable when $d_m n \leq 500 \times 10^3$ [when $d_n n < 125 \times 10^3$, $d_n n = 125 \times 10^3$] When $d_m n > 500 \times 10^3$, please contact with

Bearing No.		Basic load ratings 1)		Factor	Limiting speeds	
		k	N	1 40101	mi	n-1
ZZ Shielded type)	2RS (Contact seal type)	$C_{_{\mathrm{r}}}$	$C_{_{ m 0r}}$	f_0	ZZ	2RS
6900ZZST YS HX	SK69002RSST YS HX	2.30	1.00	14.0	34 000	21 000
6000ZZST YS HX	SK60002RSST YS HX	3.85	1.55	12.3	31 000	19 000
6200ZZST YS HX	SK62002RSST YS HX	4.35	1.90	13.2	24 000	16 000
6901ZZST YS HX	SK69012RSST YS HX	2.45	1.15	14.5	31 000	18 000
6001ZZST YS HX	SK60012RSST YS HX	4.35	1.90	13.2	27 000	17 000
6201ZZST YS HX	SK62012RSST YS HX	5.75	2.45	12.3	22 000	15 000
6902ZZST YS HX	SK69022RSST YS HX	3.65	1.80	14.3	26 000	15 000
6002ZZST YS HX	SK60022RSST YS HX	4.75	2.25	13.9	23 000	14 000
6202ZZST YS HX	SK62022RSST YS HX	6.50	3.00	13.2	20 000	13 000
6903ZZST YS HX	SK69032RSSTC3 YS HX	3.90	2.05	14.7	23 000	13 000
6003ZZST YS HX	SK60032RSST YS HX	5.10	2.60	14.4	21 000	12 000
6203ZZST YS HX		8.15	3.85	13.2	17 000	12 000
6904ZZST YS HX	SK69042RSST YS HX	5.40	2.95	14.7	19 000	11 000
6004ZZST YS HX	SK60042RSST YS HX	8.00	4.05	13.9	17 000	10 000
6204ZZST YS HX	SK62042RSST YS HX	10.9	5.35	13.2	15 000	9 700
6905ZZST YS HX	SK69052RSST YS HX	5.95	3.65	15.4	16 000	9 300
6005ZZST YS HX	SK60052RSST YS HX	8.55	4.65	14.5	15 000	9 000
6205ZZST YS HX	SK62052RSST YS HX	11.9	6.30	13.9	13 000	8 400
6906ZZSTC3 YS HX		6.15	4.00	15.8	14 000	8 200
6006ZZST YS HX	SK60062RSST YS HX	11.2	6.60	14.7	13 000	7 500
6206ZZST YS HX	SK62062RSST YS HX	16.5	9.05	13.9	11 000	7 000
6907ZZSTC3 YS HX	SK69072RSST YS HX	9.25	6.20	15.7	12 000	6 800
6007ZZSTC3 YS HX	SK60072RSST YS HX	13.5	8.25	14.9	11 000	6 500
6207ZZSTC3 YS HX	SK62072RSSTC3 YS HX	21.8	12.3	13.9	9 200	6 000
6008ZZSTC3 YS HX	SK60082RSSTC3 YS HX	14.2	9.20	15.2	10 000	5 800
6208ZZSTC3 YS HX	SK62082RSSTC3 YS HX	24.8	14.3	14.0	8 300	5 400

Note 1) The basic load ratings are those of bearing made from SUS440C.

To calculate the dynamic equivalent radial loads, multiply the C_{0r} value in this table by 1.25.

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.

2) Please note that you may be asked to provide information on applications and usage conditions when

EXSEV

3-12 Full Complement Ceramic Ball Bearings

Ultra-high Temperature 800°C

This bearing has all components made of ceramic for use in an ultrahigh temperature environments. No cage is provided. Being an angular contact ball bearing, this bearing is normally used in pairs.

Baking furnace cars Fans in furnaces

2

ary dime	ensions			Permissible	Limiting
mm			Bearing No.	radial load	speed
В	<i>r</i> (min.)	$r_{_1}$ (min.)	Ū	N	min ⁻¹
4	0.2	0.1	NC704V	10	500
5	0.2	0.1	NC724V	15	500
5	0.2	0.1	NC705V	15	500
5	0.2	0.1	NC725V	25	500
6	0.3	0.15	NC706V	20	500
6	0.3	0.15	NC726V	35	500
6	0.3	0.15	NC707V	30	500
7	0.3	0.15	NC727V	40	490
7	0.3	0.15	NC708V	40	500
8	0.3	0.15	NC728V	40	470
7	0.3	0.15	NC709V	40	440
8	0.3	0.15	NC729V	50	390
8	0.3	0.15	NC7000V	55	400
9	0.6	0.3	NC7200V	60	340
8	0.3	0.15	NC7001V	60	330
10	0.6	0.3	NC7201V	85	310
9	0.3	0.15	NC7002V	70	260
11	0.6	0.3	NC7202V	90	240
10	0.3	0.15	NC7003V	75	230
12	0.6	0.3	NC7203V	115	210
12	0.6	0.3	NC7004V	115	200
14	1	0.6	NC7204V	160	180
12	1	0.6	NC7005V	125	160
15	1	0.6	NC7205V	170	140
13	1	0.6	NC7006V	160	130
16	1	0.6	NC7206V	235	120
14	1	0.6	NC7007V	195	110
17	1.1	0.6	NC7207V	310	100
15	1	0.6	NC7008V	195	100
18	1.1	0.6	NC7208V	370	90

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

3-13 EXSEV[®]-XT

Long service life with grease lubrication even at 350°C

The bearings are filled with fluorinated grease capable of handling high temperatures even up to 350°C.

Applications

Semiconductor manufacturing equipment LCD manufacturing equipment Transfer robots Vacuum pumps

Performance					
			Grease proper	ties	
en lo sizionali di la construcción di la construcci			N	lame	EXSEV®-XT (Grease
je i i i i i i i i i i i i i i i i i i i	Test conditions		Ba	ase oil	PFPE
ratio	Bearing No.	6000	Dropp	ping point	None
life	(bore dia. × outside dia. × width) Temperature	φ10×φ26×8mm 300°C	Evaporatio	n (200°C×22h)	0.1wt%max.
	Ambience	Air	Oil separatio	on (100°C×24h)	2wt%max.
	Rotational speed	500min ⁻¹	Operating	In atmospheric air	MAX350°C
Solid lubricant EXSEV®-XT	Axial load	175N	temperature range		

Dimensions Table ϕD ϕd

Dynamic equivalent load

(X and Y are as shown below.)

When P_{0r} is smaller than F_r .

 $\frac{T_a}{F_n} \leq e$

0

X

1

 $\frac{F_{a}}{F_{r}} > e$

X

0.56

Y

2.30 1.99 1.71

1.55 1.45 1.31

1.15 1.04 1.00

 $P_{I} = XF_{I} + YF_{I}$

Static equivalent load

 $P_{0r} = F_{r}^{0}$

0.172 0.19 0.345 0.22 0.689 0.26

 $f_0 F_a$

 C_{0r}

1.03 1.38 2.07

3.45 5.17 6.89

 $P_{0r} = 0.6F_r + 0.5F_a$

е

0.28 0.30 0.34

0.38 0.42 0.44

40 68 15 80 18

62

62

72

35

16

14

17

ons		Pagia log	d rotingo 1)		
0115		Basic load ratings 1) kN		Factor	Limiting
r	Bearing No.			_	speed 2)
(min.)		$C_{\rm r}$	$C_{_{ m 0r}}$	f_0	min ⁻¹
0.2	SV604ZZSTM6 YS XT	0.80	0.30	12.4	10 000
0.2	SV624ZZSTM6 YS XT	1.10	0.40	12.3	9 000
0.2	SV605ZZSTM6 YS XT	1.10	0.40	12.3	8 000
0.3	SV625-5ZZSTM6 YS XT	1.45	0.55	12.4	6 700
0.3	SV606ZZSTM6 YS XT	1.65	0.60	12.2	6 600
0.3	SV626ZZSTM6 YS XT	2.20	0.85	12.3	5 900
0.3	SV607ZZSTM6 YS XT	2.20	0.85	12.3	5 700
0.3	SV627ZZSTM6 YS XT	2.80	1.10	12.4	4 900
0.3	SV608ZZSTM6 YS XT	2.80	1.10	12.4	5 000
0.3	SV628ZZSTM6 YS XT	2.85	1.10	12.8	4 700
0.3	SV609ZZSTM6 YS XT	2.85	1.10	12.8	4 400
0.6	SV629ZZSTM6 YS XT	3.90	1.55	12.4	3 900
0.5	SVEE3SZZSTM6 YS XT	2.85	1.10	12.8	5 600
0.3	SV6000ZZSTC4 YS XT	3.85	1.55	12.3	4 000
0.6	SV6200ZZSTC4 YS XT	4.35	1.90	13.2	3 400
0.3	SV6001ZZSTC4 YS XT	4.35	1.90	13.2	3 300
0.6	SV6201ZZSTC4 YS XT	5.75	2.45	12.3	3 100
0.3	SV6002ZZSTC4 YS XT	4.75	2.25	13.9	2 600
0.6	SV6202ZZSTC4 YS XT	6.50	3.00	13.2	2 400
0.3	SV6003ZZSTC4 YS XT	5.10	2.60	14.4	2 300
0.6	SV6203ZZSTC4 YS XT	8.15	3.85	13.2	2 100
0.6	SV6004ZZSTC4 YS XT	8.00	4.05	13.9	2 000
1	SV6204ZZSTC4 YS XT	10.9	5.35	13.2	1 800
0.6	SV6005ZZSTC4 YS XT	8.55	4.65	14.5	1 600
1	SV6205ZZSTC4 YS XT	11.9	6.30	13.9	1 400
1	SV6006ZZSTC4 YS XT	11.2	6.60	14.7	1 300
1	SV6206ZZSTC4 YS XT	16.5	9.05	13.9	1 200
1	SV6007ZZSTC4 YS XT	13.5	8.25	14.9	1 100
1.1	SV6207ZZSTC4 YS XT	21.8	12.3	13.9	1 000
1	SV6008ZZSTC4 YS XT	14.2	9.20	15.2	1 000
1.1	SV6208ZZSTC4 YS XT	24.8	14.3	14.0	900

Note 1) The basic load ratings are those of bearing made from SUS440C.

To calculate dynamic equivalent radial loads, multiply the C_{0r} value in this table by 1.25.

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.

2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

2

EXSEV Products

of P

and

Bearings (

EXSEV

3-14 EXSEV®-WS

Combines 350°C Heat Resistance and Load Carrying Capability

This bearing has extremely heat resistant tungsten disulfide included in the separator material as the lubricant.

Applicable Environments Vacuum Electric field **High temperature**

Applications

- Semiconductor manufacturing equipment LCD manufacturing equipment Vacuum evaporatior
- Plasma display panel manufacturing equipment
- * We recommend that this bearing is used with horizontal axes. For information on using this bearing with items other than horizontal axes, consult JTEKT. 57

 ϕD ϕd Dynamic equivalent load $P_{I} = XF_{I} + YF_{I}$ (X and Y are as shown below.) Static equivalent load $P_{0r} = 0.6F_r + 0.5F_a$ When P_{0r} is smaller than F_r . $P_{0r} = F_r$

The static lsod ratings are those of standard bearing.

Boundary din m

D

d

Performance

Dimensions Table

Test conditions

Bearing No.: 608, Rotational speed: 500min⁻¹ Atmosphere pressure: 10-3 Pa

nensions		Bearing No.	Factor	Permissible radial load	Limiting speed		
В	<i>r</i> (min.)		f_0	N	min ⁻¹		
6	0.3	SE606ZZSTM6 WS	12.2	100	500		
6	0.3	SE626ZZSTM6 WS	12.3	130	500		
6	0.3	SE607ZZSTM6 WS	12.3	130	500		
7	0.3	SE627ZZSTM6 WS	12.4	165	490		
7	0.3	SE608ZZSTM6 WS	12.4	165	500		
8	0.3	SE628ZZSTM6 WS	12.8	170	470		
7	0.3	SE609ZZSTM6 WS	12.8	170	440		
8	0.6	SE629ZZSTM6 WS	12.4	230	390		
7.142	0.5	SEEE3SZZSTM6 WS	12.8	170	410		
8	0.3	SE6000ZZSTC4 WS	12.3	230	400		
9	0.6	SE6200ZZSTC4 WS	13.2	255	340		
8	0.3	SE6001ZZSTC4 WS	13.2	255	330		
10	0.6	SE6201ZZSTC4 WS	12.3	340	310		
9	0.3	SE6002ZZSTC4 WS	13.9	280	260		
11	0.6	SE6202ZZSTC4 WS	13.2	385	240		
10	0.3	SE6003ZZSTC4 WS	14.4	300	230		
12	0.6	SE6203ZZSTC4 WS	13.2	480	210		
12	0.6	SE6004ZZSTC4 WS	13.9	470	200		
14	1	SE6204ZZSTC4 WS	13.2	640	180		
12	0.6	SE6005ZZSTC4 WS	14.5	505	160		
15	1	SE6205ZZSTC4 WS	13.9	700	140		
13	1	SE6006ZZSTC4 WS	14.7	660	130		
16	1	SE6206ZZSTC4 WS	13.9	975	120		
14	1	SE6007ZZSTC4 WS	14.9	795	110		
17	1.1	SE6207ZZSTC4 WS	13.9	1 285	100		
15	1	SE6008ZZSTC4 WS	15.2	835	100		
18	1.1	SE6208ZZSTC4 WS	14.0	1 455	90		

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details. 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

2

and

spu

Bearir

EXSEV

3-15 EXSEV®-MG

This bearing has silver ion plated on the stainless steel balls, as the lubricant.

* As much as possible, avoid bringing these bearings in contact with the atmosphere.

 10^{-1}

Supports Ultra-high

Temperature Vacuums

Applications Semiconductor manufacturing equipment Medical equipment Vacuum motors

emissions in an ultrahigh vacuum.

Test conditions

Temperature: Atmosphere / room temperature, Load: Radial 3 N · Axial 98 N Ambient pressure: 1.3 × 10⁻⁸ Pa (1.0 × 10⁻¹⁰ Torr), Rotational speed: 140min⁻¹

12 52 15 55 13 62 16 62 14 72 17 40 68 15 80 18 Notes 1) The basic load ratings are those of standard bearing (used to calculate lubrication life). 2) The permissible radial loads can be regarded as the maximum loads applicable to individual bearings. When an axial load is applied to the bearing, convert this axial load to a dynamic equivalent radial load, and then compare this value to the permissible radial load.

mm

В

4

5

5

5

6

6

6

7

8

7

8

8

9

8

10

9

11

10

12

12

14

D

requesting an estimate.

: Lubrication factor

 h_2

 h_2

: Atmosphere pressure/temperature dependency coefficient $b_3 = 1$ (when 10^{-3} Pa, room temperature)

Koyo

For the service life of solid lubricants, refer to page 13.

ns		Basic load ratings 1) kN		Factor	Permissible	Limiting
	Bearing No.		KIN		radial load 2) speed	
<i>r</i> (min.)		$C_{\rm r}$	$C_{ m 0r}$	f_0	N	min ⁻¹
0.2	SE604ZZSTMG3M6 YS	0.97	0.36	12.4	30	1 000
0.2	SE624ZZSTMG3M6 YS	1.30	0.49	12.3	40	1 000
0.2	SE605ZZSTMG3M6 YS	1.30	0.49	12.3	40	1 000
0.3	SE625-5ZZSTMG3M6 YS	1.75	0.67	12.4	55	1 000
0.3	SE606ZZSTMG3M6 YS	1.95	0.74	12.2	60	1 000
0.3	SE626ZZSTMG3M6 YS	2.60	1.05	12.3	80	1 000
0.3	SE607ZZSTMG3M6 YS	2.60	1.05	12.3	80	1 000
0.3	SE627ZZSTMG3M6 YS	3.30	1.35	12.4	100	1 000
0.3	SE608ZZSTMG3M6 YS	3.30	1.35	12.4	100	1 000
0.3	SE628ZZSTMG3M6 YS	3.35	1.40	12.8	100	1 000
0.3	SE609ZZSTMG3M6 YS	3.35	1.40	12.8	100	1 000
0.6	SE629ZZSTMG3M6 YS	4.55	1.95	12.4	135	970
0.5	SEEE3SZZSTMG3M6 YS	3.35	1.40	12.8	100	1 000
0.3	SE6000ZZSTMG3C4 YS	4.55	1.95	12.3	135	1 000
0.6	SE6200ZZSTMG3C4 YS	5.10	2.40	13.2	155	860
0.3	SE6001ZZSTMG3C4 YS	5.10	2.40	13.2	155	830
0.6	SE6201ZZSTMG3C4 YS	6.80	3.05	12.3	205	770
0.3	SE6002ZZSTMG3C4 YS	5.60	2.85	13.9	170	660
0.6	SE6202ZZSTMG3C4 YS	7.65	3.75	13.2	230	610
0.3	SE6003ZZSTMG3C4 YS	6.00	3.25	14.4	180	580
0.6	SE6203ZZSTMG3C4 YS	9.55	4.80	13.2	285	530
0.6	SE6004ZZSTMG3C4 YS	9.40	5.05	13.9	280	500
1	SE6204ZZSTMG3C4 YS	12.8	6.65	13.2	385	450
0.6	SE6005ZZSTMG3C4 YS	10.1	5.85	14.5	305	400
1	SE6205ZZSTMG3C4 YS	14.0	7.85	13.9	420	360
1	SE6006ZZSTMG3C4 YS	13.2	8.25	14.7	395	330
1	SE6206ZZSTMG3C4 YS	19.5	11.3	13.9	585	300
1	SE6007ZZSTMG3C4 YS	15.9	10.3	14.9	475	280
1.1	SE6207ZZSTMG3C4 YS	25.7	15.4	13.9	770	250
1	SE6008ZZSTMG3C4 YS	16.7	11.5	15.2	500	250
1.1	SE6208ZZSTMG3C4 YS	29.1	17.8	14.0	875	220

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.

2) Please note that you may be asked to provide information on applications and usage conditions when

EXSEV Products

Other

and

3-16 EXSEV®-PN

Superior Heat Resistance Supporting 300°C

This bearing has a highly heat resistant solid lubricant, such as molybdenum disulfide included in the cage material.

Applications

Carton manufacturing equipment LCD cleaning equipment

Performance

40 68 80 [Remarks] 1) Sizes o 2) Please condition

Test conditions

Bearing No.: 608 Rotational speed: 200min⁻¹, Load: Axial 100 N

nensions		Bearing No.	Factor	Permissible radial load	Limiting speed		
В	<i>r</i> (min.)		f_0	N	min ⁻¹		
4	0.2	SE604ZZSTM5 PN	12.4	30	1 000		
5	0.2	SE624ZZSTM5 PN	12.3	40	1 000		
5	0.2	SE605ZZSTM5 PN	12.3	40	1 000		
5	0.3	SE625-5ZZSTM5 PN	12.4	55	1 000		
6	0.3	SE606ZZSTM5 PN	12.2	60	1 000		
6	0.3	SE626ZZSTM5 PN	12.3	80	1 000		
6	0.3	SE607ZZSTM5 PN	12.3	80	1 000		
7	0.3	SE627ZZSTM5 PN	12.4	100	1 000		
7	0.3	SE608ZZSTM5 PN	12.4	100	1 000		
8	0.3	SE628ZZSTM5 PN	12.8	100	1 000		
7	0.3	SE609ZZSTM5 PN	12.8	100	1 000		
8	0.6	SE629ZZSTM5 PN	12.4	135	970		
7.142	0.5	SEEE3SZZSTM5 PN	12.8	100	1 000		
8	0.3	SE6000ZZSTC3 PN	12.3	135	1 000		
9	0.6	SE6200ZZSTC3 PN	13.2	155	860		
8	0.3	SE6001ZZSTC3 PN	13.2	155	830		
10	0.6	SE6201ZZSTC3 PN	12.3	205	770		
9	0.3	SE6002ZZSTC3 PN	13.9	170	660		
11	0.6	SE6202ZZSTC3 PN	13.2	230	610		
10	0.3	SE6003ZZSTC3 PN	14.4	180	580		
12	0.6	SE6203ZZSTC3 PN	13.2	285	530		
12	0.6	SE6004ZZSTC3 PN	13.9	280	500		
14	1	SE6204ZZSTC3 PN	13.2	385	450		
12	0.6	SE6005ZZSTC3 PN	14.5	305	400		
15	1	SE6205ZZSTC3 PN	13.9	420	360		
13	1	SE6006ZZSTC3 PN	14.7	395	330		
16	1	SE6206ZZSTC3 PN	13.9	585	300		
14	1	SE6007ZZSTC3 PN	14.9	475	280		
17	1.1	SE6207ZZSTC3 PN	13.9	770	250		
15	1	SE6008ZZSTC3 PN	15.2	500	250		
18	1.1	SE6208ZZSTC3 PN	14.0	875	220		

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.
 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

Radial Ball Bearings 😦

2

Koyo

62
3-17 EXSEV®-MO

This bearing has molybdenum disulfide baked on the surface of the stainless steel cage, as the lubricant.

Basic Specification for

300°C Support

Applications

Semiconductor manufacturing equipment

Turbo molecular pump Rotary furnaces

Performance

 Molybdenum disulfide compares to the common PTFE coating in lubrication life but is superior in heat resistance.

Bearing No.: 608

Dynamic equivalent load $P_r = XF_r + YF_s$

Static equivalent load $P_{0r} = 0.6F_r + 0.5F_a$ When P_{0r} is smaller than F_r

е

0.28 0.30 0.34

0.38 0.42 0.44

 $P_{0r} = F_r$

0.172 0.19 0.345 0.22 0.689 0.26

 $f_0 F_a$

 C_{0r}

1.03

1.38 2.07

3.45 5.17 6.89

(X and Y are as shown below.)

 $\frac{F_a}{F_n} \leq e$

0

X Y

1

 $\frac{r_a}{F} > e$

Y

230 1.99

1.71

1.55

1.45 1.31

1.15 1.04 1.00

X

0.56

Βοι	u ndary d mr		ons	Bearing No.		d ratings ¹⁾ N	Factor	Permissible radial load ²⁾	Limiting speed	
d	D	В	<i>r</i> (min.)		$C_{\rm r}$	$C_{ m _{0r}}$	f_0	N	min ⁻¹	
4	12	4	0.2	SE604ZZSTMSA7M5 YS	0.97	0.36	12.4	30	1 000	
	13	5	0.2	SE624ZZSTMSA7M5 YS	1.30	0.49	12.3	40	1 000	
5	14	5	0.2	SE605ZZSTMSA7M5 YS	1.30	0.49	12.3	40	1 000	
	16	5	0.3	SE625-5ZZSTMSA7M5 YS	1.75	0.67	12.4	55	1 000	
6	17	6	0.3	SE606ZZSTMSA7M5 YS	1.95	0.74	12.2	60	1 000	
	19	6	0.3	SE626ZZSTMSA7M5 YS	2.60	1.05	12.3	80	1 000	
7	19	6	0.3	SE607ZZSTMSA7M5 YS	2.60	1.05	12.3	80	1 000	
	22	7	0.3	SE627ZZSTMSA7M5 YS	3.30	1.35	12.4	100	1 000	
8	22	7	0.3	SE608ZZSTMSA7M5 YS	3.30	1.35	12.4	100	1 000	
	24	8	0.3	SE628ZZSTMSA7M5 YS	3.35	1.40	12.8	100	1 000	
9	24	7	0.3	SE609ZZSTMSA7M5 YS	3.35	1.40	12.8	100	1 000	
	26	8	0.6	SE629ZZSTMSA7M5 YS	4.55	1.95	12.4	135	970	
9.525	22.225	7.142	0.5	SEEE3SZZSTMSA7M5 YS	3.35	1.40	12.8	100	1 000	
10	26	8	0.3	SE6000ZZSTMSA7C3 YS	4.55	1.95	12.3	135	1 000	
	30	9	0.6	SE6200ZZSTMSA7C3 YS	5.10	2.40	13.2	155	860	
12	28	8	0.3	SE6001ZZSTMSA7C3 YS	5.10	2.40	13.2	155	830	
	32	10	0.6	SE6201ZZSTMSA7C3 YS	6.80	3.05	12.3	205	770	
15	32	9	0.3	SE6002ZZSTMSA7C3 YS	5.60	2.85	13.9	170	660	
	35	11	0.6	SE6202ZZSTMSA7C3 YS	7.65	3.75	13.2	230	610	
17	35	10	0.3	SE6003ZZSTMSA7C3 YS	6.00	3.25	14.4	180	580	
	40	12	0.6	SE6203ZZSTMSA7C3 YS	9.55	4.80	13.2	285	530	
20	42	12	0.6	SE6004ZZSTMSA7C3 YS	9.40	5.05	13.9	280	500	
	47	14	1	SE6204ZZSTMSA7C3 YS	12.8	6.65	13.2	385	450	
25	47	12	0.6	SE6005ZZSTMSA7C3 YS	10.1	5.85	14.5	305	400	
	52	15	1	SE6205ZZSTMSA7C3 YS	14.0	7.85	13.9	420	360	
30	55	13	1	SE6006ZZSTMSA7C3 YS	13.2	8.25	14.7	395	330	
	62	16	1	SE6206ZZSTMSA7C3 YS	19.5	11.3	13.9	585	300	
35	62	14	1	SE6007ZZSTMSA7C3 YS	15.9	10.3	14.9	475	280	
	72	17	1.1	SE6207ZZSTMSA7C3 YS	25.7	15.4	13.9	770	250	
40	68	15	1	SE6008ZZSTMSA7C3 YS	16.7	11.5	15.2	500	250	
	80	18	1.1	SE6208ZZSTMSA7C3 YS	29.1	17.8	14.0	875	220	

requesting an estimate.

Lubricant service life expectancy equation

The average service life of EXSEV bearings with the cage coated with molybdenum disulfide (EXSEV®-MO) can be estimated with the following equation.

$$L_{\rm av} = b_2 \cdot \left(\frac{C_{\rm r} \times 0.85}{D}\right)^q \times 0.016667/n$$

Where.

Lav : Average life, h

 b_2 : Lubrication factor

 $b_{2} = 6$

 C_{r} : Basic dynamic load rating, N

- : Dynamic equivalent radial load, N P_r
- : Exponential coefficient, q = 3q: Rotational speed, min-1 n

For the service life of solid lubricants, refer to page 13.

2) The permissible radial loads can be regarded as the maximum loads applicable to individual bearings.

When an axial load is applied to the bearing, convert this axial load to a dynamic equivalent radial load, and then compare this value to the permissible radial load.

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.

2) Please note that you may be asked to provide information on applications and usage conditions when

2

Electric field

EXSEV

Vacuum

318 Non-magnetic Hybrid **Ceramic Bearings** bearing can be used in a vacuum environment. **Applicable Environments** 300 300 0 O 200 200 Magnetic field Clean

100

-100

1

Product Specifications Non-magnetic stainless steel Outer ring Inner ring Ceramic (silicon nitride) Ball Fluorocarbon resin Cage **Bearing Numbering System 3NC** Basic bearing number YH4 FA Molded fluorocarbon resin cage Hybrid ceramic bearing Non-magnetic stainless steel

Semiconductor manufacturing equipment Semiconductor inspection equipment Canning machinery

Superconductivity-related equipment Velder

Non-magnetic Support in **Stainless Steel**

10-5

1

Ambient pressure, Pa

100

-100

10⁵

This bearing uses non-magnetic stainless steel. It includes fluoropolymer as the lubricant. This

10²

Cleanliness, class

10

10³

10⁴

Dynamic equivalent load

(X and Y are as shown below.)

When $P_{\rm 0r}$ is smaller than $F_{\rm r}$

 $\frac{F_a}{F_r} \le e$

Y

0

X

1

The static lsod ratings are those of standard bearing.

 $\frac{F_a}{F_a} > e$

Y

2.30 1.99 1.71

1.55 1.45 1.31

1.15 1.04 1.00

Χ

0.56

 $P_1 = XF_1 + YF_1$

Static equivalent load

 $P_{\rm or}=F_{\rm r}$

 $\frac{f_0 F_{\rm a}}{C_{\rm 0r}}$

0.172 0.345 0.689

1.03 1.38 2.07

3.45 5.17 6.89

 $P_{0r} = 0.6F_r + 0.5F_r$

е

0.19 0.22 0.26

0.28 0.30 0.34

0.38 0.42 0.44

F

Ę

Performance

• While steel bearings experience fluctuating

this bearing rotates at a stable torque.

running torque, caused by magnetic fields,

65

Koyo

			Factor	Permissible	Limiting
		Bearing No.		radial load	speed
В	<i>r</i> (min.)		f_0	N	min ⁻¹
4	0.2	3NC604YH4 FA	12.4	7.5	1 000
5	0.2	3NC624YH4 FA	12.3	10	1 000
5	0.2	3NC605YH4 FA	12.3	10	1 000
5	0.3	3NC625-5YH4 FA	12.4	15	1 000
6	0.3	3NC606YH4 FA	12.2	15	1 000
6	0.3	3NC626YH4 FA	12.3	20	1 000
6	0.3	3NC607YH4 FA	12.3	20	1 000
7	0.3	3NC627YH4 FA	12.4	25	1 000
7	0.3	3NC608YH4 FA	12.4	25	1 000
8	0.3	3NC628YH4 FA	12.8	25	1 000
7	0.3	3NC609YH4 FA	12.8	25	1 000
8	0.6	3NC629YH4 FA	12.4	35	970
7.142	0.5	3NCEE3SYH4 FA	12.8	25	1 000
8	0.3	3NC6000YH4 FA	12.3	35	1 000
9	0.6	3NC6200YH4 FA	13.2	50	860
8	0.3	3NC6001YH4 FA	13.2	40	830
10	0.6	3NC6201YH4 FA	12.3	70	770
9	0.3	3NC6002YH4 FA	13.9	45	660
11	0.6	3NC6202YH4 FA	13.2	75	610
10	0.3	3NC6003YH4 FA	14.4	50	580
12	0.6	3NC6203YH4 FA	13.2	95	530
12	0.6	3NC6004YH4 FA	13.9	70	500
14	1	3NC6204YH4 FA	13.2	130	450
12	0.6	3NC6005YH4 FA	14.5	75	400
15	1	3NC6205YH4 FA	13.9	140	360
13	1	3NC6006YH4 FA	14.7	95	330
16	1	3NC6206YH4 FA	13.9	195	300
14	1	3NC6007YH4 FA	14.9	110	280
17	1.1	3NC6207YH4 FA	13.9	210	250
15	1	3NC6008YH4 FA	15.2	135	250
18	1.1	3NC6208YH4 FA	14.0	230	220

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details. 2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

Hybrid Ceramic Bearings

For Insulation and Highspeed Applications

This bearing is a standard hybrid ceramic bearing. Lubricated with grease or oil, it can be used as an insulating bearing or high speed bearing.

Applicable Environments Clean Magnetic field Vacuum Electric field High speed High temperature Corrosive Hygiene	 Temperature: – 30 to 120°C Ambient pressure: Atmospheric pressure
Product Specifications	High carbon chromit

■ High speed stranding machine guide rollers ■ Motors ■ Generators

$\begin{array}{c c} & & & & \\ & \phi D & & \phi d \\ & \phi D & & \phi d \\ & & & & \phi d \\ & & & & \phi d \\ & & & & & \phi d \\ & & & & & & & & & \\ & & & & & & & &$											
	$f_0 F_a$	ρ	$\frac{F_a}{F_r}$	≤e	$\frac{F_a}{F_r}$	-> e					
	$C_{0\mathrm{r}}$	Ũ	X	Y	X	Y					
	0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00					

Bearing No.	k	d ratings ¹⁾ N	Factor	Limiting speed min ^{- 1}			
n.)	$C_{\rm r}$	$C_{_{ m 0r}}$	f_{0}	Grease lubrication	Oil lubrication		
2 3NC604ZZM5 FG	0.97	0.30	12.4	63 000	75 000		
2 3NC624ZZM5 FG	1.30	0.40	12.3	52 000	64 000		
2 3NC605ZZM5 FG	1.30	0.40	12.3	60 000	72 000		
3 3NC625-5ZZM5 FG	1.75	0.55	12.4	48 000	58 000		
3 3NC606ZZM5 FG	1.95	0.60	12.2	51 000	61 000		
3 3NC626ZZM5 FG	2.60	0.90	12.3	42 000	51 000		
3 3NC607ZZM5 FG	2.60	0.90	12.3	48 000	56 000		
3 3NC627ZZM5 FG	3.30	1.15	12.4	37 000	44 000		
3 3NC608ZZM5 FG	3.30	1.15	12.4	40 000	49 000		
3 3NC628ZZM5 FG	3.35	1.20	12.8	33 000	42 000		
3 3NC609ZZM5 FG	3.35	1.20	12.8	39 000	48 000		
6 3NC629ZZM5 FG	4.55	1.65	12.4	32 000	39 000		
5 3NCEE3SZZM5 FG	3.35	1.20	12.8	39 000	48 000		
3 3NC6000ZZC3 FG	4.55	1.65	12.3	37 000	43 000		
6 3NC6200ZZC3 FG	5.10	2.05	13.2	28 000	34 000		
3 3NC6001ZZC3 FG	5.10	2.05	13.2	32 000	38 000		
6 3NC6201ZZC3 FG	6.80	2.60	12.3	26 000	32 000		
3 3NC6002ZZC3 FG	5.60	2.40	13.9	27 000	32 000		
6 3NC6202ZZC3 FG	7.65	3.15	13.2	24 000	28 000		
3 3NC6003ZZC3 FG	6.00	2.75	14.4	25 000	30 000		
6 3NC6203ZZC3 FG	9.55	4.10	13.2	20 000	25 000		
6 3NC6004ZZC3 FG	9.40	4.30	13.9	20 000	25 000		
3NC6204ZZC3 FG	12.8	5.65	13.2	18 000	20 000		
6 3NC6005ZZC3 FG	10.1	4.95	14.5	18 000	21 000		
3NC6205ZZC3 FG	14.0	6.70	13.9	15 000	18 000		
3NC6006ZZC3 FG	13.2	7.00	14.7	15 000	18 000		
3NC6206ZZC3 FG	19.5	9.60	13.9	13 000	15 000		
3NC6007ZZC3 FG	15.9	8.75	14.9	13 000	15 000		
1 3NC6207ZZC3 FG	25.7	13.1	13.9	11 000	13 000		
3NC6008ZZC3 FG	16.7	9.80	15.2	12 000	14 000		
1 3NC6208ZZC3 FG	29.1	15.2	14.0	9 900	12 000		
1	3NC6008ZZC3 FG 3NC6208ZZC3 FG those of the Hybrid Ceramic E	3NC6008ZZC3 FG 16.7 3NC6208ZZC3 FG 29.1 those of the Hybrid Ceramic Bearing.	3NC6008ZZC3 FG 16.7 9.80 3NC6208ZZC3 FG 29.1 15.2 those of the Hybrid Ceramic Bearing.	3NC6008ZZC3 FG 16.7 9.80 15.2 3NC6208ZZC3 FG 29.1 15.2 14.0 those of the Hybrid Ceramic Bearing. 3000000000000000000000000000000000000	3NC6008ZZC3 FG 16.7 9.80 15.2 12 000 3NC6208ZZC3 FG 29.1 15.2 14.0 9 900		

67

Test conditions

Bearing No.: 695 Temperature: 70°C Rotational speed: 7200 min Load (Preload) : 14.7 N (Constant pressure preloading)

2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

2

EXSEV

2

	Be	earing type coo	de	
	C (Deep groove type)	A (Angular contact type)	X (4 point contact type)	
Cross sectional dimension B = E mm				Bore dia. mm
4.762	KTC	KTA	ктх	25.4, 38.1
6.35	KAC	KAA	KAX	50.8
7.938	KBC	KBA	KBX	, 88.9

l imensio i m	ns	Bearing No.	Basic load ratings 1) kN				
В	<i>r</i> (min.)	-	$C_{ m r}$	$C_{ m 0r}$			
4.762	0.4	3NCKTA010VST-1	2.05	1.20			
4.762	0.4	3NCKTA015VST-1	2.35	1.65			
6.35	0.6	3NCKAA020VST-1	3.90	2.95			
7.938	1	3NCKBA020VST-1	5.40	3.80			
6.35	0.6	3NCKAA025VST-1	4.20	3.55			
7.938	1	3NCKBA025VST-1	5.85	4.60			
6.35	0.6	3NCKAA030VST-1	4.50	4.20			
7.938	1	3NCKBA030VST-1	6.25	5.45			
6.35	0.6	3NCKAA035VST-1	4.80	4.90			
7.938	1	3NCKBA035VST-1	6.60	6.25			

Note 1) The basic load ratings are those of bearing made from SUS440C.

[Remarks] 1) Sizes other than those listed in this table are also available. Contact JTEKT for details.2) Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

2

5 Linear Motion Bearings

Linear Motion Ball Bearings for Use in Extreme Special Environments

The linear motion ball bearings are a high precision product that moves linearly in axial directions while having rolling contact with the shaft. Having balls, retainer and shields housed in an external cylinder, this compact bearing moves linearly without limit to the stroke distance.

Bearing Types

			New Clean Pro Bearing-PR (Linear Motion Ball Bearings)		EXSEV [®] -MO (Linear Motion Ball Bearings)	Hybrid Ceramic Linear ¹⁾ Motion Ball Bearing		
	External cylinder		Martensitic s	tainless steel		Martensitic stainless steel		
Material	Balls			Silicon nitride				
Mat	Retainer		Austenitic stainless steel					
	Shields		Precipitation hardened stainless steel					
Lubricant		EXSEV [®] -EX (Grease) ²⁾	New Clean Pro Bearing- PR coating over the entire surface of all components	Silver ion plated balls	Molybdenum disulfide coated on the retainer surface	(Remark)		

Notes 1) Hybrid Ceramic Linear Motion Ball Bearings with grease lubrication or with New Clean Pro Bearing-PR are also available. Consult JTEKT regarding the applications of these bearings.

2) For details on EXSEV®-EX (grease), refer to page 94.

Applicable Environments

		New Clean Pro Bearing-PR (Linear Motion Ball Bearings)			Hybrid Ceramic Linear Motion Ball Bearing		
Cleanliness	Class 100	Class 10	-	-	-		
Temperature °C	- 50 to 260	- 100 to 200	- 200 to 300	- 100 to 300	- 30 to 200		
Ambient pressure Pa (Room temperature)	Atomospheric air to 10 ⁻⁷	Atomospheric air to 10 ⁻⁵	10 ⁻³ to 10 ⁻¹⁰	Atomospheric air to 10 ⁻⁵	Atomospheric air to 10 ⁻¹⁰		

Performance Comparison in lubrication life 60 200 No lubrication EXSEV[®]-MG (Linear Motion Ball Bearings) Ball Bearings)

Bearing Numbering System SE SDM 10 OP ST Grease SV Code for Solid lubricant : SE extreme special Hybrid Ceramic environments Bearing : 3NC mm series SDM Series code With round flange Bore dia SDM With square flange SDMK

Notes 1) This catalogue does not contain the dimensions tables of mm-series linear motion ball bearings (for Europe). Contact JTEKT for the dimensions.

2) The clearance adjustment type (AJ) and open type (OP) are not compatible with tandem type and flanged type.

Bearing Mounting

1) Linear motion ball bearings are constructed not to allow rotary motion but allow linear motion only.

These bearings should carry loads evenly throughout their entire stroke; therefore, when the bearing is subjected to bending loads, mount two bearings at a distance on a shaft, or use a tandem type linear motion ball bearing

- 2) When installing a linear motion ball bearings in a housing, press one end face of the external cylinder into the housing, taking care not to push or hit the shield, or insert the bearing softly using a jig as shown in the figure at right. When inserting a shaft, check the shaft for burrs or indentations in advance and insert it slowly so as not to deform the shaft. Chamfer the shaft end faces.
- 3) To support linear motion ball bearings built in a single housing on a set of two or more shafts, adjust the parallelism of the shafts while checking the smooth motion of the bearings. Imperfectly paralleled shafts may disturb smooth motion of the bearings or shorten their service life.

2

Koyo

New Clean Pro Bearing-PR (Linear Motion

Test conditions									
ϕ 10 × ϕ 19 × 29mm (bore dia. × outside dia. × width)									
Atmospheric air, class 10									
Room temp.									
50N									
30mm/s									

2

5 <u>MSA7</u>					
	Grease code —	EXSEV®-E	EX (Grease)	: EX	
	Lubricant	New Clea	n Pro Bearing-PR	: PR12	
	code	Molybden	: MSA7		
	coue	Silver		: MG3	
	Stainless steel	SUS440C	External cylinder	: ST1	
	code	components	External cylinder and	balls : ST5	
	Turne and a				
	— Type code ———	Standard		: No code	
		Tandem ty	: W		
		Clearance	adjustment type	: AJ	
		Open type)	: OP	

Dimensions Table

SDM Series

Shaft	Sta	ndar	ď	Clearance type	adjus (AJ)	stment	Open ty	ype (O	OP)				I	Boui	ndary (dime	nsions	, mm	1				Basic load	
dia. d _r mm	Basic bearing No.	No. of ball rows	Mass g	Basic bearing No.	No. of ball rows	Mass g	Basic bearing No.	No. of ball rows	Mass g	$d_{ m r}$	Tolerance µm	D	Tolerance µm	L	Tolerance μm	В	Tolerance µm	W	D_1	h	h_1	heta (degree)	rati C N	ing C ₀ N
3	SDM 3	10W5	1.4	_	-	_	_	-	_	3		7		10		_	_	-	_	-	-	_	69	105
4	SDM 4		2	_	_	_	_	_	_	4	0	8	0 — 9	12	0	_	_	_	_	_	_	_	88	127
5	SDM 5		4	_	_	_	_	-	_	5	- 0	- 8 10	- 9	15	1 1	10.2		1.1	9.6	-	_	_	167	206
6	SDM 6		8.5	_	_	_	_	_	_	6		12		19		13.5		1.1	11.5	-	_	_	206	265
8	SDM 8S		11	_	-	_	_	-	_	8		15	0 - 11	17		11.5		1.1	14.3	-	_	_	176	216
8	SDM 8	4	17	-	_	_	_	_	_	8		15	11	24		17.5		1.1	14.3	-	_	_	274	392
10	SDM10		36	_	-	_	-	-	_	10	0	19		29	0	22	0 - 200	1.3	18	-	-	_	372	549
12	SDM12		42	SDM12 AJ		41	1 SDM12 OF		32	12		21	0 3	30	- 200	23	200	1.3	20	1.5	8	80	510	784
13	SDM13		49	SDM13 AJ	4	48	SDM13 OP	3	37	13		23	- 13	32		23		1.3	22	1.5	9	80	510	784
16	SDM16		76	SDM16 AJ		75	SDM16 OP		58	16		28	37		26.5		1.6	27	1.5	11	80	774	1 180	
20	SDM20	5	100	SDM20 AJ	5	98	SDM20 OP	4	79	20		32		42		30.5		1.6	30.5	1.5	11	60	882	1 370
25	SDM25		240	SDM25 AJ		237	SDM25 OP		203	25	0	40	0 - 16	59		41		1.85	38	2	12	50	980	1 570
30	SDM30		270	SDM30 AJ		262	SDM30 OP		228	30	10	45	10	64		44.5		1.85	43	2.5	15	50	1 570	2 740
35	SDM35		425	SDM35 AJ		420	SDM35 OP		355	35		52		70		49.5		2.1	49	2.5	17	50	1 670	3 140
40	SDM40	6	654	SDM40 AJ	6	640	SDM40 OP	5	546	40	0	60	0 - 19	80	0	60.5	0 - 300	2.1	57	3	20	50	2 160	4 020
50	SDM50		1 700	SDM50 AJ		1 680	SDM50 OP		1 420	50		80		100		74		2.6	76.5	3	25	50	3 820	7 940
60	SDM60		2 000	SDM60 AJ		1 980	SDM60 OP		1 650	60	0 — 15	90	0 - 22	110		85		3.15	86.5	3	30	50	4 700	10 000

SDM..W series (Tandem type)

Shaft						Bour	ndary din	nensions	, mm				Pagia la	ad rating
dia. d _r mm	Basic bearing No.	Mass g	$d_{ m r}$	Tolerance μm	D	Tolerance μm	L	Tolerance μm	В	Tolerance μm	W	D_1	C N	C ₀ N
5	SDM 5W	11	5		10	0 - 11	28		20.4		1.1	9.6	265	412
6	SDM 6W	16	6		12	0	35		27		1.1	11.5	323	530
8	SDM 8W	31	8	0	15	- 13	45		35		1.1	14.3	431	784
10	SDM10W	62	10	- 10	19		55	0 - 300	44	0 - 300	1.3	18	588	1 100
12	SDM12W	80	12		21	0	57		46		1.3	20	813	1 570
13	SDM13W	90	13		23	- 16	61		46		1.3	22	813	1 570
16	SDM16W	145	16		28		70		53		1.6	27	1 230	2 350
20	SDM20W	180	20		32		80		61		1.6	30.5	1 400	2 740
25	SDM25W	440	25	0 - 12	40	0 - 19	112		82		1.85	38	1 560	3 140
30	SDM30W	480	30		45		123		89		1.85	43	2 490	5 490
35	SDM35W	795	35		52		135		99		2.1	49	2 650	6 270
40	SDM40W	1 170	40	0 - 15	60	0 - 22	151	0 - 400	121	0 — 400	2.1	57	3 430	8 040
50	SDM50W	3 100	50		80		192		148		2.6	76.5	6 080	15 900
60	SDM60W	3 500	60	0 — 20	90	0 - 25 209			170		3.15	86.5	7 550	20 000

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

2

SDMF series (with round flange) SDMK series (with square flange)

SDMF..W series (tandem type, with round flange) SDMK..W series (tandem type, with square flange)

Shaft							Bo	undary	dimen	sions, I	nm					Eccen-		Basic lo	ad rating
dia. d _r mm	Basic bearing No.	Mass g	$d_{ m r}$	Tolerance µm	D	Tolerance µm	L	Tolerance µm	$D_{ m f}$	K	t	$D_{ m p}$	X	Y	Ζ	tricity (max.) μm	ness (max.) μm	C N	C_0 N
6	SDMF 6 SDMK 6	24 18	6		12		19		28	22	5	20	3.5	6	3.1			206	265
8	SDMF 8S SDMK 8S	32 24	8		15	0 - 13	17		32	25	5	24	3.5	6	3.1			176	216
8	SDMF 8 SDMK 8	37 29	8		15		24		32	25	5	24	3.5	6	3.1			274	392
10	SDMF10 SDMK10	72 52	10	0 - 9	19		29		40	30	6	29	4.5	7.5	4.1	12	12	372	549
12	SDMF12 SDMK12	76 57	12		21	0	30		42	32	6	32	4.5	7.5	4.1			510	784
13	SDMF13 SDMK13	88 72	13		23	- 16	32		43	34	6	33	4.5	7.5	4.1			510	784
16	SDMF16 SDMK16	120 104	16		28		37	± 300	48	37	6	38	4.5	7.5	4.1			774	1 180
20	SDMF20 SDMK20	180 145	20		32		42	± 300	54	42	8	43	5.5	9	5.1			882	1 370
25	SDMF25 SDMK25	340 300	25	0 - 10	40	0 - 19	59		62	50	8	51	5.5	9	5.1	15	15	980	1 570
30	SDMF30 SDMK30	470 375	30		45		64		74	58	10	60	6.6	11	6.1			1 570	2 740
35	SDMF35 SDMK35	650 560	35		52		70		82	64	10	67	6.6	11	6.1			1 670	3 140
40	SDMF40 SDMK40	1 060 880	40	0 - 12	60	0 - 22	80		96	75	13	78	9	14	8.1	20	20	2 160	4 020
50	SDMF50 SDMK50	2 200 2 000	50		80		100		116	92	13	98	9	14	8.1			3 820	7 940
60	SDMF60 SDMK60	3 000 2 560	60	0 - 15	90	0 - 25	110		134	106	18	112	11	17	11.1	25	25	4 700	10 000

Shaft							Во	undary	dimen	sions, r	nm					Eccen-	Square-	Basic lo	ad rating
dia. d _r mm	Basic bearing No.	Mass g	$d_{ m r}$	Tolerance µm	D	Tolerance µm	L	Tolerance µm	$D_{ m f}$	K	t	$D_{ m p}$	X	Y	Ζ	tricity (max.) μm	ness (max.) μm	C N	C ₀ N
6	SDMF 6W SDMK 6W	31 25	6		12	0	35		28	22	5	20	3.5	6	3.1			323	530
8	SDMF 8W SDMK 8W	51 43	8		15	- 13	45		32	25	5	24	3.5	6	3.1			431	784
10	SDMF10W SDMK10W	98 78	10	0	19		55		40	30	6	29	4.5	7.5	4.1	15	15	588	1 100
12	SDMF12W SDMK12W	110 90	12	- 10	21	0	57		42	32	6	32	4.5	7.5	4.1	15	15	813	1 570
13	SDMF13W SDMK13W	130 108	13		23	- 16	61		43	34	6	33	4.5	7.5	4.1			813	1 570
16	SDMF16W SDMK16W	190 165	16		28		70		48	37	6	38	4.5	7.5	4.1			1 230	2 350
20	SDMF20W SDMK20W	260 225	20		32		80	± 300	54	42	8	43	5.5	9	5.1			1 400	2 740
25	SDMF25W SDMK25W	540 500	25	0 - 12	40	0 — 19	112		62	50	8	51	5.5	9	5.1	20	20	1 560	3 140
30	SDMF30W SDMK30W	680 590	30		45		123		74	58	10	60	6.6	11	6.1			2 490	5 490
35	SDMF35W SDMK35W	1 020 930	35		52		135		82	64	10	67	6.6	11	6.1			2 650	6 270
40	SDMF40W SDMK40W	1 570 1 380	40	0 - 15	60	0 - 22	151		96	75	13	78	9	14	8.1	25	25	3 430	8 040
50	SDMF50W SDMK50W	3 600 3 400	50		80		192		116	92	13	98	9	14	8.1			6 080	15 900
60	SDMF60W SDMK60W	4 500 4 060	60	0 - 20	90	0 - 25	209		134	106	18	112	11.0	17.0	11.1	30	30	7 550	20 000

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

5 Linear Motion Bearings

2

2

1 Linear Way Bearing Units for Use in Extreme Special Environments

The Linear Way Bearing Units have a slide unit in which balls circulate, allowing the slide unit to move linearly on the track rail without limit. High precision linear motion can be obtained easily by fixing the slide unit and track rail with bolts.

Bearing Types

		EXSEV [®] -EX (Linear Way Bearing Unit)	New Clean Pro Bearing-PR (Linear Way Bearing Unit)	Hybrid Ceramic Linear Way Bearing Unit ¹⁾
	Housing			Martensitic stainless steel
Material	Track rail	Martensitic s		
Mate	Balls			Silicon nitride
	Shields	Austenitic st	ainless steel	Austenitic stainless steel
	Lubricant	EXSEV®-EX (Grease) 2)	New Clean Pro Bearing-PR coating over the entire surface of all components	(Remark)

Notes 1) Hybrid Ceramic Linear Way Bearing Unit with grease lubrication or with New Clean Pro Bearing-PR are also available.

Consult JTEKT regarding the use of these bearings. 2) For details on EXSEV®-EX (grease), refer to page 94.

Applicable Environments

77

	EXSEV [®] -EX (Linear Way Bearing Unit)	New Clean Pro Bearing-PR (Linear Way Bearing Unit)	Hybrid Ceramic Linear Way Bearing Unit
Cleanliness	Class 100	Class 10	-
Temperature °C	- 50 to 260	- 100 to 200	- 30 to 200
Ambient pressure Pa (Room temperature)	Atomospheric air to 10 ⁻⁷	Atomospheric air to 10 ⁻⁵	Atomospheric air to 10 ⁻¹⁰

-ife

point in time when the number of emitted

0.1 µm or more) is greater than or equal to

1000 particles per 2.83 × 10⁻³ m³ (0.1 ft³).

particles (having a particle diameter of

Bearing Numbering System

Track rail length (240 mm)

2

Koyo

78

LWESG

EXSEV BEARINGS AND CERAMIC BEARINGS

Tolerance (before surface treatment

		Unit: mm
Item	LWL LWLF LWLC LWLFC LWLG LWLFG (Type 1)	LWES LWHS LWESC LWESG (Type 2)
Tolerance of H	± 0.020	± 0.040
Variation of $H^{(1)}$	0.015 max.	0.015 max.
Tolerance of N	± 0.025	\pm 0.050
Variation of $N^{(1)}$	0.020 max.	最大 0.020 max.
Degree of running parallelism of plane C to plane A Degree of running parallelism of plane D to plane B	Fig. 5-1	Fig. 5-2

Note 1) The variation refers to the dimensional difference between the slide units built into the same track rail.

Remark) The preload is null or negligible

(Type 2)

Bearing Mounting

1) Do not change the factory assembled combination of the slide units and track rail.

Handle the linear way bearing units carefully to keep them out of oil stains and dust.

2) Before installing a linear way bearing unit in a machine or equipment, remove burrs and indentations from the contact surface of both the machine and bearing unit. Also remove dust, contamination and oil stains. Clean the recesses of the mounting surface (Fig. 5-3).

Fig. 5-3 Cleaning of the mounting surface

3) After positioning the mounting reference plane of the track rail correctly to the mounting reference plane of the bed, temporarily fasten the track to the bed (Fig. 5-4). Then bring the two planes into close contact, using a small vice or other suitable tool. Tighten the bolts one by one to securely fasten the drive side track rail to the bed (Fig. 5-5). The driven side track rail of the Linear Way Bearing Unit should be kept temporarily fastened.

4) After positioning the slide units of the linear way bearing unit to the table, place the table carefully on the slide units and then temporarily fasten them together. Then align the mounting reference plane of the drive side slide units correctly with that of the table and fasten them together. With one of the driven side slide units positioned and fixed with respect to the moving direction, leave the other slide unit loosely tightened (Fig. 5-6).

5) Before securely fastening the temporarily fastened track rail on the driven side, move the table and check that the motion is smooth. Tighten the fastening bolt that has just been passed over by the slide unit, thus fastening the track rail to the bed in a step-by-step manner (Fig. 5-7).

Securely fasten the slide unit to the table, which has been kept temporarily fastened.

Fig. 5-4 Temporary fastening of the track rail

Fig. 5-5 Fastening of the drive side track rail

Fig. 5-6 Fastening of the slide unit

Fig. 5-7 Fastening of the driven side track rail

Dimensions Table

LWHS series

2

Basic No.	Slide	(refer.) Track		ensio seml	oly	Rail width mm		Di	mens	ions (mr		ide u	nit	Di	mens		of tr m	rack r	ail	Track rail fastening bolt mm	Max. track rail length	Basic rati			atic ben ment rat	•
110.	unit kg	rail kg/m	H	H_1	N	W	W_2	W_3	W_4	L_1	L_2	L_3	$M_1 \times \text{depth}$	H_4	d_3	d_4	h	E	F	(nominal) $\times \ell$	L mm	C N	С0 N	T_0 N \cdot m	$T_{\rm x}$ N·m	$T_{\rm Y}$ N \cdot m
LWESC15	0.09									41	-	22.4									600	5 240	5 480	43.8	21.3 149	21.3 149
LWES 15	0.14	1.57	24	5.8	9.5	15	34	26	4	57	26	38.4	M4 × 7	14.5	3.6	6.5	4.5	20	60	M3 × 16	600	7 640	9 390	75.1	57.6 333	57.6 333
LWESG15	0.18									70	36	51.1									600	9 340	12 500	100	99.5 533	99.5 533
LWESC20	0.15									47	-	24.5									600	7 570	7 340	78.9	31.5 235	31.5 235
LWES 20	0.25	2.28	28	6	11	20	42	32	5	67	32	44	M5 × 8	16	6	9.5	8.5	20	60	M5 × 16	600	11 600	13 400	145	95.6 566	95.6 566
LWESG20	0.33									83	45	59.9									600	14 400	18 300	197	172 930	172 930
LWESC25	0.26									59	-	32									600	12 400	12 300	153	71.8 480	71.8 480
LWES 25	0.43	3.09	33	7	12.5	23	48	35	6.5	83	35	56	M6 × 9	19	7	11	9	20	60	M6 imes 20	600	18 100	21 100	262	195 1 090	195 1 090
LWESG25	0.55									102	50	75									600	22 200	28 200	349	336 1 740	336 1 740
LWESC30	0.46									68	-	36									600	20 600	18 800	287	129 855	129 855
LWES 30	0.78	5.09	42	10	16	28	60	40	10	97	40	64.8	M8 × 12	25	7	11	9	20	80	M6 imes 25	600	29 500	31 300	479	328 1 920	328 1 920
LWESG30	1.13									129	60	96.5									600	39 200	47 000	718	704 3 690	704 3 690
Note 1) Th	the illustr , and $T_{\rm Y}$		at rigi	nt she	ow th	e direct	ions	of the	e stat	ic ben	ding	mom	ient rating	js T _o ,	,			1	r.,		$T_{\rm x}$					
sir ke [Remark] F	ngle slid pt in clo	le unit, se cont lote that	and 1 act. t you	the lo may	ower v be as	value st	nows provie	the I	oendi	ng mo	men	t for	y moment two slide ons and u	units	6		2	Ę	7				0	0	° 0]

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

Basic	Mass Slide	(refer.)		ensio semb mm	ns of oly	Rail width mm		Dir	nens	ions m		ide u	nit	Di	mens		of tr	ack r	rail	fastening bolt	Max. track rail length	Basio rat	load ing	1	tatic ben oment rat	· ·
No.	unit kg	rail kg / m	Η	H_1	N	W	W_2	W_3	W_4	L_1	L_2	L_3	$M_1 imes$ depth	H_4	d_3	d_4	h	Ε	F	(nominal) $\times \ell$	L mm	C N	C ₀ N	T_0 N \cdot m	$T_{\rm x}$ N·m	$T_{\rm Y}$ N·m
LWHS 15	0.18	1.47	24	4.5	9.5	15	34	26	4	66	26	44.6	M4× 8	15	4.5	8	6	30	60	M4×16	600	11 600	13 400	112	95.6 556	95.6 556
LWHS 20	0.36	2.56	30	5	12	20	44	32	6	83	36	57.2	M5×10	18	6	9.5	8.5	30	60	M5×18	600	18 100	21 100	232	195 1 090	195 1 090
LWHS 25	0.55	3.50	36	6.5	12.5	23	48	35	6.5	95	35	64.7	M6×12	22	7	11.0	9	30	60	M6×22	600	25 200	28 800	362	309 1 690	309 1 690
LWHS 30	1.00	4.82	42	7	16	28	60	40	10	113	40	80.6	M8×16	25	9	14	12	40	80	M8×28	600	35 400	40 700	623	536 2 820	536 2 820
	, and $T_{\rm Y}$.		0								0		ent rating moment	,				1	r.		T _x	2	-		5	

O

0

The indications of right click at 2 T_X , and T_Y . Each of the upper values in the T_X and T_Y columns shows the bending moment for a

single slide unit, and the lower value shows the bending moment for two slide units kept in close contact.

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

2

Koyo

82

EXSEV BEARINGS AND CERAMIC BEARINGS

LWL series

Basic No.	Slide	Track		ensio semi mm	bly	Rail width mm		Dir	nens	ions m		ide u	nit	Di	mens		s of ti im	rack r	rail	Track rail fastening bolt mm	Max. track rail length	Basic rat	load ing		atic ben ment rat	-
NO.	unit g	rail g/100mm	Η	H_1		W	W_2	W_3	W_4	L_1	L_2	L_3	$M_1 imes$ depth	H_4	d_3	d_4	h	E	F	(nominal) $\times \ell$	L mm	C N	C ₀ N	T_0 N·m	$T_{\rm x}$ N·m	T_{Y} N·m
LWLC 5	3.4	12	6	1	3.5	5	12	8	2	16	-	9.6	M2 × 1.5	37	24	3.6	0.8	7.5	15	Cross recessed round head	210	562	841	2.2	1.4 8.5	1.2 7.2
LWL 5	4.4	12	0		0.0		12		2	19	-	12.6	1012 / 1.0	0.7	2.7	0.0	0.0	1.5		screw M2 × 6	210	676	1 090	2.9	2.3 12.8	1.9 10.8
LWLC 7	7.1									19	-	9.6								Hexagon		937	1 140	4.1	1.8 14.9	1.5 12.9
LWL 7	10	22	8	1.5	5	7	17	12	2.5	23.5	8	14.3	M2 × 2.5	5	2.4	4.2	2.3	7.5	15	socket head cap bolt	300	1 330	1 890	6.9	4.7 28.2	3.9 23.6
LWLG 7	14									31	12	21.6								M2 × 6		1 690	2 650	9.7	8.8 50.7	7.4 42.5
LWLC 9	11									21.5	-	11.9								Hexagon		1 180	1 480	6.9	2.9 21.4	2.4 18.0
LWL 9	19	35	10	2	5.5	9	20	15	2.5	30	10	20.8	M3 × 3	6	3.5	6	3.5	10	20	socket head cap bolt	600	1 810	2 760	12.8	9.1 51.1	7.6 42.9
LWLG 9	28									40.5	15	30.9								M3 × 8		2 370	4 030	18.7	18.7 98.3	15.7 82.5
LWLC12	22									25	-	13								Hexagon		2 210	2 380	14.8	5.3 41.7	4.5 35.0
LWL 12	35	65	13	3	7.5	12	27	20	3.5	34	15	21.6	M3 × 3.5	8	3.5	6.5	4.5	12.5	25	socket head cap bolt	600	3 330	4 290	26.6	15.4 93.1	12.9 78.2
LWLG12	51									44	20	32								M3 × 8		4 310	6 200	38.4	30.6 168	25.7 141
LWLC15	42									32	-	17.7								Hexagon		3 490	3 890	30.0	11.7 84.5	9.8 70.9
LWL 15	64	107	16	4	8.5	15	32	25	3.5	42	20	27.8	M3 × 4	10	3.5	6.5	4.5	20	40	socket head cap bolt	600	4 980	6 490	50.0	29.7 172	24.9 144
LWLG15	95									57	25	42.7								M3 × 10		6 620	9 740	75.0	63.9 338	53.6 284
LWLC20	89									38	-	22.3								Hexagon		4 580	5 300	54.0	19.4 134	16.3 112
LWL 20	133	156	20	5	10	20	40	30	5	50	25	34.6	M4 imes 6	11	6	9.5	5.5	30	60	socket head cap bolt	600	6 650	9 080	92.6	52.7 280	44.2
LWLG20	196									68	30	52.3								M5 × 14		8 510	12 900	131	102 529	85.7 444
Ea sin kep [Remark] F	and T _Y . the of the gle slide pt in clos Please n	e upper e unit, a se conta	value nd th ct. you r	es in ie lov nay b	the 7 ver va	x and 7 alue sho ked to p	r _Y col ows t	umns he b	s sho endir	ws th ng mo	e be omen	nding t for	I moment two slide	for a units	1	1									©]	

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

LWLF series

Basic	Mass	(refer.)		nensi Issen	nbly	Rail width mm		Dir	nens	ions mi		ide u	nit		Din	nens	ions m	of ti	rack	rail		Track rail fastening bolt	Max. track rail length		c load ing		tic ben nent rat	
No.	unit	rail g/100mm	Н	$ _{H_1}$		W	W_2	W_3	W_4	L_1	L_2	L_3	$M_1 imes$ depth	H_4	W_5	W_6	d_3	d_4	h	E	F	$\begin{array}{c} mm \\ (nominal) \\ \times \ell \end{array}$	L mm	C N	C ₀ N	T_0 N \cdot m	$\begin{bmatrix} T_{\rm x} \\ { m N} \cdot { m m} \end{bmatrix}$	$T_{ m Y}$ N·m
LWLFC10	5.9	28	6.5	1.5	3.5	10	17	13	2	20.5	-	13.6	M2.5×1.5	1	_	_	2.9	1.8	1.6	10	20	Cross recessed round head	300	712	1 180	6.1	2.6 14.9	2.2 12.5
LWLF 10	7.5	20	0.5	1.5	3.5	10		13	2	24.5	-	17.6	11/12.3 ^ 1.3	-			2.5	4.0	1.0	10	20	screw M2.5 × 7	500	849	1 510	7.8	4.2 22.4	3.5 18.8
LWLFC14	13									22.5	_	13										Hexagon		1 240	1 700	12.2	3.8 24.6	3.2 20.7
LWLF 14	21	54	9	2	5.5	14	25	19	3	31.5	10	22	M3×3	5.5	-	-	3.5	6	3.2	15	30	socket head cap bolt	300	1 770	2 840	20.3	10.1 54.7	8.4 45.9
LWLFG14	31									42	19	32.5										M3 × 8		2 320	4 160	29.8	21.0 104	17.6 87.6
LWLFC18	26							21	4.5	26.5	-	16.6										Hexagon		1 510	2 120	19.4	5.5 35.9	4.7 30.1
LWLF 18	44	90	12	3	6	18	30	21	ч.0	38.5	12	28.6	M3×3	7	-	-	3.5	6.5	4.5	15	30	socket head cap bolt	600	2 280	3 810	34.9	16.9 88.8	14.2 74.5
LWLFG18	61							23	3.5	50.5	24	40.4										M3 × 8		2 870	5 300	48.5	31.9 159	26.7 134
LWLFC24	45									30.5	-	17.7										Hexagon		2 800	3 340	40.7	9.7 67.6	8.2 56.8
LWLF 24	76	139	14	3	8	24	40	28	6	44	15	31	M3×3.5	8	-	-	4.5	8	4.5	20	40	socket head cap bolt	600	4 310	6 200	75.6	30.6 168	25.7 141
LWLFG24	111									59	28	46.3										M4 × 10		5 620	9 060	111	63.3 321	53.1 270
LWLFC30	70									35.5	-	20.5										Hexagon		3 890	4 540	69.1	15.4 107	13.0 89.9
LWLF 30	112	198	15	3	10	30	50	35	7.5	49.5	18	34.8	M4×4.5	9	-	-	4.5	8	4.5	20	40	socket head cap bolt	600	5 970	8 440	128	48.7 256	40.8 215
LWLFG30	170									68.5	35	53.8										M4 × 12		7 810	12 300	187	100 508	84.3 426
LWLFC42	95									41.5	-	25.3										Hexagon		5 030	6 050	128	24.8 164	20.8 137
LWLF 42	140	294	16	4	9	42	60	45	7.5	55	20	39	M4×4.5	10	23	9.5	4.5	8	4.5	20	40	socket head cap bolt	600	7 050	9 840	209	61.3 333	51.4 280
LWLFG42	204									74.5	35	58.3										M4 × 12		9 200	14 400	305	126 644	106 541
Ea	and T _Y . ch of th	e upper	valu	es in	the	$T_{\rm X}$ and	T _Y c	olumi	ns sh	iows 1	the b	endir	ment ratir ng momer r two slide	nt for	ra			4	To	2			3			2		

single slide unit, and the lower value shows the bending moment for two slide units

kept in close contact. [Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

83

Koyo

5-3 Cross Roller Way Bearing Units for Use in Extreme Special Environments

The Cross Roller Way Bearing Unit is a linear motion bearing unit consisting of two raceway bases. Each base has one longitudinal plane cut into a V shape, which serves as the rolling surface. Two bases are in contact on each of the other's V-cut surface, and cylindrical rollers with a retainer are placed between the surfaces. Any pair of adjacent cylindrical rollers is directed at right angles to each other, thus enabling smooth and extremely accurate linear motion.

Bearing Types

		EXSEV [®] -EX (Cross Roller Way Bearing Unit)	New Clean Pro Bearing-PR (Cross Roller Way Bearing Unit)	EXSEV [®] -MO (Cross Roller Way Bearing Unit)
Material	Raceway base Cylindrical rollers		Martensitic stainless steel	
Mate	Retainer End screw		Austenitic stainless steel	
	Lubricant	EXSEV®-EX (Grease) 1)	New Clean Pro Bearing-PR coating over the entire surface of all components	Molybdenum disulfide coating on the raceway bases

Note 1) For details on EXSEV[®]-EX (grease), refer to page 94.

Applicable Environments

	EXSEV [®] -EX (Cross Roller Way Bearing Unit)	New Clean Pro Bearing-PR (Cross Roller Way Bearing Unit)	EXSEV [®] -MO (Cross Roller Way Bearing Unit)
Cleanliness	Class 100	Class 10	_
Temperature °C	- 50 to 260	- 100 to 200	- 100 to 300
Ambient pressure Pa (Room temperature)	Atomospheric air to 10 ⁻⁷	Atomospheric air to 10 ⁻⁵	Atomospheric air to 10 ⁻⁵

Bearing Numbering System

Note) This bearing number represents four raceway bases and two sets cylindrical rollers with retainer.

Bearing Mounting

Fig. 5-8 shows a typical mounting construction of the Cross Roller Way Bearing Unit. Mounting procedures are described on the following page.

Fig. 5-8 Typical mounting of Cross Roller Way Bearing Unit

2

5

Linear Motion Bearings

2

- One package includes an entire set of the components of a cross roller way bearing unit (four raceway bases and two sets of cylindrical rollers with retainer). Take care not to mix the components of a set not compatible with those of another set. Treat cross roller way bearing units with extra care to keep them free from oil stains or contamination.
- 2) Remove burrs, indentations and other irregularities from the machine surface on which the cross roller way bearing unit is to be mounted. Also clean off dust, contamination and oil stains. Clean the recesses of the mounting surface as well.
- 3) Place the bed side raceway base and table side raceway base correctly on the each mounting surface, and fasten the bases temporarily by tightening the screws evenly.
- While keeping the bed side raceway base in close contact with surface A and the table side raceway base with surface B, tighten the screws permanently to a specified torque (Fig. 5-9). Table 5-1 shows the tightening torque for individual regular screw sizes.

Table 5-1 Screw tightening torque

Nominal screw size	Tightening torque N ⋅ m
M2×0.4	0.23
M3×0.5	1.4
M4×0.7	3.2
M5×0.8	6.3
M6×1	10.7

Remark) When screws of different sizes are used for on the table side and bed side, tighten them by applying the torque for the smaller screws.

- 4) Retract the preload adjustment screw in advance. Place the preload adjustment side raceway base into close contact with the mounting surface, and tighten the screws temporarily by applying light, even torque.
- 5) To assemble the table and bed, insert cylindrical rollers with retainer carefully into the space between the table side raceway base and bed side raceway base such that the rollers will be located at the center of the raceway base length. Take care not to deform the cage.

Fasten the end screws and end plates of the raceway bases, press the entire table toward the preload adjustment screw side, and tighten the screw for temporary adjustment until the clearance of the raceways is almost entirely eliminated. Slowly move the table for one entire stroke and adjust the

position of the cylindrical rollers with retainer to the center.

Fig. 5-9 Mounting of table side raceway base

6) Adjust the preload with the preload adjustment side raceway base fastened temporarily.

Firstly adjust the preload adjustment screw at the center of the raceway base length, and adjust the preload adjustment screws on the lengths to both ends alternately. Adjust the clearance on the side face of the table, and tighten the preload adjustment screws one by one until the dial gauge indication becomes stable (Fig. 5-10).

When the indication is stable, determine and record the tightening torque of the preload adjustment screws. To adjust the preload adjustment screws near both ends, stroke the table slowly to check that cylindrical rollers are located at the preload adjustment screw.

After these adjustments, the clearance will be entirely or almost eliminated. However, at this point the preload is not yet even. By repeating the same procedure, re-adjust all the preload adjustment screws by applying the torque recorded.

7) When permanently fastening the preload adjustment side raceway base, make sure the screws have already been lightly tightened to even torque.

In the same manner as the preload adjustment screws were tightened, firstly adjust the preload adjustment screw at the center of the raceway base length, and adjust the preload adjustment screws on the lengths to both ends alternately by applying torque close to the specified torque.

To tighten the fastening screws near the ends, stroke the table slowly to check that the cylindrical rollers are located at the tightened screw position.

In the end, tighten all screws evenly and permanently by applying specified torque. Move the table slowly through the entire stroke and check that it moves smoothly without producing noise.

Check the table upper surface and side faces with a dial gauge to check running accuracy.

Fig. 5-10 Typical preload adjustment procedure

Fig. 5-11 Accuracy check after assembly

EXSEV BEARINGS AND CERAMIC BEARINGS

Dimensions Table

CRW series

2

Basic No.	base 1) with			ound	lary dimension mm	s	Di	imensior rollers	ns of cyli with reta mm		al		Мо	untin	g dim mm	nensi	ons			ing	Allowable load
	kg / m	retainer ²⁾ g	A	Η	$L (n \times F)$	E	$D_{\rm a}$	R	Ζ	р	е	W	g	Μ	d_1	d_2	h	t	Cu ³⁾ N	С _{0и} ³⁾ N	<i>F</i> u ³⁾ N
CRW1 - 20					20 (1 × 10)			16.5	5												
- 30					30 (2 × 10)			25.5	8												
- 40					40 (3 × 10)			31.5	10												
- 50	0.12	0.38	8.5	4	50 (4 × 10)	5	1.5	37.5	12	3	2.25	3.9	1.8	M2	1.65	3	1.4	1.7	131	119	39.4
- 60					60 (5 × 10)			43.5	14												
- 70					70 (6 × 10)			52.5	17												
- 80					80 (7×10)			61.5	20												
CRW2 - 30					$30 (1 \times 15)$			29.6	7 10												
- 45					$\begin{array}{c} 45 (2 \times 15) \\ 60 (3 \times 15) \end{array}$			41.6 53.6	10												
- 60 - 75					$75 (4 \times 15)$			55.6 65.6													
- 75					90 (5×15)			77.6	19												
- 105	0.24	0.98	12	6		75	2	89.6	22	4	2.8	5.5	2.5	M3	2.55	44	2	1.5	305	292	97.3
- 120	0.24	0.00	12		$\begin{array}{c cccc} 105 & (\ 6 \times 15) \\ 120 & (\ 7 \times 15) \end{array} 7.5$	2	101.6	25	-	2.0	0.0	2.0	1010	2.00	1.1	2	1.0	000	202	57.0	
- 135					$135 (8 \times 15)$			113.6	28												
- 150					150 (9×15)			125.6	31												
- 165					$165 (10 \times 15)$			137.6	34												
- 180					180 (11 × 15)			149.6	37												
CRW3 - 50					50 (1×25)			42	8												
- 75					75 (2×25)			62	12												
- 100	1				100 (3×25)			82	16												
— 125					125 ($4\times25)$			102	20												
- 150					150 ($5\times25)$			122	24												
— 175	0.50	2.96	18	8	175 ($6\times25)$	12.5	3	142	28	5	3.5	8.3	3.5	M4	3.3	6	3.1	2	664	606	202
- 200					200 ($7\times25)$			162	32												
- 225					225 ($8\times25)$			182	36												
- 250					250 ($9\times25)$			202	40												
— 275					$275~(10\times25)$			222	44												
- 300					300 (11 × 25)			242	48												

Basic No.	Mass Raceway base ¹⁾	(refer.) Cylindrical rollers with	mm				Dimensions of cylindrical rollers with retainer mm					Mounting dimensions mm							Basic rati Cu ³⁾		Allowable load Fu ³⁾
	kg / m	retainer 2) g	A	H	$L (n \times F)$	Ε	$D_{\rm a}$	R	Z	р	e	W	g	M	d_1	d_2	h	t	N N	N	N
CRW4 - 80					80 (1×40)			73	10												
- 120					120 ($2\times40)$			101	14												
- 160					160 (3×40)			136	19												
- 200					200 ($4\times40)$			164	23												
- 240					240 (5×40)			199	28												
- 280	0.82	6.91	22	11	280 (6 × 40)	20	4	227	32	7	5	10	4.5	M5	4.3	7.5	4.1	2	1 290	1 170	389
- 320					320 (7 × 40)			262	37												
- 360					360 (8 × 40)			297	42												
- 400	440				400 (9 × 40)			325	46												
- 440					440 (10 × 40)			360	51												
- 480					480 (11 × 40)			388	55												
CRW6 - 100					$100 (1 \times 50)$			84	9												
- 150					150 (2×50)			129	14												
- 200					200 (3×50)			165	18												
- 250					250 (4×50)			210	23												
- 300	1.57	20.3	31	15	$\begin{array}{c} 300 & (5 \times 50) \\ 350 & (6 \times 50) \end{array}$	25	6	246 282	27 31	9	6	14	6	M6	5.3	9.5	5.2	3	2 680	2 290	764
- 350 - 400	1.57	20.3	31	15	$400 (7 \times 50)$	20	0	327	36	9	0	14	0		0.5	9.5	5.2	З	2 000	2 290	/04
- 400 - 450					$400 (7 \times 50)$ $450 (8 \times 50)$			363	40												
- 500			(0×30) 500 (9×50)			408	40														
- 550					$550 (9 \times 50)$ $550 (10 \times 50)$			400	40												
- 600					$600 (10 \times 50)$			489	54												
Notes 1) Mass p	l er meter of	raceway ba	se lenç	j gth				.50													I

2) Mass of an assembly of a cage and ten cylindrical rollers

3) Load per cylindrical roller
 [Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

Notes 1) Mass per meter of raceway base length 2) Mass of an assembly of a cage and ten cylindrical rollers 3) Load per cylindrical roller

[Remark] Please note that you may be asked to provide information on applications and usage conditions when requesting an estimate.

6 Fligh Ability Angular Contact Ball Bearings

The High Ability Angular Contact Ball Bearings are optimized for the spindle of machine tools. They have superior high speed performance and rapid acceleration/deceleration, and are especially excellent at ultrahigh speeds under oil/air lubrication. They are superior in high speed performance to conventional products under grease lubrication as well.

For practical use of this type of bearings, refer to JTEKT Catalogue "Precision Ball and Roller Bearings for Machine Tools" for High Ability Angular Contact Ball Bearings.

Features

20 to 30% reduction in temperature increase

(compared with JTEKT's conventional products) JTEKT has conducted various tests and analyses and developed elaborate machining techniques to improve the performance of bearings used with machining tool spindles. The result is a substantial reduction in frictional heat generated in bearings rotating at a high speed.

1.2- to 1.5- fold increases in speed limits

Speed limits have been extended through re-designing for highspeed rotation and heat reduction. Use of ceramic balls as rolling

position preloading

Low increases in temperature during operation ensure reduced changes in preload. Preload can be given by position preloading even at high speeds, which has been hitherto unavailable with conventional systems. The result is high-precision machining with stability.

Conventional bearings easily replaced

Dimensions of High Ability bearings conform to ISO standards. Replacement of conventional bearings with High Ability bearings requires minimal geometry changes of the present spindle or housing.

Dimension series code 0 : Dimension series10 Type Codes R, C, D, or F: Please refer to the above table

Hvbrid Ceramic Bearing

High Ability Angular Contact Ball Bearing Series

Performance

High Ability Bearings demonstrate their utmost performance when two or more units are used together and a preload is provided by the position preloading method. The following are the performance of these bearings preloaded by the position preloading method.

• High speed performance of Type R and Type C **High Ability Bearings**

Fig. 6-1 shows the relationship between rotational speed and bearing temperature rises of High Ability Bearings, in comparison with conventional high precision bearings.

In either grease lubrication or oil/air lubrication, the High Ability Bearings are superior to conventional bearings, with lower temperature rise and higher rotational speed limit.

Comparison with steel ball bearings (Bearing dimensions: $\phi 65 \times \phi 100 \times 18$ mm) *d*_m*n* [×10⁶] 10 1 25 15 1.75 Preload: 150 N HAR013C (position preloading Cooling: Self-cooling 40 Conventional 20 10 12 14 16 18 20 22 Rotational speed [×10³ min⁻¹]

Fig. 6-1 Comparison in bearing temperature rises under oil air lubrication

Types and Applications

The High Ability Angular Contact Ball Bearings are classified as shown in Table 6-1, according to bearing construction and rolling element material.

Select the optimal type best suited for your application needs.

Table 6-1 Classification of High Ability Angular Contact Ball Bearings

	s			
Туре	Bearing dimension series No.	Contact angle	Rolling element material	Application
Type R	10 19	15° 20° 30°	Steel or ceramic	High speed, high rigidity type
Type C	10 19	15° 20°	Ceramic	High speed, high load rating type
Type D	10	20°	Ceramic	Ultrahigh speed, low noise type For oil/air lubrication
Type X	10 19	20°	Ceramic	Ultrahigh speed type For oil/air lubrication

(compared with JTEKT's conventional products)

elements enables additional high-speed rotation.

Improved high speed performance achieved by

Bore dia. number $13:5 \text{ mm} \times 13 = 65 \text{ mm}$ (bearing bore diameter)

9: Dimension series 19

By using High Ability Bearings, it is possible to switch the spindle, which had been running with oil/air lubrication up until now, to grease lubrication.

Fig. 6-2 shows evaluation examples of this.

The Type R using ceramic balls, in grease lubrication, improves on high-speed performance over conventional bearings with oil/air lubrication.

The high-speed performance of the Type R using steel balls, in grease lubrication, is the same as or better than that of conventional bearings with oil/air lubrication.

Fig. 6-3 shows the result of the comparison between ceramic balls and bearing steel balls.

2

2

7 Ceramic Balls

JTEKT also supplies Ceramic Balls (silicon nitride), which have excellent resistance to wear and seizure, and are usable in corrosive environments and ultrahigh vacuums. Other major features of these balls are excellent heat resistance (up to 800°C), high rigidity, lightweight (40% compared to bearing steel), non-magnetic, and have insulating characteristics.

The Ceramic Balls are useful in many applications such as jigs, tools, gauges, solenoid valves, check valves, other valve varieties, high grade bicycle parts, automotive parts, and machine components.

Table of Dimensions and Masses

Nominal	dimension	Nominal outside diameter	Precision	Mass 2)		Nominal o	dimension	Nominal outside diameter	Precision	Mass ²⁾		
mm	inch	mm	grade 1)	(per piece)		mm	inch	mm	grade 1)	(per piece)		
0.8		0.800 00		0.866 mg			7/16	11.112 75		2.320 8 g		
1.0		1.000 00		1.691 mg			15/32	11.906 25	5	2.854 5 g		
1.2		1.200 00		2.922 mg			1/2	12.700 00	5 and 10	3.46 g		
	1/16	1.587 50		6.766 mg			17/32	13.493 75		4.2 g		
2.0		2.000 00		13.530 mg			9/16	14.287 50		4.9 g		
	3/32	2.381 25		22.836 mg			19/32	15.081 25		5.8 g		
	7/64	2.778 12	3 and 5	36.262 mg			5/8	15.875 00		6.8 g		
	1/8	3.175 00	3 810 5	54.129 mg			3/4	19.050 00		11.7 g		
3.5		3.500 00		72.511 mg			13/16	20.637 50	40	14.9 g		
	5/32	3.968 75		0.105 7 g			7/8	22.225 00	40	18.6 g		
	3/16	4.762 50		0.182 7 g	0.182 7 g		15/16	23.812 50		22.8 g		
	7/32	5.556 25		0.290 1 g			1	25.400 00		27.7 g		
	15/64	5.953 12		0.356 8 g			1 1/8	28.575 00		39.5 g		
	1/4	6.350 00		0.433 0 g			1 3/16	30.162 50		46.4 g		
	17/64	6.746 88		0.519 4 g			1 1/4	31.750 00		54.1 g		
	9/32	7.143 75		0.616 6 g	1 5/16	33.337 50	60	62.7 g				
	5/16	7.937 50	5	0.845 8 g			1 1/2	38.100 00		93.5 g		
	11/32	11/32 8.731 25 5	Э	1.125 7 g	7 g For other outside diameters, please consult JTEKT.							
	3/8	9.525 00		1.461 5 g								

Notes 1) For the grades, those specified in JIS B 1501 shall apply.

13/32

2) The masses are calculated on the basis of 3.23 g/cm³ in density.

10.318 75

1.858 2 g

8 EXSEV[®]-EX (Grease)

This fluorinated grease is designed for vacuum environments with low particle generation. It is also compliant with environmental regulations (does not contain PFOA).

EXSEV[®]-EX offers superior performance for rolling bearings, linear motion bearings, and ball screws. JTEKT also handles requests for grease only. Contact us for more information.

Properties	
Thickener	PTFE
Base oil	PFPE
Dropping point	None
Evaporation (99°C×24h)	0.1wt%max.
Oil separation (100°C×24h)	2wt%max.
Operating temperature range	–50 to 260°C

 The grease can be used under atmospheric pressures of up to 10⁻⁷ Pa at 20°C, but consult JTEKT for use in high-temperature, high-vacuum combinations.

9 Grease-filled Bearings for Food Machinery

These are bearings that are filled with grease for food machinery. They can be used in hygienic environments such as food machinery or cosmetic/pharmaceutical production machinery.

Grease Properties		
	Standard	Long service life
Operating temperature range	-30 to 120°C	-40 to 150°C
Thickener	Aluminum complex soap	Silicate
Base oil	Synthetic oil	Synthetic oil
Kinematic viscosity (mm ² /s, at 40°C)	150	65
Worked penetration	275	280
NSF category*	H1	H1

Bearing Specifications

Туре	Inner and outer rings, balls	Packing specifi
А	Martensitic stainless steel	Anticorrosive oil applied +
В	Martensitic stainless steel	Degreasing + clea
С	High carbon chromium bearing steel	Anticorrosive oil applied +

Bearing Numbering System

In addition to the same bearing number of the general bearing having the same size, specify that the bearing is filled with grease (standard or long service life grease) for food machinery. The basic bearing specifications are type A, but types B and C can also be supported according to customer request.

Particle emission characteristics when used as ball and roller bearing lubrication (Particles per 2.83 × 10⁻³ m³ (0.1 ft³))

* NSF category:

This is a standard certified by NSF International (National Sanitation Foundation International).

"H1" indicates a lubricant that can be used in locations that may accidentally come into contact with food.

ications

- standard packing

an packing

- standard packing

94

1 O Tolerance and Internal Clearance of **EXSEV** Bearings and Ceramic Bearings

10-1 Tolerance of Radial Ball Bearings

.

Table Nomina diam	al bore neter					eter devia	tion		•	radial p es 7, 8, 9				1	n V_{ds} ter series		Unit: µm Mean bore diameter variation V_{dmp}				
m		clas	ss 0	clas	ss 6	clas	ss 5	class 0	class 6	class 5	class 0	class 6	class 5	class 0	class 6	class 5	class 0	class 6	class 5		
over	up to upper lower upper lower upper low								max.			max.			max.			max.			
0.6 ¹⁾	2.5	0	- 8	0	- 7	0	- 5	10	9	5	8	7	4	6	5	4	6	5	3		
2.5	10	0	- 8	0	- 7	0	- 5	10	9	5	8	7	4	6	5	4	6	5	3		
10	18	0	- 8	0	- 7	0	— 5	10	9	5	8	7	4	6	5	4	6	5	3		
18	30	0	- 10	0	- 8	0	- 6	13	10	6	10	8	5	8	6	5	8	6	3		
30	50	0	- 12	0	- 10	0	- 8	15	13	8	12	10	6	9	8	6	9	8	4		
Note 1) Di	mension 0	6 mm is in	cluded in t	his categor	'v																

on 0.6 mm is included in this category

. . . .

-

Table 10-1(2) Inner ring (running tolerance and width)

dia	nal bore meter d	assen	ial runo nbled b nner rin K _{ia}	earing	$S_{ m d}$	$S_{ m ia}^{2)}$	Sir	ngle inr	ner ring	J width Bs	deviat	ion	Si	ngle inr	ner ring	i width _{Bs} ³⁾	deviat	ion	In widt	ng ation	
n	ım	class 0	class 6	class 5	class 5	class 5	clas	ss O	clas	ss 6	clas	ss 5	cla	ss O	clas	ss 6	clas	ss 5	class 0	class 6	class 5
over	up to max.			max.	max.	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower		max.		
0.61	2.5	10	5	4	7	7	0	- 40	0	- 40	—	- 40	—	_	_	_	0	- 250	12	12	5
2.5	10	10	6	4	7	7	0	- 120	0	- 120	0	- 40	0	- 250	0	- 250	0	- 250	15	15	5
10	18	10	7	4	7	7	0	- 120	0	- 120	0	- 80	0	- 250	0	- 250	0	- 250	20	20	5
18	30	13	8	4	8	8	0	- 120	0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	20	20	5
30	50	15	10	5	8	8	0	- 120	0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	20	20	5

S_d: perpendicularity of inner ring face with respect to the bore S_{ia}: axial runout of assembled bearing inner ring

Notes 1) Dimension 0.6 mm is included in this category.

2) Applicable to deep groove ball bearings and angular contact ball bearings. 3) Applicable to bearing rings made for matched bearings.

Table 10-2(1) Outer ring (outside diameter)

	`	/		0	````																· ·
diam	Nominal outside diameterr Single plane mean outside diameter deviation D \varDelta_{Dmp}								ingle p ter serie		1			1	on V_I ter series	- P	Diamete	ealed type er series 0, 1, 2, 3, 4	Mean outside diameter variation $V_{D{ m mp}}$		
m	-	clas	ss O	clas	ss 6	clas	ss 5	class 0 ^{2]}	class 6 ²⁾	class 5	class 0 ²⁾	class 6 ²⁾	class 5	class 0 ²⁾	class 6 ²⁾	class 5		class 6 ²⁾	1	class 6 ²⁾	class 5
over	up to	upper	lower	upper	lower	upper	lower		max.			max.			max.		ma	ax.	max.		
2.5 ¹⁾	6	0	- 8	0	- 7	0	- 5	10	9	5	8	7	4	6	5	4	10	9	6	5	3
6	18	0	- 8	0	- 7	0	- 5	10	9	5	8	7	4	6	5	4	10	9	6	5	3
18	30	0	- 9	0	- 8	0	- 6	12	10	6	9	8	5	7	6	5	12	10	7	6	3
30	50	0	- 11	0	- 9	0	- 7	14	11	7	11	9	5	8	7	5	16	13	8	7	4
50	80	0	- 13	0	- 11	0	- 9	16	14	9	13	11	7	10	8	7	20	16	10	8	5

Notes 1) Dimension 2.5 mm is included in this category.

2) Applicable when no snap ring is fitted.

Table 10-2(2)	Outer ring (running tolerance and width)	Unit: µm
---------------	--	----------

Nominal outs		assen	ial runo nbled bo uter rin $K_{\rm ea}$	earing	$S_{ m D}$	$S_{ m ea}{}^{2)}$	outer rin	of a single ng widht Cs	Ring width variat V_{Cs}	tion		
m	m	class 0	class 6	class 5	class 5	class 5	classes	0,6&5	classes 0 & 6	class 5		
over	up to		max.		max.	max.	upper	lower	max.			
2.5 ¹⁾	6	15	8	5	8	8				5		
6	18	15	8	5	8	8	Same as the		Same as the allowable	5		
18	30	15	9	6	8	8		lerance of value of $B_{B_{s}}$ for d of the		5		
30	50	20	10	7	8	8	same bearing		same bearing		for d of the same bearing	5
50	80	25	13	8	8	10			same bearing			

 $S_{
m D}$: perpendicularity of outer ring outside surface with respect to the face $S_{
m en}$: axaial runout of assembled bearing outer ring Notes 1) Dimension 2.5 mm is included in this category.

2) Applicable to deep groove ball bearings and angular contact ball bearings.

d: Nominal bore diameter

D : Nominal outside diameter

B: Nominal assembled bearing width

Unit: µm

Unit: µm

10-2 Clearance of Radial Ball Bearings

Table 10-3 Radial internal clearance of deep groove ball bearings (cylindrical bore)

Nominal bo	ore diameter		Radial internal clearance							
d, z	mm	0	CN	(C3	0	24	(25	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	
2.5	6	2	13	8	23	14	29	20	37	
6	10	2	13	8	23	14	29	20	37	
10	18	3	18	11	25	18	33	25	45	
18	24	5	20	13	28	20	36	28	48	
24	30	5	20	13	28	23	41	30	53	
30	40	6	20	15	33	28	46	40	64	
40	50	6	23	18	36	30	51	45	73	

Remark) When the above values are used as clearance measurements, the values should be corrected by adding the increase of the radial internal clearances caused by the measuring load. The values to be added are shown below.

						Unit: µm
Nominal bore diameter		Meanwingland		Amounts of clea	rance correction	
<i>d</i> ,	mm	Measuring load	CN	C3	C4	C5
over	up to			00	04	03
2.5	18	24.5	4	4	4	4
18	50	49	5	6	6	6

Table 10-4	Cable 10-4 Radial internal clearance of extra small/miniature ball bearings Unit: µm									
Clearance code		M3		1	M4		M5		M6	
		min.	max.	min.	max.	min.	max.	min.	max.	
Clearan	се	5	10	8	13	13	20	20	28	

Remark) When the above values are used as clearance measurements, the values should be corrected by adding the increase of the radial internal clearances caused by the measuring load.

Small size ball bearings: bearings with an outside diameter of 9 mm or over and a bore diameter of less than 10 mm

Remark) Consult JTEKT regarding the tolerance and internal clearance of inch series bearings (bearing basic number EE3S).

10-3 Tolerance and Internal Clearance of K Series Full Complement Hybrid Ceramic Ball Bearings

Table 10-5 Tolerance and internal clearance of K Series Full Complement Hybrid Ceramic Ball Bearings Unit: µm

_		ane mean iameter		ane mean diameter	Single inner or outer ring width	Radial ru	nout of ass	embled bea	ring, max.	$S_{ m ia}$	S_{ea}		internal				
Bore diameter		on Δ_{dmp}		on ΔD_{mp}	deviation \varDelta_{Bs} , \varDelta_{Cs}	Inner r	ing, $K_{ m ia}$	Outer r	ing, $K_{ m ea}$	Inner ring	Outer ring	clearance		Bore diameter			
No.	clas	s K0	clas	s K0	class K0	clas	s K0	clas	s K0	class K0	class K0	clas	s KO	No.			
	category I	category I	category I	category I	CIASS NU	category I	category I	category I	category I	CIdSS NU	CIASS NU	Deep groove type	Four point contact type				
010	_	0 10			13 8 20 10		10			25 to 41	25 to 38	010					
015	_	0 13	0 - 13			_				15	10	20 10	Same as the Same	Same as the	30 to 46	30 to 43	015
020				10	0		10		10	tolerance for the radial	tolerance for the radial			020			
025	_	0 15		- 127	20	13	25	13	runout of the inner ring	runout of the outer ring	30 to 61	30 to 56	025				
030				0						_				030			
035	_	0 20		15		25	15	30	15			41 to 71	41 to 66	035			

 $S_{\rm ia},\,S_{\rm ea}\!\!:$ axial runout of assembled bearing inner or outer ring, max.

[Notes] Category I specifications are applied to deep groove ball bearings. Category II specifications are applied to angular contact bearings and four point contact ball bearings.

2

		Unit: µn	ſ
nounts of clea	rance correction		
M4	M5	M6	
1	1	1	

Unit: µm

ean Environments	 99
cuum Environments	 102
prosive Environments	 103
gh Temperature Environments	 106
gnetic Field Environments	 108
ectric Field Environments	 109
gh Speed Applications	 111
arasion Resistance	 114
w Torque	 115

1 Clean Environments

3

Transfer Robot 1-1

Product: K Series Full Complement Hybrid Ceramic Ball Bearing

For application in transfer robots for semiconductor and liquid crystal manufacturing equipment, bearings are required to be low in particle emissions and have a long service life.

Bearings may be delivered incorporated in arm units for improved assemblability and maintainability.

- Applicable to vacuum environments and clean environments
- Optimal for machine size reduction

Temperature: Room temp. to 200°C Ambient pressure: 10⁻³ Pa Lubrication: Grease or

New Clean Pro Bearing-PR coating

Bearing unit for application to transfer robots

(Linear Motion Ball Bearings)

Product: New Clean Pro Bearing-PR

Conveyor for Sputtering Equipment 1-2

New Clean Pro Bearing-PR Linear Motion Ball Bearings are widely used for the conveyers in sputtering equipment.

• Applicable to vacuum environments and clean environments

Use conditions

Stroke: 20 mm Speed: 10 mm/s Temperature: 200°C Ambient pressure: Atomospheric air to 10⁻⁵ Pa Lubrication: New Clean Pro Bearing-PR coating

Deep groove Wafer ball bearing Linear motion ball bearing

Gates in Chemical Vapor Deposition Equipment

Hybrid Ceramic Bearings and New Clean Pro Bearing-PR Linear Motion Ball Bearings are widely used for the doors of the chemical vapor deposition (CVD) equipment.

• Applicable to high temperature, vacuum and clean environments

Use conditions

1-3

Rotational speed: 10 to 200 min⁻¹ Temperature: 200°C Ambient pressure: Atomospheric air to 10⁻⁴ Pa Lubrication: New Clean Pro Bearing-PR coating

Product: Hybrid Ceramic Ball Bearing

New Clean Pro Bearing-PR

(Linear Motion Ball Bearings)

Chemical Vapor Deposition 1-4 Machine

New Clean Pro Bearing-PR Cross Roller Way Bearings are widely used in CVD machines due to their low gas and particle emissions.

• Applicable to vacuum environments and clean environments

Use conditions	
Stroke: 100 m	m
Temperature:	200°C
Ambient press	sure: Atomospheric air to 10 ⁻³ Pa
Lubrication: N	ew Clean Pro Bearing-PR coating

Etching Equipment 1-5

Bearings used in etching machines must be resistant to halogen, hydrogen fluoride, and other corrosive gasses, as well as low in particle emissions. To meet these requirements, PTFE coated Hybrid Ceramic Bearings are used.

- Resistant to corrosive ambient gases such as halogen and hydrogen fluoride
- Suitable for clean environments thanks to low particle emissions

Use conditions

Temperature: Room temp. to 60°C Ambient pressure: Atomospheric air to 10⁻² Pa Load: Radial load of 10 N Lubrication: PTFE coating

Sputtering Equipment 1-6

Sputtering systems have a high temperature vacuum conveyor, in which Clean Pro Bearing-RB are used.

• Applicable to a clean environment under high temperature and vacuum conditions

Use conditions

- Rotational speed: 60 min⁻¹
- Temperature: Room temp. to 260°C
- Ambient pressure: 10⁻⁵ Pa
- Load: Radial load of 100 to 150 N
- Lubrication: Clean Pro Bearing-RB coating

3

Koyo

(with special features)

Product: Clean Pro Bearing-RB

1 Clean Environments

Liquid Crystal Panel Bonding and **LC Sealing Furnace**

Product: Hybrid Ceramic Linear Motion Ball Bearing

Substrate bonding press jigs for use in furnaces must be low in particle emissions and have a long service life under high temperature conditions.

The New Clean Pro Bearing-PR Hybrid Ceramic Linear Motion Ball Bearings are widely used for such jigs.

• Suitable for clean environments thanks to low particle emissions

Use conditions

1-7

Stroke speed: 5 mm/s Temperature: 200°C Ambient pressure: Atomospheric air

Lubrication: New Clean Pro Bearing-PR coating

Wafer Transfer Equipment 1-8

Product: Hybrid Ceramic Linear Way Bearing Unit (with special features)

For application in wafer transfer equipment, low particle emissions performance is required. The New Clean Pro Bearing-PR Hybrid Ceramic Linear Way Bearing Unit are widely used for such jigs.

- Suitable for clean environments thanks to low particle emissions
- Corrosion resistant to cleaning agent splashes

Use conditions

Stroke speed: 350 mm/s

- Temperature: Room temp
- Ambient pressure: Atomospheric air
- Lubrication: New Clean Pro Bearing-PR coating

2 Vacuum Environments

Vacuum Evaporator 2-1

Bearings used in the planetary section of vacuum evaporator are required to be high in durability under high temperatures, high load (moment) conditions. To ensure a long bearing life under high temperature conditions, High temperature Hybrid Ceramic Bearings with special features are used.

• Improved reliability in vacuum and high temperature environments

Use conditions

Rotational speed: 1 to 30 min⁻¹ Temperature: 200 to 400°C Ambient pressure: 10⁻⁶ to 10⁻⁸ Pa Lubrication: Molybdenum disulfide or silver

Turbo Molecular Pump

Magnetic bearings are used in turbo molecular pumps driven at extremely high speeds. To protect the blades from fracture in case of a power failure or magnetic failure, touchdown bearing units are used. As touchdown bearings, Full Complement Hybrid Ceramic Ball Bearings are used to increase the service life of the touchdown bearings under severe hostile conditions.

Improved reliability in vacuum environments

Use conditions

Rotational speed: 20 000 to 60 000 min⁻¹ Ambient pressure: 10⁻⁷ Pa Lubrication: Molybdenum disulfide or silver

For rotational anode X-ray tubes, Full Complement Ball Bearing Units, which integrate the flange and shaft. These bearing units are required to be resistant to vacuum, good high speed performance, heat resistant, and load capacity.

Improved reliability in vacuum and high temperature environments

Use conditions

Rotational speed: 3 000 to 10 000 min⁻¹ Temperature: 250 to 500°C Ambient pressure: 10⁻⁶ Pa Lubrication: Silver

3

3

3 Corrosive Environments

3

Synthetic Fiber Manufacturing Equipment

Product: Corrosion Guard Pro Bearing-MD

Acid solution, alkaline solution, water, and other liquids are used in synthetic fiber yarn reinforcing processes. In such corrosive environments, Corrosion Guard Pro Bearing-MD Bearings are widely used for their superior corrosion resistance.

Yarn-• Corrosion resistance under acid solution, alkaline solution and water Rotational speed: 20 to 100 min⁻¹ Chemica olution Temperature: Room temp. to 90°C Lubrication: Chemical solution [∠]Roller **Product: Hybrid Ceramic Bearing Blood product centrifuge** (with special coating) Corrosion resistance is required of bearings to be used in blood High product centrifuge especially to physiological saline. frequency motor Hybrid Ceramic Bearings with bearing rings coated with a liquid corrosion resistant film are suitable for such corrosive environments. outlet Spherical plain bearing Ceramic • Corrosion resistance to physiological saline bearing Rotor

Rotational speed: 20 000 min⁻¹

Temperature: -10 to 10°C Lubrication: Grease

Aluminum Electrolytic Capacitor Manufacturing Equipment

Product: Corrosion Guard Pro Bearing-SC

In an aluminum foil electrolytic capacitor manufacturing equipment, a strong acid solution is used to treat the aluminum foils. In such highly corrosive environments, Corrosion Guard Pro Bearing-SC Bearings are widely used.

High-performance Film Manufacturing

A variety of solutions—such as acid solutions, alkaline solutions, dyeing solutions, and distilled water—are used in the manufacturing lines of high-performance film.

In such corrosive environments, Corrosion Guard Pro Bearing-ZO and Corrosion Guard Pro Bearing-MD Bearings are widely used.

• Corrosion resistance to solutions such as acid solution, alkaline solution, dyeing solution, and distilled water

Rotational speed: 10 to 100 min⁻¹ Temperature: Room temp. to 80°C Lubrication: Chemical solution

Spin-dryer for Wafer Cleaning Equipment

In semiconductor wafer cleaning processes, wafers are cleaned in cleansing chemicals, rinsing liquids, distilled water, and other liquids before drying.

In such cleaning equipment, Corrosion Guard Pro Bearing-MD Bearings are widely used for their superior corrosion resistance

Corrosion resistance to solutions such as cleaning chemicals, rinsing liquids, and distilled water

Rotational speed: 2 000 to 3 000 min⁻¹ Temperature: Room temp. Lubrication: Grease

3

Koyo

Product: Corrosion Guard Pro Bearing-ZO Corrosion Guard Pro Bearing-MD

Product: Corrosion Guard Pro Bearing-MD

3 Corrosive Environments

3

Chemical Mechanical Polishing System

In the semiconductor multilayer production process, each wafer surface should be treated to maintain evenness. This process uses chemical mechanical polishing equipment, and the cleaner attached to the equipment uses Corrosion Guard Pro Bearing-SC Bearings.

• Corrosion resistance to corrosive solutions

Use	conditions	

Rotational speed: 100 min⁻¹ Temperature: Room temp.

Lubrication: Cleaning agent

Product: Corrosion Guard Pro Bearing-SC

Outer Space Experimentation Equipment

Product: Ceramic Bearings

Utilized in experimental equipment on a space shuttle.

Stainless-steel bearings using fresh water as the lubricant experience abrasion and do not reach the required service life. Using general ceramic bearings enables the required service life to be attained.

Long Service Life under Freshwater Lubricating Conditions

Rotational speed: 10 000 min⁻¹ Temperature: 30°C Load: Radial 5 N, Axial 9 N Lubrication: Fresh water

Photo: From the presentation materials for the 8th lecture on space stations

4 High Temperature Environments

Carton Manufacturing Equipment 4-2

In carton manufacturing equipment, polyethylene film, which is attached to carton board in advance, is heat bonded by a gas burner in the high temperature gas burner bonding process.

The EXSEV®-PN which have superior heat resistance, are used to support the guide rollers of the belt that carries carton board in this process, thus avoiding contaminating the carton board with grease.

• Prevention of grease scattering

Improved durability and reliability under high temperatures

Use conditions

Rotational speed: 3 000 to 4 000 min⁻¹ Temperature: 220°C Lubrication: Molybdenum disulfide and other means

Baking Furnace 4-3

In the kiln that bakes fluorine resin onto the heat rollers of copying machines, conveyor bearings must be low in particle emissions under high temperatures. Because it is structurally difficult to mount bearings accurately, High temperature Hybrid Ceramic Bearings are used for this application, along with aligning rings.

• Compatible with high temperature environments

Use conditions

Rotational speed: 3 to 10 min⁻¹ Temperature: 400 to 500°C Lubrication: Graphite

Product: High Temperature Hybrid Ceramic Bearing

Product: EXSEV®-PN

Product: High Temperature Hybrid Ceramic Bearing

3

4 High Temperature Environments

3

Tube Annealing Furnace Guide 4-4 Rolls

Product: Hybrid Ceramic Bearing

The guide roll bearings installed inside tube annealing furnaces are used under high temperatures without lubrication. Hybrid Ceramic Bearings are suitable for such applications.

• Compatible with high temperature environments

Diffusion Furnace Dolly 4-5

Product: Full-complement Ceramic Ball Bearings

Conditions in a diffusion furnace are harsh, including not only high temperature, but also corrosive gas. Incorporating a rolling mechanism for the conveyor dolly in the furnace enables smooth conveyance to be obtained, thereby leading to improvements in product quality and productivity.

- Compatible with high-temperature environments
- Corrosion-resistant against corrosive gases
- Contributes to improved productivity

Use conditions

Temperature: 800°C or higher Ambient pressure: Corrosive gas atmosphere Load: 5 N

Blister Packaging Equipment 4-6

Product: High-temperature Hybrid Ceramic Bearings

As heater roll bearings used in processing reach high temperatures during operation, conventional bearings are quickly damaged.

Incorporating high-temperature ceramic bearings extends the bearing replacement cycle and improves productivity.

• Applicable to high-temperature environments

Contributes to improved productivity

Use conditions

Temperature: 250°C Load: 900 N Lubrication: Grease

5 Magnetic Field Environments

The motors installed in magnetic resonance imagers (MRI) use magnetism insensitive Ceramic Bearings.

• Compatible with strong magnetic field environments

Use conditions

Rotational speed: 500 min⁻¹ Temperature: Room temp. Lubrication: Grease

Product: Ceramic Bearing

3

6 Electric Field Environments

3

Wind Turbine Generator 6-1

Product: Hybrid Ceramic Bearing

Wind Turbine Generator are strongly required to operate for extensive periods of time without the need of maintenance. However, bearings used in generators are subject to electrical pitting, which may cause the bearings to break down.

Hybrid Ceramic Bearings, which have superior durability and reliability, are widely used in such aerogenerators.

Prevention of electrical pitting

• Extension of grease service life (three times longer than Koyo steel bearings)

Use conditions

Rotational speed: 2 700 min⁻¹ Temperature: Below freezing point to approx. 60°C Lubrication: Grease

DVD Sputtering Equipment 6-2

To improve reliability further, Hybrid Ceramic Bearings are used.

Insulation

Use conditions Rotational speed: 300 min⁻¹ Temperature: Room temp. Lubrication: Grease

Product: Hybrid Ceramic Bearing

Fan Motor 6-3

Product: Hybrid Ceramic Bearing

Bearings used in motors are susceptible to electrical pitting. Hybrid Ceramic Bearings are widely used to prevent such pitting.

Prevention of electrical pitting

Use conditions

Rotational speed: 5 000 min⁻¹ Temperature: -10 to 120°C Lubrication: Grease

Photographic Film Manufaturing Equipment

A photographic film production line treats film surfaces by applying a high voltage. Hybrid Ceramic Bearings are widely used in such environments, because the ceramic inner ring and balls serve as insulators.

Insulation under high voltage environments

Use conditions

6-4

Rotational speed: 200 min⁻¹ Temperature: Room temp. Lubrication: Grease

Air-conditioner motors 6-5

When using motors equipped with inverter control such as air-conditioner motors, there is a possibility of electric pitting defects occurring on motor bearings.

Using a ceramic — which is an insulator — as the rolling elements eliminates electric pitting.

• Electric pitting prevent through insulation performance

Use conditions

Rotational speed: 3 000 min⁻¹ Load (preload): 1.5% C Lubrication: Grease

Product : Hybrid Ceramic Bearings

7 High Speed Applications

Turbocharger 7-1

Product: Hybrid Ceramic Bearing

Bearings that support the spindle of turbochargers should have good acceleration response characteristics and high durability under low viscosity, contaminated oil.

Because of their high reliability in these respects, Hybrid Ceramic Bearings are widely used for this application.

- Three times longer service life than that of steel bearings
- Acceleration response up 20%
- An 80% reduction in oil supply

Use conditions

Rotational speed: 180 000 to 210 000 min⁻¹ Temperature: 350°C Lubrication: Oil

Spindle for Machine Tool 7-2 (Angular Contact Ball Bearing)

Product: Hybrid Ceramic Bearing

Machine tool spindle bearings are required to have superior rotational performance at extremely high speeds, quick acceleration/ deceleration, high rigidity, and reduced temperature rises.

Hybrid Ceramic Bearings, which satisfy these requirements, are widely used in this application.

- 20% to 30% reduction in temperature rises
- The upper limit of the rotational speed range is 1.2 to 1.5 times higher (compared with Koyo steel bearings).

Use conditions

```
Rotational speed: 25 000 min<sup>-1</sup>
                      (d_{\rm m}n = 2.75 \times 10^6)
Spindle power: 75 kW
Lubrication: Oil or grease
```


Product : Hybrid Ceramic Bearings

Spindle for Machine Tool 7-3 (Cylindrical Roller Bearing)

Seizure resistance performance under unbalanced load conditions due to misalignment improved at the Vertical Spindle Machining Center.

• 20% to 30% reduction in temperature rise

• Upper limit of rotational speed range is 1.2-1.5 times higher (compared to Koyo steel bearings)

Use conditions

Rotational speed: 12 000 min⁻¹ Lubrication: Grease

Polygon Scanner Motor 7-4

Hybrid Ceramic Bearings, which exhibit superior high speed performance, are widely used in high speed polygon scanner motors.

• Excellent reliability in high speed rotation

Use conditions Rotational speed: 26 000 min⁻¹ or higher Lubrication: Grease

Switched Reluctance Motor 7-5

For high speed, high efficiency switched reluctance (SR) motors, which do not use coils or permanent magnets, Hybrid Ceramic Bearings are applied.

• Excellent reliability in high speed rotation

Use conditions Rotational speed: 30 000 min⁻¹ Lubrication: Grease

Steel Wire Stranding Machine 7-6

Steel wires for radial tires are produced by stranding steel wires to attain the required strength. In steel wire stranding machines, which involve high speed rotation, Hybrid Ceramic Bearings are used for improved service life and stability.

Reduced temperature rises Reliable durability

Use conditions

Rotational speed: 6 000 min⁻¹ or higher Lubrication: Grease

3

Koyo

Product: Hybrid Ceramic Bearing

Product: Hybrid Ceramic Bearing

7 High Speed Applications

3

Jet Electrostatic Coating Machine 7-7

Product: Hybrid Ceramic Bearing

Product: Hybrid Ceramic Bearing

In a jet electrostatic coating machine, grease may escape from the spray nozzle due to the air motor, affecting the quality of the paint to be coated.

To resolve this problem, Hybrid Ceramic Bearings that do not use grease are used.

- Prevention of grease scattering
- Prevention of paint contamination

Use conditions

Rotational speed: 20 000 min⁻¹ Lubrication: Fluorine polymer

Micro Gas Turbine Generator 7-8

The world's smallest gas turbine generators emit clean exhaust emissions and hence are friendly to the environment. Hybrid Ceramic Bearings are used in these generators because they are low in vibration and noise generation, and have excellent high speed performance.

• Improved reliability in high speed rotation

Motorcycle Superchargers 7-9

Product: Hybrid Ceramic Bearings

The new superchargers for large motorcycles utilize lightweight, high-strength ceramic balls capable of high-speed rotation. The incorporation of ceramic balls has achieved bearings with excellent high-speed performance, heat resistance and abrasion resistance. Additionally, when using hybrid ceramic bearings, high output is achieved even for race-specification motors operating under harsh conditions.

- High-speed performance, heat resistance and abrasion resistance improved
- Contributes to achieving high output supporting race specifications

Photos: Courtesy of Kawasaki Heavy Industries, Ltd.

8 Abrasion Resistance

The common rail system (fuel injection system), which enables diesel engines to feature high power, good fuel economy and low emissions, is equipped with Ceramic Balls in the control valves.

• Compatible with high pressure fuel injection thanks to improved wear resistance and seizure resistance

Use condition	s	
Maximum p	ressure: 135 MPa	

Excellent abrasion resistance even under severe environmental conditions has improved durability and reliability. • Utilized in the car entered in the Paris-Dakar Rally in 1997 and 1998

- Rigidity improved
- Unsprung weight reduced

3

Koyo

Product: Hybrid Ceramic Bearings

Photos: Courtesy of Mitsubishi Motors Corporation

9 Low Torque

3

Inline Skates 9-1

Product: Hybrid Ceramic Bearing

Because of their low running torque and high durability, Hybrid Ceramic Bearings are widely used in speed skates.

• Low torque and improved durability

Use conditions	
Rotational spe	eed: 10 000 min ⁻¹
Lubrication: C	vil or grease

Product: Hybrid Ceramic Bearings

1 Shaft T

- **2** Housin
- **3** Numeri
- Tolerar
- 4 Steel H
- **5** SI Units
- 6 Inch / r
- 7 Cleanlii

Wheel Bearings for Solar Cars 9-2

Stable operation of the motor section under severe open conditions of running eight hours or more per day. Improvements in weight reduction, durability and reliability. Suppressing spinning resistance and efficiently transferring the driving force to the wheels contributes to saving power.

- Australia: Covered over 3 000km vertically
- South Africa: Covered over 4 000km

Use conditions

Rotational speed: 1 000 min⁻¹ Lubrication: Grease

Photo: Courtesy of Tokai University

Supplementary Tables

olerances	117
g Bore Tolerances	119
ical Values for Standard	
nce Grades IT	121
ardness Conversion	122
s and Conversion Factors	123
millimeter Conversion	127
ness Classes	128

Supplementary table 1 Shaft tolerances (deviation from nominal dimensions)

Nomina diam	neter						De	viation	classes	s of sha	ft diam	eter																		diar	al shaft neter	⊿ dmp ¹⁾ bearin
over (m		d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6	js7	j5	j6	k	k5	k6	k7	m5	m6	m7	n5	n6	p6	r6	r7	over	up to	(class
3	6	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	0	0 - 12	0 - 18	0 - 30	0 - 48	± 2.5	± 4	± 6	+ 3 - 2	+ 6 - 2		⊦ 6 ⊦ 1	+ 9 + 1	+ 13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 4	+ 13 + 8	+ 16 + 8	+ 20 + 12	+ 23 + 15		3	6	0 8 –
6	10	- 40 - 49	- 25 - 34	- 13 - 22	- 5 - 11	- 5 - 14	0 - 6	0 - 9	0 - 15	0 - 22	0 - 36	0 - 58	± 3	± 4.5	± 7.5	+ 4 - 2	+ 7 - 2	++++++		+ 10 + 1	+ 16 + 1	+ 12 + 6	+ 15 + 6	+ 21 + 6	+ 16 + 10	+ 19 + 10	+ 24 + 15	+ 28 + 19	1	6	10	(
10	18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 - 14	- 6 - 17	0	0 - 11	0 - 18	0 - 27	0 - 43	0 - 70	± 4	± 5.5	± 9	+ 5 - 3	+ 8 - 3	+++++		+ 12 + 1	+ 19 + 1	+ 15 + 7	+ 18 + 7	+ 25 + 7	+ 20 + 12	+ 23 + 12	+ 29 + 18	+ 34 + 23	1	10	18	_
18	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 - 16	- 7 - 20	0	0	0 - 21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5	±10.5	+ 5 - 4	+ 9 - 4		⊦ 11 ⊦ 2	+ 15 + 2	+ 23 + 2	+ 17 + 8	+ 21 + 8	+ 29 + 8	+ 24 + 15	+ 28 + 15	+ 35 + 22		+ 49	18	30	0 - 1
30	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 - 20	- 9 - 25	0	0	0	0 - 39	0 - 62	0 -100	± 5.5	± 8	±12.5	+ 6 - 5	+11 - 5			+ 18 + 2	+ 27 + 2	+ 20 + 9	+ 25 + 9	+ 34 + 9	+ 28 + 17	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59	30	50	0 - 1
		-100	- 60	- 30				0	0	0	0	0				+ 6	+12	+	+ 15	+ 21	+ 32	+ 24	+ 30	+ 41		+ 39		+ 60 + 41	-	50	65	0
50	80	-119	- 79	- 49	1			- 19	- 30	- 46	- 74	-120	± 6.5	± 9.5	±15	- 7	- 7					+ 11		+ 11			1		+ 73	65	80	- 1
		-120	- 72	- 36	- 12	- 12	0	0	0	0	0	0				+ 6	+13	+	+ 18	+ 25	+ 38	+ 28	+ 35	+ 48	+ 38	+ 45	+ 59	+ 73 + 51		80	100	0
80	120	-142	- 94	- 58	- 27			- 22	- 35	- 54	- 87	-140	± 7.5	±11	±17.5	- 9	- 9				+ 3			+ 13		+ 23	1	+ 76 + 54	+ 89	100	120	- 2
																												+ 88 + 63		120	140	
120	180		- 85 -110	- 43 - 68	1	- 14 - 39		0	0	0	0 -100	0 -160	± 9	±12.5	±20	+ 7	+14					+ 33 + 15		+ 55 + 15			1	+ 90	+105	140	160	0 - 2
								20			100	100								Ū		10	10	10	27	2.		+ 93 + 68		160	180	
																												+106 + 77	+	180	200	
180	250	-170 -199	-100 -129	- 50 - 79		- 15 - 44	1	0	0	0	0	0	±10	±14.5	±23	+ 7	+16					+ 37 + 17		+ 63 + 17			+ 79 + 50	+109	+126	200	225	0 - 3
		100	120					20				100														01		+113 + 84	+130	225	250	
		-190	-110	- 56	- 17	- 17	0	0	0	0	0	0				+ 7		+	+ 27	+ 36	+ 56	+ 43	+ 52	+ 72	+ 57	+ 66	+ 88	+126 + 94	+146	250	280	0
250	315	-222	-142	- 88	1				- 52	- 81	-130	-210	±11.5	±16	±26	-16	±16					+ 20	+ 20			+ 34				280	315	- 3
	400	-210	-125	- 62	- 18	- 18	0	0	0	0	0	0				+ 7		+	- 29	+ 40	+ 61	+ 46	+ 57	+ 78	+ 62	+ 73	+ 98	+144	+165	315	355	0
315	400	-246	-161	- 98	- 43	- 54	- 25	- 36			-140		±12.5	±18	±28.5	-18	±18							+ 21			1		+171	355	400	- 4
		-230	-135	- 68	- 20	- 20	0	0	0	0	0	0				+ 7		+	+ 32	+ 45	+ 68	+ 50	+ 63	+ 86	+ 67	+ 80	+108	+166 +126	+189	400	450	0
400	500		-175					- 40				-250	±13.5	±20	±31.5	-20	±20					+ 23		+ 23					+195	450	500	- 4
		-260	-145	- 76	- 22	- 22	0	0	0	0	0	0						+	+ 32	+ 44	+ 70	+ 58	+ 70	+ 96	+ 76	+ 88	+122	+194 +150	+220	500	560	0
500	630	-304	-189	-120				1	- 70	-110	-		±16	±22	±35	-	-		0	0	0	+ 26		+ 26					+225	560	630	- 5
		-290	-160	- 80	- 24	- 24	0	0	0	0	0	0						+	+ 36	+ 50	+ 80	+ 66	+ 80	+110	+ 86	+100	+138	+225 +175	+255 +175	630	710	0
630	800			1		1		- 50	- 80	-125	-		±18	±25	±40	-	-		0	0	0	+ 30		+ 30					+265	710	800	- 7
		_320	-170	90	- 26	26	0	0	0	0	0	0							+ 40	+ 56	+ 90	+ 74	+ 90	+104	+ 96	+110	+156	+266	+300	800	900	0
800	1 000		-170 -226	- 86 -142				0	0	0	0 -230	0 -360	±20	±28	±45	-	-		0	- 30 0	+ 90	+ 74 + 34		+ 124 + 34					+310	900	1 000	

Note 1) \varDelta_{dmp} : single plane mean bore diameter deviation

4

(Refer.)	
$\Delta dmp^{1)}$ of bearing (class 0)	
0	

Unit: µm

4

Koyo

Shaft tolerances

Supplementary table 2 Housing bore tolerances (deviation from nominal dimensions)

	al shaft neter					Dev	viation o	lasses	of hous	ing bor	e diame	ter															
over	up to	E6	F6	F7	G6	G7	H6	H7	H8	H9	H10	JS5	JS6	J\$7	J6	J7	K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	Τ
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11 0	+ 18 0	+ 27 0	+ 43 0	+ 70 0	± 4	± 5.5	± 9	+ 6 - 5	+10 - 8	+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 - 17				
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13 0	+ 21 0	+ 33 0	+ 52 0	+ 84 0	± 4.5	± 6.5	±10.5	+ 8 - 5	+12 - 9	+ 1 - 8	+ 2 -11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	- 12 - 21		- 7 - 28		
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16 0	+ 25 0	+ 39 0	+ 62 0	+100 0	± 5.5	± 8	±12.5	+10 - 6	+14 -11	+ 2 - 9	+ 3 -13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	- 13 - 24			I - ·	
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19 0	+ 30 0	+ 46 0	+ 74 0	+120 0	± 6.5	± 9.5	±15	+13 - 6	+18 -12	+ 3 -10	+ 4 -15	+ 9 - 21		- 5 - 24	0 - 30			- 9 - 39	1	
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22 0	+ 35 0	+ 54 0	+ 87 0	+140 0	± 7.5	±11	±17.5	+16 - 6	+22 -13	+ 2 -13	+ 4 -18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35		- 16 - 38			
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40 0	+ 63 0	+100 0	+160 0	± 9	±12.5	±20	+18 - 7	+26 -14	+ 3 -15	+ 4 -21	+ 12 - 28			-		1	- 12 - 52	1	
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29 0	+ 46 0	+ 72 0	+115 0	+185 0	±10	±14.5	±23	+22 - 7	+30 -16	+ 2 -18	+ 5 -24	+ 13 - 33		- 8 - 37				- 14 - 60		
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52	+ 81 0	+130 0	+210	±11.5	±16	±26	+25 - 7	+36 -16	+ 3 -20	+ 5 -27	+ 16 - 36			0 - 52			- 14 - 66		
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36 0	+ 57 0	+ 89 0	+140 0	+230 0	±12.5	±18	±28.5	+29 - 7	+39 -18	+ 3 -22	+ 7 -29	+ 17 - 40			0 - 57		1	- 16 - 73	1	
400	500	+175 +135		+131 + 68	+ 60 + 20	+ 83 + 20	+ 40 0	+ 63 0	+ 97 0	+155 0	+250 0	±13.5	±20	±31.5	+33 - 7	+43 -20	+ 2 -25	+ 8 -32	+ 18 - 45						- 17 - 80		
500	630	+189 +145	1	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44 0	+ 70 0	+110 0	+175 0	+280 0	±16	±22	±35	_	_	0 -32	0 -44	0 - 70	-26 -58	- 26 - 70	- 26 - 96			- 44 -114	1	
630	800	+210 +160		+160 + 80	+ 74 + 24	+104 + 24	+ 50 0	+ 80 0	+125 0	+200 0	+320 0	±18	±25	±40	_	_	0 -36	0 -50	0 - 80	-30 -66					- 50 -130		
800	1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90 0	+140 0	+230 0	+360 0	±20	±28	±45	_	_	0 -40	0 -56	0 - 90	-34 -74	-				- 56 -146	1	
1 000	1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66 0	+105 0	+165 0	+260 0	+420 0	±23.5	±33	±52.5	_	_	0 -47	0 -66	0 -105						- 66 -171	1	

Note 1) ΔD_{mp} : single plane mean bore diameter deviation

4

4

Housing bore tolerances

Koyo

Nominal shaft diameter (mm)
 P7
 R7

 - 11
 - 16

 - 29
 - 34

 - 14
 - 20
 over up to 10 18 18 30 30 50 - 30 50 65 - 21 - 60 - 51 - 32 65 80 - 62 - 38 80 100 - 24 - 73 - 59 - 41 100 120 - 76 - 48 120 140 - 88 - 28 - 50 140 160 - 68 - 90 - 53 180 160 - 93 - 60 180 200 -106 - 33 - 63 200 225 - 79 -109 - 67 225 250 -113 - 74 250 280 - 36 -126 - 88 - 78 280 315 -130 - 87 315 355 - 41 -144 - 98 - 93 355 400 -150 -103400 450 - 45 -166 -108 -109 450 500 -172 -150 500 560 - 78 -220 -148 -155 560 630 -225 -175 630 710 - 88 -255 -168 -185 710 800 -265 -210 800 900 -100 -300 -190 -220 900 1 000 -310 -250 -355 1 000 1 120 -120 -260 -365 -225

1 120 1 250

Unit: µm

(Refer.) ⊿ _{Dmp} of bearing	
(class 0)	
0 - 8	
0	
<u> </u>	
- 11	
0	
- 13	
0 - 15	
(up to150) 0	
- 18	
(over 150) 0	
- 25	
0	
- 30	
0 - 35	
0	
- 40	
0	
- 45	
0 - 50	
0	
- 75	
0	
-100	
0	
-125	

Supplementary table 3 Numerical values for standard tolerance grades IT

Basi	c size							Sta	andard	tolera	nce g	rades (IT)						
(m	m)	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ¹⁾	15 ¹⁾	16 ¹⁾	17 ¹⁾	18 ¹⁾
over	up to					Toler	rances	(µm)				1	Tolerances (mm)						
_	3	0.8	1.2	2	3	4	6	10	14	25	40	60	0.10	0.14	0.26	0.40	0.60	1.00	1.40
3	6	1	1.5	2.5	4	5	8	12	18	30	48	75	0.12	0.18	0.30	0.48	0.75	1.20	1.80
6	10	1	1.5	2.5	4	6	9	15	22	36	58	90	0.15	0.22	0.36	0.58	0.90	1.50	2.20
10	18	1.2	2	3	5	8	11	18	27	43	70	110	0.18	0.27	0.43	0.70	1.10	1.80	2.70
18	30	1.5	2.5	4	6	9	13	21	33	52	84	130	0.21	0.33	0.52	0.84	1.30	2.10	3.30
30	50	1.5	2.5	4	7	11	16	25	39	62	100	160	0.25	0.39	0.62	1.00	1.60	2.50	3.90
50	80	2	3	5	8	13	19	30	46	74	120	190	0.30	0.46	0.74	1.20	1.90	3.00	4.60
80	120	2.5	4	6	10	15	22	35	54	87	140	220	0.35	0.54	0.87	1.40	2.20	3.50	5.40
120	180	3.5	5	8	12	18	25	40	63	100	160	250	0.40	0.63	1.00	1.60	2.50	4.00	6.30
180	250	4.5	7	10	14	20	29	46	72	115	185	290	0.46	0.72	1.15	1.85	2.90	4.60	7.20
250	315	6	8	12	16	23	32	52	81	130	210	320	0.52	0.81	1.30	2.10	3.20	5.20	8.10
315	400	7	9	13	18	25	36	57	89	140	230	360	0.57	0.89	1.40	2.30	3.60	5.70	8.90
400	500	8	10	15	20	27	40	63	97	155	250	400	0.63	0.97	1.55	2.50	4.00	6.30	9.70
500	630	_	_	_	_	_	44	70	110	175	280	440	0.70	1.10	1.75	2.80	4.40	7.00	11.00
630	800	_	_	_	_	_	50	80	125	200	320	500	0.80	1.25	2.00	3.20	5.00	8.00	12.50
800	1 000	_	_	_	_	_	56	90	140	230	360	560	0.90	1.40	2.30	3.60	5.60	9.00	14.00
1 000	1 250	_	_	_	_	_	66	105	165	260	420	660	1.05	1.65	2.60	4.20	6.60	10.50	16.50
1 250	1 600	_	_	_	_	_	78	125	195	310	500	780	1.25	1.95	3.10	5.00	7.80	12.50	19.50
1 600	2 000	_	_	_	_	_	92	150	230	370	600	920	1.50	2.30	3.70	6.00	9.20	15.00	23.00
2 000	2 500	_	_	_	_	_	110	175	280	440	700	1 100	1.75	2.80	4.40	7.00	11.00	17.50	28.00
2 500	3 150	_	_	_	_	_	135	210	330	540	860	1 350	2.10	3.30	5.40	8.60	13.50	21.00	33.00

Note 1) Standard tolerance grades IT 14 to IT 18 (incl.) shall not be used for basic sizes less than or equal to 1 mm.

Rockwell		Bri	nell	Rocl	kwell	
C-scale 1471.0 N	Vicker's	Standard ball	Tungsten carbide ball	A-scale 588.4 N	B-scale 980.7 N	Shore
68 67 66	940 900 865			85.6 85.0 84.5		97 95 92
65 64 63 62 61	832 800 772 746 720		739 722 705 688 670	83.9 83.4 82.8 82.3 81.8		91 88 87 85 83
60 59 58 57 56	697 674 653 633 613		654 634 615 595 577	81.2 80.7 80.1 79.6 79.0		81 80 78 76 75
55 54 53 52 51	595 577 560 544 528	 	560 543 525 512 496	78.5 78.0 77.4 76.8 76.3		74 72 71 69 68
50 49 48 47 46	513 498 484 471 458	475 464 451 442 432	481 469 455 443 432	75.9 75.2 74.7 74.1 73.6		67 66 64 63 62
45 44 43 42 41	446 434 423 412 402	42 4(4(39 38	09 00 90	73.1 72.5 72.0 71.5 70.9		60 58 57 56 55
40 39 38 37 36	392 382 372 363 354	37 38 38 34 34 33	62 53 14	70.4 69.9 69.4 68.9 68.4	 (109.0)	54 52 51 50 49
35 34 33 32 31	345 336 327 318 310	32 3 3 3 3 3 3 3 2 5	19 11 01	67.9 67.4 66.8 66.3 65.8	(108.5) (108.0) (107.5) (107.0) (106.0)	48 47 46 44 43
30 29 28 27 26	302 294 286 279 272	28 27 27 27 26 26	79 71 64	65.3 64.7 64.3 63.8 63.3	(105.5) (104.5) (104.0) (103.0) (102.5)	42 41 41 40 38
25 24 23 22 21	266 260 254 248 243	22 24 24 22 23 23	47 43 37	62.8 62.4 62.0 61.5 61.0	(101.5) (101.0) 100.0 99.0 98.5	38 37 36 35 35
20 (18) (16) (14) (12)	238 230 222 213 204	22 2 2 2 2 2 2 2 2 1 5	19 12 03	60.5 — — — — —	97.8 96.7 95.5 93.9 92.3	34 33 32 31 29
(10) (8) (6) (4) (2) (0)	196 188 180 173 166 160	18 17 17 16 18 18	79 71 65 58		90.7 89.5 87.1 85.5 83.5 81.7	28 27 26 25 24 24

Supplementary table 4 Steel hardness conversion

4

4

Supplementary table 5(1) SI units and conversion factors

Mass	SI units	Other Units 1)	Conversion into SI units	Conversion from SI units
Angle	rad [radian(s)]	<pre>° [degree(s)] * ' [minute(s)] * ' [second(s)] *</pre>	1° = $\pi/180 \text{ rad}$ 1′ = $\pi/10\ 800 \text{ rad}$ 1″ = $\pi/648\ 000 \text{ rad}$	1 rad=57.295 78°
Length	m [meter(s)]	Å [Angstrom unit] μ [micron(s)] in [inch(es)] ft [foot(feet)] yd [yard(s)] mile [mile(s)]	1 Å= 10^{-10} m=0.1 nm=100pm 1 μ = 1 μ m 1 in=25.4 mm 1 ft=12 in=0.304 8 m 1 yd=3 ft=0.914 4 m 1 mile=5 280 ft=1 609.344 m	$1 \text{ m}=10^{10} \text{ Å}$ 1 m=39.37 in 1 m=3.280 8 ft 1 m=1.093 6 yd 1 km=0.621 4 mile
Area	m²	a [are(s)] ha [hectare(s)] acre [acre(s)]	$1 a=100m^{2}$ $1 ha=10^{4} m^{2}$ $1 acre=4 840 yd^{2}=4 046.86 m^{2}$	1 km ² =247.1 acre
Volume	m ³	ℓ, L [liter(s)] cc [cubic centimeters] gal (US) [gallon(s)] floz (US) [fluid ounce(s)] barrel (US) [barrels(US)]	$1 \ \ell = 1 \ dm^3 = 10^{-3} \ m^3$ $1 \ cc = 1 \ cm^3 = 10^{-6} \ m^3$ $1 \ gal (US) = 231 \ in^3 = 3.785 \ 41 \ dm^3$ $1 \ floz (US) = 29.573 \ 5 \ cm^3$ $1 \ barrel (US) = 158.987 \ dm^3$	$1 m^{3} = 10^{3} l$ $1 m^{3} = 10^{6} cc$ $1 m^{3} = 264.17 gal$ $1 m^{3} = 33 814 floz$ $1 m^{3} = 6.289 8 barrel$
Time	s [second(s)]	min [minute(s)] * h [hour(s)] * d [day(s)] *		
Angular velocity	rad/s			
Velocity	m/s	kn [knot(s)] m/h *	1 kn=1 852 m/h	1 km/h=0.539 96 kn
Acceleration	m/s ²	G	1 G=9.806 65 m/s ²	1 m/s ² =0.101 97 G
Frequency	Hz [hertz]	c/s [cycle(s)/second]	$1 \text{ c/s}=1 \text{ s}^{-1}=1 \text{ Hz}$	
Rotation frequency	s ⁻¹	rpm [revolutions per minute] min ^{−1} * r/min	$1 \text{ rpm} = 1/60 \text{ s}^{-1}$	1 s ⁻¹ =60 rpm
Mass	kg [kilogram(s)]	t [ton(s)] * lb [pound(s)] gr [grain(s)] oz [ounce(s)] ton (UK) [ton(s) (UK)] ton (US) [ton(s) (US)] car [carat(s)]	$1 t = 10^{3} kg$ 1 lb=0.453 592 37 kg 1 gr=64.798 91 mg 1 oz=1/16 lb=28.349 5 g 1 ton (UK)=1 016.05 kg 1 ton (US)=907.185 kg 1 car=200 mg	$1kg=2.204 \ 6 \ lb$ $1g=15.432 \ 4 \ gr$ $1kg=35.274 \ 0 \ oz$ $1t=0.9842 \ ton (UK)$ $1t=1.102 \ 3 \ ton (US)$ $1g=5 \ car$

Supplementary table 5(2) SI units and conversion factors

Mass	SI units	Other Units 1)	Conversion into SI units	Conversion from SI units
Density	kg/m ³			
Linear density	kg/m			
Momentum	kg ∙ m/s			
Moment of momentum, angular momentum	$\left. \right\}$ kg • m ² /s			
Moment of inertia	kg ∙ m²			
Force	N [newton(s)]	dyn [dyne(s)] kgf [kilogram-force] gf [gram-force] tf [ton-force] lbf [pound-force]	1 dyn= 10^{-5} N 1 kgf=9.806 65 N 1 gf=9.806 65 × 10^{-3} N 1 tf=9.806 65 × 10^{3} N 1 lbf=4.448 22 N	1 N=10 ⁵ dyn 1 N=0.101 97 kgf 1 N=0.224 809 lbf
Moment of force	N ∙ m [Newton meter(s)]	gf•cm kgf•cm kgf•m tf•m lbf•ft	1 gf \cdot cm=9.806 65 × 10 ⁻⁵ N \cdot m 1 kgf \cdot cm=9.806 65 × 10 ⁻² N \cdot m 1 kgf \cdot m=9.806 65 N \cdot m 1 tf \cdot m=9.806 65 × 10 ³ N \cdot m 1 lbf \cdot ft=1.355 82 N \cdot m	1 N \cdot m=0.101 97 kgf \cdot m 1 N \cdot m=0.737 56 lbf \cdot ft
Pressure, Normal stress	Pa [Pascal(s)] or N/m ² {1 Pa=1 N/m ² }	gf/ cm ² kgf/mm ² kgf/m ² lbf/in ² bar [bar(s)] at [engineering air pressure] mH ₂ O, mAq [meter water column] atm [atmosphere] mHg [meter mercury column] Torr [torr]	$1 \text{ gf/ cm}^{2}=9.806 65 \times 10 \text{ Pa}$ $1 \text{ kgf/mm}^{2}=9.806 65 \times 10^{6} \text{ Pa}$ $1 \text{ kgf/m}^{2}=9.806 65 \text{ Pa}$ $1 \text{ lbf/in}^{2}=6 894.76 \text{ Pa}$ $1 \text{ bar}=10^{5} \text{ Pa}$ $1 \text{ at}=1 \text{ kgf/cm}^{2}=9.806 65 \times 10^{4} \text{ Pa}$ $1 \text{ mH}_{2}O=9.806 65 \times 10^{3} \text{ Pa}$ $1 \text{ atm}=101 325 \text{ Pa}$ $1 \text{ mHg}=\frac{101 325}{0.76} \text{ Pa}$ $1 \text{ Torr}=1 \text{ mmHg}=133.322 \text{ Pa}$	1 MPa=0.101 97 kgf/mm ² 1 Pa=0.101 97 kgf/m ² 1 Pa=0.145 \times 10 ⁻³ lbf/in ² 1 Pa=10 ⁻² mbar 1 Pa=7.500 6 \times 10 ⁻³ Torr
Viscosity	Pa ⋅ s [pascal second]	P [poise] kgf • s/m²	10^{-2} P=1 cP=1 mPa · s 1 kgf · s/m ² =9.806 65 Pa · s	$1 \text{ Pa} \cdot \text{s} = 0.101 \text{ 97 kgf} \cdot \text{s/m}^2$
Kinematic viscosity	m²/s	St [stokes]	10^{-2} St=1 cSt=1 mm ² /s	
Surface tension	N/m			

Note 1) *: Unit can be used as an SI unit.

No asterisk : Unit cannot be used.

4

4

EXSEV BEARINGS AND CERAMIC BEARINGS

4 Supplementary Tables

Supplementary table 5(3) SI units and conversion factors

Mass	SI units	Other Units 1)	Conversion into SI units	Conversion from SI units
Work, energy	J [joule(s)] {1 J=1 N ⋅ m}	eV [electron volt(s)] * erg [erg(s)] kgf • m lbf • ft	$1 eV = (1.602 189 2 \pm 0.000 004 6) \times 10^{-19} J$ $1 erg = 10^{-7} J$ $1 kgf \cdot m = 9.806 65 J$ $1 lbf \cdot ft = 1.355 82 J$	$1 J=10^{7} erg$ $1 J=0.101 97 kgf \cdot m$ $1 J=0.737 56 lbf \cdot ft$
Power	W [watt(s)]	erg/s [ergs per second] kgf • m/s PS [French horse-power] HP [horse-power (British)] lbf • ft/s	$1 \text{ erg/s} = 10^{-7} \text{ W}$ $1 \text{ kgf} \cdot \text{m/s} = 9.806 65 \text{ W}$ $1 \text{ PS} = 75 \text{ kgf} \cdot \text{m/s} = 735.5 \text{ W}$ $1 \text{ HP} = 550 \text{ lbf} \cdot \text{ft/s} = 745.7 \text{ W}$ $1 \text{ lbf} \cdot \text{ft/s} = 1.355 82 \text{ W}$	1 W=0.101 97 kgf · m/s 1 W=0.001 36 PS 1 W=0.001 34 HP
Thermo-dynamic temperature	K [kelvin(s)]			
Celsius temperature	℃ [Celsius(s)] {t℃=(t+273.15)K}	°F [degree(s) Fahrenheit]	$t^{\circ}F = \frac{5}{9}(t-32)^{\circ}C$	$t^{\circ}C = (\frac{9}{5}t+32)^{\circ}F$
Linear expansiona coefficient	K ⁻¹	°C ^{−1} [per degree]		
Heat	J [joule(s)] {1 J=1 N • m}	erg [erg(s)] kgf • m cal гт [I. T. calories]	1 erg= 10^{-7} J 1 cal rr=4.186 8 J 1 Mcal rr=1.163 kW · h	$1 J=10^{7} erg$ 1 J=0.238 85 cal IT $1 kW \cdot h=0.86 \times 10^{6} cal IT$
Thermal conductivity	W/ (m • K)	$ \begin{array}{l} \mathbb{W}/\left(\mathbf{m}\cdot\ensuremath{^{\circ}}\ensuremath{\mathbb{C}}\right)\\ \mathrm{cal}/\left(\mathbf{s}\cdot\mathbf{m}\cdot\ensuremath{^{\circ}}\ensuremath{\mathbb{C}}\right) \end{array} $	$1 \text{ W/ } (\text{m} \cdot \text{C}) = 1 \text{ W/ } (\text{m} \cdot \text{K})$ $1 \text{ cal/ } (\text{s} \cdot \text{m} \cdot \text{C}) =$ $4.186 \text{ 05 W/ } (\text{m} \cdot \text{K})$	
Coeffcient of heat transfer	W/ (m ² • K)	$ \frac{W}{(m^2 \cdot C)} $ cal/ (s · m ² · C)	$1 \text{ W}/(\text{m}^{2} \cdot ^{\circ}\text{C}) = 1 \text{ W}/(\text{m}^{2} \cdot \text{K})$ $1 \text{ cal}/(\text{s} \cdot \text{m}^{2} \cdot ^{\circ}\text{C}) =$ $4.186 \text{ 05 W}/(\text{m}^{2} \cdot \text{K})$	
Heat capacity	J/K	J/℃	$1 \text{ J/}^{\circ}\text{C} = 1 \text{ J/K}$	
Massic heat capacity	J/ (kg • K)	J/ (kg • °C)		

Supplementary table 5(4) SI units and conversion factors

Mass	SI units	Other Units 1)	C
Electric current	A [ampere(s)]		
Electric charge, quantity of electricity	C [coulomb(s)] $\{1 C=1 A \cdot s\}$	A•h *	1 A •
Tension, electric potential	V [volt(s)] {1 V=1 W/A}		
Capacitance	F [farad(s)] {1 F=1 C/V}		
Magnetic field strength	A/m	Oe [oersted(s)]	1 Oe
Magnetic flux density	$ \begin{array}{c} T \\ [\text{tesla(s)}] \\ \left\{ 1 \text{ T} = 1 \text{ N/(A} \cdot \text{m}) \\ = 1 \text{ Wb/m}^2 \\ = 1 \text{ V} \cdot \text{s/m}^2 \end{array} \right\} $	Gs [gauss(es)] γ [gamma(s)]	1 Gs: 1 γ =
Magnetic flux	Wb [weber(s)] {1 Wb=1 V • s}	Mx [maxwell(s)]	1 Mx
Self inductance	H [henry (- ries)] {1 H=1 Wb/A}		
Resistance (to direct current)	Ω [ohm(s)] {1 Ω = 1 V/A}		
Conductance (to direct current)	S [siemens] {1 S=1 A/V}		
Active power	$ \begin{cases} W \\ 1 W = 1 J/s \\ = 1 A \cdot V \end{cases} $		

Note 1)

* : Unit can be used as an SI unit. No asterisk : Unit cannot be used.

125

Conversion from SI units

7
ors

-		
	1 A ⋅ h=3.6 kC	
	$1 \text{ Oe} = \frac{10^3}{4 \pi} \text{ A/m}$	$1 \text{ A/m} = 4 \pi \times 10^{-3} \text{ Oe}$
	1 Gs= 10^{-4} T 1 $\gamma = 10^{-9}$ T	$1 \text{ T}=10^4 \text{ Gs}$ $1 \text{ T}=10^9 \gamma$
	1 Mx=10 ⁻⁸ Wb	1 Wb=10 ⁸ Mx

Conversion into SI units

Supplementary table 6 Inch / millimeter conversion

4

							inches					
inch		0	1	2	3	4	5	6	7	8	9	10
							mm					
1/32 0.03	5625 3125 16875	0 0.3969 0.7938 1.1906	25.4000 25.7969 26.1938 26.5906	50.8000 51.1969 51.5938 51.9906	76.2000 76.5969 76.9938 77.3906	101.6000 101.9969 102.3938 102.7906	127.0000 127.3969 127.7938 128.1906	152.4000 152.7969 153.1938 153.5906	177.8000 178.1969 178.5938 178.9906	203.2000 203.5969 203.9938 204.3906	228.6000 228.9969 229.3938 229.7906	254.0000 254.3969 254.7938 255.1906
3/32 0.09	625 78125 9375 99375	1.5875 1.9844 2.3812 2.7781	26.9875 27.3844 27.7812 28.1781	52.3875 52.7844 53.1812 53.5781	77.7875 78.1844 78.5812 78.9781	103.1875 103.5844 103.9812 104.3781	128.5875 128.9844 129.3812 129.7781	153.9875 154.3844 154.7812 155.1781	179.3875 179.7844 180.1812 180.5781	204.7875 205.1844 205.5812 205.9781	230.1875 230.5844 230.9812 231.3781	255.5875 255.9844 256.3812 256.7781
5/32 0.15	25 40625 5625 71875	3.1750 3.5719 3.9688 4.3656	28.5750 28.9719 29.3688 29.7656	53.9750 54.3719 54.7688 55.1656	79.3750 79.7719 80.1688 80.5656	104.7750 105.1719 105.5688 105.9656	130.1750 130.5719 130.9688 131.3656	155.5750 155.9719 156.3688 156.7656	180.9750 181.3719 181.7688 182.1656	206.3750 206.7719 207.1688 207.5656	231.7750 232.1719 232.5688 232.9656	257.1750 257.5719 257.9688 258.3656
7/32 0.21	375)3125 875 34375	4.7625 5.1594 5.5562 5.9531	30.1625 30.5594 30.9562 31.3531	55.5625 55.9594 56.3562 56.7531	80.9625 81.3594 81.7562 82.1531	106.3625 106.7594 107.1562 107.5531	131.7625 132.1594 132.5562 132.9531	157.1625 157.5594 157.9562 158.3531	182.5625 182.9594 183.3562 183.7531	207.9625 208.3594 208.7562 209.1531	233.3625 233.7594 234.1562 234.5531	258.7625 259.1594 259.5562 259.9531
9/32 0.28	5 5625 3125 96875	6.3500 6.7469 7.1438 7.5406	31.7500 32.1469 32.5438 32.9406	57.1500 57.5469 57.9438 58.3406	82.5500 82.9469 83.3438 83.7406	107.9500 108.3469 108.7438 109.1406	133.3500 133.7469 134.1438 134.5406	158.7500 159.1469 159.5438 159.9406	184.1500 184.5469 184.9438 185.3406	209.5500 209.9469 210.3438 210.7406	234.9500 235.3469 235.7438 236.1406	260.3500 260.7469 261.1438 261.5406
11/32 0.34	28125	7.9375 8.3344 8.7312 9.1281	33.3375 33.7344 34.1312 34.5281	58.7375 59.1344 59.5312 59.9281	84.1375 84.5344 84.9312 85.3281	109.5375 109.9344 110.3312 110.7281	134.9375 135.3344 135.7312 136.1281	160.3375 160.7344 161.1312 161.5281	185.7375 186.1344 186.5312 186.9281	211.1375 211.5344 211.9312 212.3281	236.5375 236.9344 237.3312 237.7281	261.9375 262.3344 262.7312 263.1281
13/32 0.40	75 90625 9625 21875	9.5250 9.9219 10.3188 10.7156	34.9250 35.3219 35.7188 36.1156	60.3250 60.7219 61.1188 61.5156	85.7250 86.1219 86.5188 86.9156	111.1250 111.5219 111.9188 112.3156	136.5250 136.9219 137.3188 137.7156	161.9250 162.3219 162.7188 163.1156	187.3250 187.7219 188.1188 188.5156	212.7250 213.1219 213.5188 213.9156	238.1250 238.5219 238.9188 239.3156	263.5250 263.9219 264.3188 264.7156
15/32 0.46	375 53125 5875 34375	11.1125 11.5094 11.9062 12.3031	36.5125 36.9094 37.3062 37.7031	61.9125 62.3094 62.7062 63.1031	87.3125 87.7094 88.1062 88.5031	112.7125 113.1094 113.5062 113.9031	138.1125 138.5094 138.9062 139.3031	163.5125 163.9094 164.3062 164.7031	188.9125 189.3094 189.7062 190.1031	214.3125 214.7094 215.1062 215.5031	239.7125 240.1094 240.5062 240.9031	265.1125 265.5094 265.9062 266.3031
17/32 0.53	5625 3125 6875	12.7000 13.0969 13.4938 13.8906	38.1000 38.4969 38.8938 39.2906	63.5000 63.8969 64.2938 64.6906	88.9000 89.2969 89.6938 90.0906	114.3000 114.6969 115.0938 115.4906	139.7000 140.0969 140.4938 140.8906	165.1000 165.4969 165.8938 166.2906	190.5000 190.8969 191.2938 191.6906	215.9000 216.2969 216.6938 217.0906	241.3000 241.6969 242.0938 242.4906	266.7000 267.0969 267.4938 267.8906
19/32 0.59	8125	14.2875 14.6844 15.0812 15.4781	39.6875 40.0844 40.4812 40.8781	65.0875 65.4844 65.8812 66.2781	90.4875 90.8844 91.2812 91.6781	115.8875 116.2844 116.6812 117.0781	141.2875 141.6844 142.0812 142.4781	166.6875 167.0844 167.4812 167.8781	192.0875 192.4844 192.8812 193.2781	217.4875 217.8844 218.2812 218.6781	242.8875 243.2844 243.6812 244.0781	268.2875 268.6844 269.0812 269.4781
21/32 0.65	0625	15.8750 16.2719 16.6688 17.0656	41.2750 41.6719 42.0688 42.4656	66.6750 67.0719 67.4688 67.8656	92.0750 92.4719 92.8688 93.2656	117.4750 117.8719 118.2688 118.6656	142.8750 143.2719 143.6688 144.0656	168.2750 168.6719 169.0688 169.4656	193.6750 194.0719 194.4688 194.8656	219.0750 219.4719 219.8688 220.2656	244.4750 244.8719 245.2688 245.6656	269.8750 270.2719 270.6688 271.0656
23/32 0.71	375 3125 875 34375	17.4625 17.8594 18.2562 18.6531	42.8625 43.2594 43.6562 44.0531	68.2625 68.6594 69.0562 69.4531	93.6625 94.0594 94.4562 94.8531	119.0625 119.4594 119.8562 120.2531	144.4625 144.8594 145.2562 145.6531	169.8625 170.2594 170.6562 171.0531	195.2625 195.6594 196.0562 196.4531	220.6625 221.0594 221.4562 221.8531	246.0625 246.4594 246.8562 247.2531	271.4625 271.8594 272.2562 272.6531
25/32 0.78	5625	19.0500 19.4469 19.8438 20.2406	44.4500 44.8469 45.2438 45.6406	69.8500 70.2469 70.6438 71.0406	95.2500 95.6469 96.0438 96.4406	120.6500 121.0469 121.4438 121.8406	146.0500 146.4469 146.8438 147.2406	171.4500 171.8469 172.2438 172.6406	196.8500 197.2469 197.6438 198.0406	222.2500 222.6469 223.0438 223.4406	247.6500 248.0469 248.4438 248.8406	273.0500 273.4469 273.8438 274.2406
27/32 0.84	25 28125 1375 59375	20.6375 21.0344 21.4312 21.8281	46.0375 46.4344 46.8312 47.2281	71.4375 71.8344 72.2312 72.6281	96.8375 97.2344 97.6312 98.0281	122.2375 122.6344 123.0312 123.4281	147.6375 148.0344 148.4312 148.8281	173.0375 173.4344 173.8312 174.2281	198.4375 198.8344 199.2312 199.6281	223.8375 224.2344 224.6312 225.0281	249.2375 249.6344 250.0312 250.4281	274.6375 275.0344 275.4312 275.8281
29/32 0.90	0625	22.2250 22.6219 23.0188 23.4156	47.6250 48.0219 48.4188 48.8156	73.0250 73.4219 73.8188 74.2156	98.4250 98.8219 99.2188 99.6156	123.8250 124.2219 124.6188 125.0156	149.2250 149.6219 150.0188 150.4156	174.6250 175.0219 175.4188 175.8156	200.0250 200.4219 200.8188 201.2156	225.4250 225.8219 226.2188 226.6156	250.8250 251.2219 251.6188 252.0156	276.2250 276.6219 277.0188 277.4156
31/32 0.96	53125	23.8125 24.2094 24.6062 25.0031	49.2125 49.6094 50.0062 50.4031	74.6125 75.0094 75.4062 75.8031	100.0125 100.4094 100.8062 101.2031	125.4125 125.8094 126.2062 126.6031	150.8125 151.2094 151.6062 152.0031	176.2125 176.6094 177.0062 177.4031	201.6125 202.0094 202.4062 202.8031	227.0125 227.4094 227.8062 228.2031	252.4125 252.8094 253.2062 253.6031	277.8125 278.2094 278.6062 279.0031

inches

Supplementary table 7 Cleanliness classes

JIS B9920/ISO14644-1 Upper limit to the concentration of individual cleanliness classes (particle count/m³) (Comparison with the U.S. federal standards)

Cleanliness class									
FED 209D (particle count/ft ³)	_		class 1	class 10	class 100	class 1 000	class 1 000	class 100 000	_
Particulate diameter (µm)	class 1	class 2	class 3	class 4	class 5	class 6	class 7	class 8	class 9
0.1	10	100	1 000	10 000	100 000	1 000 000			—
0.2	2	24	237	2 370	23 700	237 000			_
0.3		10	102	1 020	10 200	102 000			_
0.5		4	35	352	3 520	35 200	352 000	3 520 000	35 200 000
1.0			8	83	832	8 320	83 200	832 000	8 320 000
5.0					29	293	2 930	29 300	293 000
Particle diameter range	0.1 to 0.2	0.1 to 0.5	0.1 t	o 1.0	0.1 to 5.0			0.5 to 5.0	

Remarks 1) The U.S. Federal Standards are no longer in effect; however, in Japan and in the U.S., the old Federal Standard (FED-

STD-209D) is commonly referred to.
2) The FED-STD-209D specifies that Class 100 limits the count of particles 0.5 μm or greater in diameter) to 100 (3 520 per cubic meter). This corresponds to Class 5 in the Japanese Industrial Standard and ISO Standard. (1 m³ = 35.3 ft³)

4

JTEKT CORPORATION

Company name		Division, department, or section
Name of staff member in charge	Phone	Email address

Koyo Extreme Special Environment Specification Sheet for **EXSEV** Bearings and/or Ceramic Bearings

Note: For the selection of the most suitable bearing, this sheet must be completed in as much detail as possible. Date

Bearing Dimensions	Bearing number			(1	f unknown) Bore dia.		$\stackrel{\rm Outside}{\times}$ dia.	$\times^{\rm Width}$	(mm)
				Us	sage location :				
Application	◯ For new d	esign	O For repair (re	eplacement)		r repair (r	edesign)		
Special environment required performance)	□ Clean	Vacuum	Corrosion resistance	High temperature	Non- magnetism	🗌 Insul	ation 🗌 High spe	eed Others	()
-	Operation	O Dual-directior	nal 🔿 Continuous			0	24 h/day		
		○ Inner ring r	otating Oute	er ring rotating		0	h/day		
	Rotation	min.		(min ⁻¹)	Running time	Otl	her ()
	speed	max.		(min ⁻¹)		-	t service life>	_	
		Normal		(min ⁻¹)	_		ss than 1 year o 5 years	\bigcirc 1 to 3 years \bigcirc More than 5 y	/ears
Operating condition		Radial		(N)			Materia	I Tolerance	Surface roughnes
	Load	Axial		(N)	Fitting	Sha	ft		
		Moment		(N)		Hous	ing		
	Environment	Temperature (°C)	Normal m	in.	max.	Humidity	y (%)	Cleanliness (Class)	
		Pressure (Pa)	×10	0 0	Atmospheric	Atmospheri	c⇔Vacuum ⊖V	'acuum 🔿 Other ()
		Corrosive atmosphere	○ Present ○ No	ot present (If you s	selected "present"	Gas :		Liquid :	
		Usage of great	se or oil		○ Not possibl		ossible but not de	esirable	
	Other								
Quantity		/u	nit (line)		Required quantit	ty from this	order		
	Bearing material								
	Lubrication						Lubricant		
Present	Bearing replacement frequency								
condition	Failure mode(s)								
Cross sectional sketch of application and additional comments									
Cross and a									

• With this sheet, the EXSEV and/or ceramic bearings most suitable for the operating conditions can be selected.

Company name		Division, department, or secti
Name of staff member in charge	Phone	Email

Koyo Extreme Special Environment Specification Sheet for Linear Motion Bearings

Bearing Dimensions	Bearing number						
Application							Usa
Application Special environment (required performance)	○ For new de	esign	\bigcirc For repair (replacement)				
Special environment (required performance)	🗌 Clean	U Vacuum		Corrosi resista		☐ Hig tem	h Iperature
		min.				(mm	/s)
	Linear	max.			(mm/s)		
	motion speed	Normal				(mm	/s)
		Start-up time					
Operating condition	Movement distance						(mm)
		Bearing loaded	(N)				
	Load	Moment (N)	nt (N)				
		Other					
	-	Temperature (°C)	Normal		n	nin.	
		Pressure (Pa)			$\times 10$	0	\circ
		Corrosive atmosphere:	0	Present	\bigcirc No	ot prese	ent (If you
		Usage of grea	se or	r oil		⊖ Po	ossible
	Other						
Quantity		/u	ınit (l	ine)			
	Bearing material						
	Lubrication						
Present	Bearing replacement frequency						
condition	Failure mode(s)						
ç							
Cross sectional sketch of application and additional comments							
Pross se							
0.0							

JTEKT
JTEKT CORPORATION

pleted in as much detail as possible. Date							
age location :							
⊖ For	repair (redesig	gn)					
Non- magnetism	Insulation	High speed	Others	()			
	○ 24 h/	/day					
h/day							
Running time	tunning time Other ()						
_	<target serv<="" td=""><td></td><td></td><td></td></target>						
	 Less tha 3 to 5 ye 	n 1 year C ars C) 1 to 3 years) More than 5 y	ears			
Drive system							
max.	Humidity (%)		Cleanliness (Class)				
Atmospheric O	Atmospheric ⇔ V	acuum 🔿 Vacuu	m 🔿 Other ()			
selected "present"	Gas	L	.iquid :)			
O Not possible		but not desiral	ole				
Required quantit	ty from this order						
1		1					
		Lubricant					
		II					

MEMO

GLOBAL NETWORK

For further information on our products, please contact your nearest office.

OFFICES

KOYO CANADA INC. 3800A Laird Road, Units 4 & 5 Mississauga, Ontario L5L 0B2,

CANADA TEL : 1-905-820-2090

FAX : 1-877-326-5696

JTEKT NORTH AMERICA CORPORATION

-Regional Headquarters-7 Research Drive Greenville, SC 29607, U.S.A. TEL : 1-864-770-2100 FAX : 1-864-770-2399

-Plymouth Office-

47771 Halyard Drive, Plymouth, MI 48170, U.S.A. TEL : 1-734-454-1500 FAX : 1-734-454-7059 -Chicago Office-316 W University Dr., Arlington Heights, IL 60004, U.S.A. TEL : 1-847-253-0340

FAX: 1-847-253-0540

KOYO MEXICANA, S.A. DE C.V.

Av. Insurgentes Sur No. 2376-505 Col. Chimalistac, Alcaldía Álvaro Obregón C.P. 01070, Ciudad de México, México. TEL : 52-55-5207-3860 FAX : 52-55-5207-3873

KOYO LATIN AMERICA, S.A. Edificio Banco del Pacifico, Planta Baja, Calle Aquilino de la Guardia y Calle 52, Panama, REPUBLICA DE PANAMA TEL : 507-208-5900 FAX : 507-264-2782/507-269-7578

KOYO ROLAMENTOS DO BRASIL LTDA. AV. PIRAPORINHA, 251 GALPAO 4, MEZANINO - PLANALTO CEP: 09891-001 SÃO BERNARDO DO CAMPO - SÃO PAULO - BRASIL TEL: 55-11-3372-7500

KOYO MIDDLE EAST FZCO 6EA 619, Dubai Airport Free Zone, P.O.Box 54816, Dubai, U.A.E. TEL : 971-4-299-3600 FAX : 971-4-299-3700

KOYO BEARINGS INDIA PVT. LTD.

M3M Cosmopolitan, C-101-108 & 114-117 First Floor, Golf Course Extension Road, Sector-66, Gurugram122 022, Haryana, INDIA TEL : 91-124-4264601/03 FAX : 91-124-4288355

JTEKT (THAILAND) CO., LTD.

172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao, 24180, THAILAND TEL : 66-38-533-310~7 FAX: 66-38-532-776

PT. JTEKT INDONESIA

JI. Surya Madya Plot I-27b, Kawasan Industri Surya Cipta, Kutanegara, Ciampel, Karawang Jawa Barat, 41363 INDONESIA TEL: 62-267-8610-270 FAX: 62-267-8610-271

KOYO SINGAPORE BEARING (PTE.) LTD. 24 Penjuru Road #06-01 CWT Commodity Hub,

SINGAPORE 609128 TEL : 65-6274-2200 FAX : 65-6862-1623

JTEKT KOREA CO., LTD. 13F Seong-do Bldg, 207, Dosan-daero, Gangnam-gu, Seoul, 06026, KOREA TEL: 82-2-549-7922 FAX : 82-2-549-7923

JTEKT (CHINA) CO., LTD. Room A2, Floor 25, V-Capital Building, No.333 Xianxia Road, Changning District, Shanghai, CHINA TEL : 86-21-5178-1000 FAX: 86-21-5178-1008

KOYO AUSTRALIA PTY. LTD.

Unit1 /17 Stanton Road, Seven Hills, NSW, 2147, AUSTRALIA TEL: 61-2-8719-5300 FAX: 61-2-8719-5333

JTEKT EUROPE BEARINGS B.V.

Markerkant 13-01, 1314 AL Almere, THE NETHERLANDS TEL : 31-36-5383333 FAX : 31-36-5347212 -Benelux Branch Office-

Energieweg 10a, 2964 LE Groot-Ammers, THE NETHERLANDS TEL : 31-184-606800 FAX : 31-184-606857

KOYO KULLAGER SCANDINAVIA A.B.

Kanalvägen 5 A. 194 61 Upplands Väsby, SWEDEN TEL : 46-8-594-212-10 FAX: 46-8-594-212-29

KOYO (U.K.) LIMITED Whitehall Avenue, Kingston, Milton Keynes, MK10 0AX, UNITED KINGDOM TEL: 44-1908-289300 FAX: 44-1908-289333

KOYO DEUTSCHLAND GMBH

Bargkoppelweg 4, D-22145 Hamburg, GERMANY TEL : 49-40-67-9090-0 FAX: 49-40-67-9203-0

KOYO FRANCE S.A. 1 rue François Jacob, 92500, Rueil-Malmaison, FRANCE TEL : 33-1-4139-8000 FAX : 33-1-3998-4230

KOYO IBERICA, S.L.

Centro de Negocios Calle La Mancha no.1, oficina 1.2 28823 Coslada, Madrid, SPAIN TEL : 34-91-329-0818 FAX : 34-91-747-1194

KOYO ITALIA S.R.L.

Via Stephenson 43/a 20157 Milano, ITALY TEL: 39-02-2951-0844 FAX · 39-02-2951-0954 -Romanian Representative Office-24, Lister Street, ap. 1, sector 5, Bucharest, ROMANIA TEL : 40-21-410-4182 FAX: 40-21-410-1178

PUBLISHER JTEKT CORPORATION NAGOYA HEAD OFFICE No.7-1, Meieki 4-chome, Nakamura-ku, Nagoya, Aichi 450-8515, JAPAN — JTEKT CORPORATION OSAKA HEAD OFFICE No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN — — TEL 81-6-6271-8451 FAX 81-6-6245-3712 Sales & Marketing Headquarters No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN — - TEL:81-6-6245-6087 FAX:81-6-6244-9007

www.jtekt.co.jp

☆ The contents of this catalog are subject to change without prior notice. Every possible effort has been made to ensure that the data herein is correct; however, JTEKT cannot assume responsibility for any errors or omissions.

Koyo TOYODA

Reproduction of this catalog without written consent is strictly prohibited.

