

Ball & Roller Bearings

JTEKT CORPORATION

		Коу
1 Structures and types A 1 4 Selection of arrangement A 20 7 Tolerances A 58 2 Outline of selection A 14 5 Selection of dimensions A 24 8 Limiting speed A 84 3 Selection of type A 16 Boundary dimensions and bearing numbers A 52 9 Fits A 86	10 Internal A 99 13 Materials A 130 16 Failures 11 Preload A 112 14 Shaft and housing design A 133 A 152 12 Lubrication A 117 15 Handling A 141	Technical section
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Extra-small & miniature B 40 (flanged type B 46) Double-row B 52 [42, 43]	Deep groove ball
Single-row B 62 (79, 70, 72, 73, 74) Matched pair B 90 (DB, DF) 22, 23, 52, 53 (32, 33, 52, 53) (522RS, 532RS)		Angular contact ball
Open type B 126 Sealed type B 132 Extended inner ring type B 134 [12, 22] [13, 23] [222RS] [112, 113]	Adapter assemblies B 136	Self-aligning ball
Image: NU	NN NNU Double-row B 178 (NN30 (NNU49)	Cylindrical roller bearings
Metric series B 194 Inch series B 224 (329, 320, 330, 331, 302, 322 (332, 303, 303D, 313, 323, IS0) TDO type B 268 (462, 463, 46T302, 46T322) (46T303, 46T303D, 46T323)	TDI type B 284 [452, 453]	Tapered roller bearings
Image: Weight of the system Adapter assemblies B 318 R, RR RZ RHA	Withdrawal sleeves B 326	Spherical roller bearings bearings
Single direction ··· B 338 Double direction ··· B 348 (511, 512, 513, 514 532, 533, 534 532, 533, 534 532U, 533U, 534U	B 356 [292, 293, 294]	Thrust ball, Spherical thrust roller bearings
Needle roller Drawn cup type Heavy-duty type Thrust needle roller Thrust cylindlical and cage ass'y Metric ··· B 414 Metric ··· B 432 Metric ··· B 444 roller ··· B 448 Metric ··· B 380 Inch ··· B 424 Inch ··· B 440 Inch ··· B 452 [Inch ··· B 408 Image: Comparison of the second seco	Combined ··· B 460, B 462 Inner ring [Ball thrust series] (Cylindlical roller) ··· B 466 (Miniature one-way clutches) ··· B 482	Needle roller
[Products Introduction]		
· Ball bearing units		Ball bearing units
Linear ball bearings C 31 Bearings for machine tool spindles for support of axial loading) C 59 Fu	recision ball screw support bearings · Rolling mill nd bearing units ········· C 61 roll neck bearings ······ C 65 ull complement type cylindrical roller earings for crane sheaves ······ C 63	Special purpose bearings
	roducts introduction in apan Group Companies D 19	Introduction of products, pamphlets and catalogs
· Supplementary tables ······ E 1 – E 28		Supplementary tables
• Index F 1 - F 18		Index

Koyo Publication of Rolling Bearing Catalog

Today's technology-based society, in order to utilize the earth's limited resources effectively and protect the environment, must strive to develop new technologies and alternate energy sources, and in that connection it continues to pursue new targets in various fields. To achieve such targets, technically advanced and highly functional rolling bearings with significantly greater compactness, lighter weight, longer life and lower friction as well as higher reliability during use in special environments are sought.

This new-edition catalog is based on the results of wide-ranging technical studies and extensive R&D efforts and will enable the reader to select the optimal bearing for each application.

JTEKT is confident that you will find this new catalog useful in the selection and use of rolling bearings. JTEKT is grateful for your patronage and look forward to continuing to serve you in the future.

★The contents of this catalog are subject to change without prior notice. Every possible effort has been made to ensure that the data herein is correct; however, JTEKT cannot assume responsibility for any errors or omissions.

Reproduction of this catalog without written consent is strictly prohibited

Contents

9

Technical section

1	Rolling bearing structures and types
	1-1 StructureA 1
	1-2 TypeA 1
2	Outline of bearing selectionA 14
3	Selection of bearing typeA 16
4	Selection of bearing arrangementA 20
5	Selection of bearing dimentions
	5-1 Bearing service lifeA 24

0-1	Bearing service lifeA 24
5-2	Calculation of service lifeA 24
5-3	Calculation of loadsA 32
5-4	Dynamic equivalent loadA 38

- 5-5 Basic static load rating and static equivalent load......A 42
- 5-6 Allowable axial load for cylindrical roller bearings......A 44
- 5-7 Applied calculation examples ... A 46

6 Boundary dimensions and bearing numbers

- 6-1 Boundary dimensions......A 52
- 6-2 Dimensions of snap ring grooves and locating snap ringsA 53
- 6-3 Bearing number.....A 54

7 Bearing tolerances

- 7-1 Tolerances and tolerance classes for bearingsA 58
- 7-2 Tolerance measuring method...A 80

8 Limiting speed

- 8-1 Correction of limiting speed......A 84
- 8-2 Limiting speed for sealed ball bearings...A 85
- 8-3 Considerations for high speed ... A 85
- 8-4 Frictional coefficient (refer.).....A 85

Bearing fits

9-1	Purpose of fitA 86	
9-2	Tolerance and fit for shaft & housingA 86	
9-3	Fit selectionA 87	
9-4	Recommended fitsA 90	

10 Bearing internal clearance

 10.1	Selection of
10-1	internal clearanceA 99
10-2	Operating clearanceA 100

11 Preload

11-1	Purpose of preloadA	112
11-2	Method of preloadingA	112
11-3	Preload and rigidityA	113
11-4	Amount of preloadA	114

12 Bearing lubrication

12-1	Purpose and method of lubricationA 117
12-2	LubricantA 124

13 Bearing materials

- 13-1 Bearing rings and rolling elements materials.....A 13013-2 Materials used for cagesA 132
- **14** Shaft and housing design

-		
	14-1	Accuracy and roughness of shafts and housingsA 133
		or shans and housingsA 155
	14-2	Mounting dimensionsA 134
	14-3	Shaft designA 136
	14-4	Sealing devicesA 137

15 Handling of bearings

15-1	General instructionsA 141
15-2	Storage of bearingsA 141
15-3	Bearing mountingA 141
15-4	Test runA 146
15-5	Bearing dismountingA 148
15-6	Maintenance and inspection of bearingsA 150
15-7	Methods of analyzing bearing failuresA 151

16 Examples of bearing failures......A 152

[Standard bearings]

Deep groove ball bearingsB	
Angular contact ball bearings B 54	
Self-aligning ball bearingsB 124	
Cylindrical roller bearings B 138	
Tapered roller bearingsB 184	
Spherical roller bearings B 290	
Thrust ball bearings B 336	
Spherical thrust roller bearings B 354	
Needle roller bearings B 362	
Ball bearing units	

[Special purpose bearings]

.

.

K-series super thin section ball bearings C	1
Bearings for railway rolling stock axle journalsC	21
Linear ball bearings C	31
Locknuts, lockwashers & lock plates C	45
EXSEV & Ceramic bearing series C	57
Bearings for machine tool spindles (for support of axial loading)C	59
Precision ball screw support bearings and bearing unitsC	61
Full complement type cylindrical roller bearings for crane sheaves C Rolling mill roll neck bearings C	

[Introduction of products, pamphlets and catalogs]

Introduction of pamphlets and catalogs D	
Products introduction of JTEKTD	13
Products introduction in Japan Group CompaniesD	19

Supplementary tables

1	Boundary dimensions of radial bearings E	1
2	Boundary dimensions of tapered roller bearingsE	5
3	Boundary dimensions of single direction thrust bearings E	7
4	Boundary dimensions of double direction thrust ball bearingsE	9
5	Dimension of snap ring grooves and locating snap rings E	11
6	Shaft tolerances E	15
7	Housing bore tolerances E	17
8	Numerical values for standard tolerance grades IT E	19
9	Greek alphabet list E	20
10	Prefixes used with SI units E	20
11	SI units and conversion factors E	21
12	Inch/millimeter conversionE	25
13	Steel hardness conversion E	26
14	Surface roughness comparisonE	27
15	Viscosity conversion E	28

Index

Bearing No. indexF	1
Term indexF	16

Koyo

1. Rolling bearing structures and types

1-1 Structure

Rolling bearings (bearings hereinafter) normally comprise bearing rings, rolling elements and a cage. (see Fig. 1-1)

Rolling elements are arranged between inner and outer rings with a cage, which retains the rolling elements in correct relative position, so they do not touch one another. With this structure, a smooth rolling motion is realized during operation.

Bearings are classified as follows, by the number of rows of rolling elements : single-row, double-row, or multi-row (triple- or four-row) bearings.

Deep groove ball bearing Tapered roller bearing

Thrust ball bearing

Note) In thrust bearings inner and outer rings and also called "shaft race" and "housing race" respectively. The race indicates the washer specified in JIS.

Fig. 1-1 Bearing structure

1) Bearing rings

The path of the rolling elements is called the raceway; and, the section of the bearing rings where the elements roll is called the raceway surface. In the case of ball bearings, since grooves are provided for the balls, they are also referred to as raceway grooves.

The inner ring is normally engaged with a shaft; and, the outer ring with a housing.

2) Rolling element

Rolling elements may be either balls or rollers. Many types of bearings with various shapes of rollers are available.

- Ball
- \square Cylindrical roller ($L_{\rm W} \leq 3 D_{\rm W}$)*
- Long cylindrical roller $(3D_W \leq L_W \leq 10D_W, D_W > 6 \text{ mm})^*$
- \blacksquare Needle roller (3 $D_{W} \leq L_{W} \leq 10D_{W}, D_{W} \leq 6 \text{ mm})^{*}$
- Tapered roller (tapered trapezoid)
- Convex roller (barrel shape)

* ($L_{\rm W}$: roller length (mm))

 $D_{\rm w}$: roller diameter (mm)

3) Cage

The cage guides the rolling elements along the bearing rings, retaining the rolling elements in correct relative position. There are various types of cages including pressed, machined, molded, and pin type cages.

Due to lower friction resistance than that found in full complement roller and ball bearings, bearings with a cage are more suitable for use under high speed rotation.

1-2 Type

The contact angle (α) is the angle formed by the direction of the load applied to the bearing rings and rolling elements, and a plan perpendicular to the shaft center, when the bearing is loaded.

Bearings are classified into two types in accordance with the contact angle (α).

- Radial bearings ($0^{\circ} \le \alpha \le 45^{\circ}$) ... designed to accommodate mainly radial load.
- Thrust bearings ($45^{\circ} < \alpha \leq 90^{\circ}$) ... designed to accommodate mainly axial load.

Rolling bearings are classified in Fig. 1-2, and characteristics of each bearing type are described in Tables 1-1 to 1-13.

Table 1-1 Deep groove ball bearings

			Single-ro	w				Double-row
Open type	Shielded type	Non-contact sealed type	Contact sea type	li	Extremely ight contact sealed type	With locatin snap ring	ng Flange type	ed
	ZZ	2RU	2RS 2	RK	2RD	NR	Suitable extra-sm or minia bearing	nall
680 6700, 6800	,,		620, 630, (ML 200, 6300, 640	,	small, minia	ature beari	ng	4200 4300
widely us Radial loa be accom Suitable f noise and Sealed be seals are grease wi	ed in a variet ad and axial I modated. or operation I low vibration earings emplo filled with the nen manufac ided cages] f	oying steel sh e appropriate stured. Pressed cage copper alloy c Automobile tric equipmen	s. irections can I, with low ields or rubber	on the simple map type machined r wheels, t tors, electr	e outer ring e positionir single-row d cage, syn ransmissio ic applianc	, S type thetic resir ns, electric es for dom	double-rov molded ca devices nestic use	v), ige
			equipment, ra equipment, e		•	•		ent, agricultural
Outer rin chamfe Outer rin raceway Inner ring raceway Inner cham	r g g tring ter	Bore diameter → Bore diameter	Groov should diameter cage Ontside	ve surf	F	e ace Press cage (S typ		Filling slo
(ribbon type		<u>,</u>					Reference	
		, Loc	ating snap ring		Connot	ation Bo	re diameter	Outside diamete
			5		Miniature		-	Under 9
			- Snap ring gro	ove	Extra-sm	all	Under 10	9 or more
					Small siz		0 or more	80 or less
					Small siz Medium s Large siz	size	0 or more -	80 or less 80 – 180 180 – 800

Double-row Single-row Matched pair For high-Back-to-back Face-to-face Tandem arrangement speed use arrangement arrangement ØC ÐC (With pressed cage) (With machined cage) HAR DF DB DT (With filling slot) 7400 7000, 7200, 7300, Contact angle 30° 3200 5200 7000B, 7200B, 7300B, 7400B 40° 3300 5300 7900C, 7000C, 7200C, 7300C Contact Contact 15° angle 32° angle 24° HAR900C, HAR000C Bearing rings and balls possess their own contact angle which is normally Axial load in both directions and radial load 15°. 30° or 40°. Larger contact angle higher resistance against axial load can be accommodated Smaller contact angle ... more advantageous for high-speed rotation by adapting a structure pairing two single-row Single-row bearings can accommodate radial load and axial load in one angular contact ball direction. bearings back to back. DB and DF matched pair bearings and double-row bearings can accommodate For bearings with no radial load and axial load in both directions. filling slot, the sealed DT matched pair bearings are used for applications where axial load in one type is available. direction is too large for one bearing to accept. HAR type high speed bearings were designed to contain more balls than DO 574 standard bearings by minimizing the ball diameter, to offer improved performance in machine tools. ΖZ 2RS Angular contact ball bearings are used for high accuracy and high-speed (Shielded) (Sealed) operation. [Recommended cages] Pressed cage (conical type ... single-row : S type, snap type ... double-row), copper alloy or phenolic resin machined cage, synthetic resin molded cage [Main applications] Single-row : machine tool spindles, high frequency motors, gas turbines, centrifugal separators, front wheels of small size automobiles, differential pinion shafts Double-row : hydraulic pumps, roots blowers, air-compressors, transmissions, fuel injection pumps, printing equipment

Koyo

Table 1-2 Angular contact ball bearings

Extra-large size

Over 800

Table 1-3 Four-point contact ball bearings

One-piece type Two-piece inner ring Two-piece outer ring

- Radial load and axial load in both directions can be accommodated.
- A four-point contact ball bearing can substitute for a face-to-face or back-to-back arrangement of angular contact ball bearings.
- Suitable for use under pure axial load or combined radial and axial load with heavy axial load.
- This type of bearing possesses a contact angle (α) determined in accordance with the axial load direction. This means that the bearing ring and balls contact each other at two points on the lines forming the contact angle.

[Recommended cage] Copper alloy machined cage

[Main applications]

Motorcycle : Transmission, driveshaft pinion-side Automobile : Steering, transmission

- Spherical outer ring raceway allows selfalignment, accommodating shaft or housing deflection and misaligned mounting conditions.
- Tapered bore design can be mounted readily using an adapter.

Pressed cage (staggered type12, 13,							
	222RS, 232RS						
	snap type						
Power transmission shaft of wood working and							
spinning machines, plummer blocks							

Table 1-6 Machined ring needle roller bearings

	Single-row	Double-row					
With inner ring	Without inner ring	Sealed	With inner ring	Without inner ring			
NA4800 NA4900 NA6900 (NKJ, NKJS)	RNA4800 RNA4900 RNA6900 (NK, NKS, HJ)	NA49002RS _ (HJ.2RS)	NA6900 (d ≧ 32)	RNA6900 (Fw ≧ 40)			

In spite of their basic structure, which is the same as that of NU type cylindrical roller bearings, bearings with minimum ring sections offer space savings and greater resistance to radial load, by using needle rollers.

Bearings with no inner rings function using heat treated and ground shafts as their raceway surface.

[Recommended cage] Pressed cage

[Main applications] Automobile engines, transmissions, pumps, power shovel wheel drums, hoists, overhead traveling cranes, compressors

> (Reference) Many needle roller bearings other than those with machined ring are available. For details, refer to the pages for the needle roller bearing specification tables and the dedicated "Needle Roller Bearings" catalog (CAT No. B2020E), published separately.

Needle roller and cage assemblies

Drawn cup needle roller bearings

Stud type track roller (cam follower)

Table 1-7Tapered roller bearings

Single-row	Doub	le-row	Four-row
Flanged type	TDO type	TDI type	(Mainly used on rolling mill roll necks)
Standard (contact angle) (Inter mediate contact angle) (Steep (contact angle) 32900JR 30200JR 30200CR 30300DJ 32000JR 32200JR 32200CR 30300DJ 33000JR 32200JR 30300CR 31300JR 33100JR 30300JR 32300JR 32300CR 32300JR 32300JR 32300JR	46200 46200A 46300 46300A (46T)	45200 45300 (45T)	37200 47200 47300 (47T) (4TR)
 Tapered rollers assembled in the bearings guided by the inner ring back face rib. The raceway surfaces of inner ring and ou and the rolling contact surface of rollers a designed so that the respective apexes of a point on the bearing center line. Single-row bearings can accommodate ra and axial load in one direction, and double ings can accommodate radial load and ax both directions. This type of bearing is suitable for use uncload or impact load. 	an ter ring an re Th priverge at be Sir dial load se p-row bear- tial load in int Ite	d steep types, in ac gle (α). e larger the contact aring resistance to a nce outer ring and in parated from each c	ner ring assembly can be ther, mounting is easy. y the suffix "J" and "JR" are ationally.
[Recommended cages] Pressed cage, synth		8 1 1 8	
	ol spindles, construc	tion equipment, larg	
			Bearing width
Outer ring Same as contact angle Outer ring angle Outer ring angle Pressed cage of (window type) Anti-rotation pin hole Lubrication pin hole Overall width of inner ring Spacer	Load center	t angle (α) Roller sm end face Inner ring front face Outer ring small inside diameter Back fac Overall width of outer rings	Roller large end face end face inner ring back face rib Back face

This type can accommodate radial load and axial load in both directions, which makes it especially suitable for applications in which heavy load or impact load is applied.

• 1 : 30	(supplementary code K30	
· 1 : 12	(supplementary code K	··· Suitable for series other than 240 and 241.
		cation groove and anti-

ring. Lubrication holes and a lubrication groove can be provided on the inner ring, too.

[Recommended cages] Copper alloy machined cage, pressed cage

[Main applications] Paper manufacturing equipment, speed reducers, railway rolling stock axle journals, rolling mill pinion stands, table rollers, crushers, shaker screens, printing equipment, wood working equipment, speed reducers for various industrial uses, plummer blocks

A 10

Double direction Single direction With flat With spherical With aligning With spherical With aligning With flat back faces back faces back face seat race back faces seat races 51100 51200 53200 53200U 52200 54200 54200U 51300 53300 53300U 52300 54300 54300U 51400 53400 53400U 52400 54400 54400U This type of bearing comprises washer-shaped rings Single direction bearings accommodate axial with raceway groove and ball and cage assembly. load in one direction, and double direction bearings accommodate axial load in both directions. Races to be mounted on shafts are called shaft races (Both of these bearings cannot accommodate (or inner rings); and, races to be mounted into housradial loads.) ings are housing races (or outer rings). Central races of double direction bearings are Since bearings with a spherical back face are mounted on the shafts. self- aligning, it helps to compensate for mount-

[Recommended cages] Pressed cage, copper alloy or phenolic resin machined cage,

synthetic resin molded cage

Table 1-9 Thrust ball bearings

[Main applications] Automobile king pins, machine tool spindles

ing errors.

Housing race back face chamfer

[Remark] The race indicates the washer specified in JIS.

Table 1-10 Cylindrical roller thrust bearings

(811, 812, NTHA)

This type of bearing comprises washer-shaped rings (shaft and housing race) and cylindrical roller and cage assembly.

Crowned cylindrical rollers produce uniform pressure distribution on roller/raceway contact surface.

- Axial load can be accommodated in one direction.
- Great axial load resistance and high axial rigidity are provided.

Table 1-11 Needle roller thrust bearings

- and cage thrust assembly and a race, can be matched with a pressed thin race (AS) or machined thick race (LS, WS.811, GS.811).
- The non-separable type comprises needle roller and cage thrust assembly and a precision pressed race.
- Axial load can be accommodated in one direction.
- Due to the very small installation space required, this type contributes greatly to size reduction of application equipment.
- In many cases, needle roller and cage thrust assembly function by using the mounting surface of the application equipment, including shafts and housings, as its raceway surface.

Pressed cage, synthetic resin molded cage

Transmissions for automobiles, cultivators and machine tools

washer specified in JIS.

Table 1-12 Tapered roller thrust bearings

(THR)

- Both shaft and housing races and rollers have tapered surfaces whose apexes converge at a point on the bearing axis.
- Single direction bearings can accommodate axial load in one direction; and, double direction bearings can accommodate axial load in both directions.
- Double direction bearings are to be mounted such that their central race is placed on the shaft shoulder. Since this type is treated with a clearance fit, the central race must be fixed with a sleeve, etc.

[Recommended cages] Copper alloy machined cage

[Main applications] Single direction : crane hooks, oil excavator swivels Double direction : rolling mill roll necks

Table 1-13 Spherical thrust roller bearings

29300 29400 This type of bearing, comprising barrel-shaped convex rollers arranged at an angle with the

- convex rollers arranged at an angle with the axis, is self-aligning due to spherical housing race raceway; therefore, shaft inclination can be compensated for to a certain degree.
- Great axial load resistance is provided. This type can accommodate a small amount of radial load as well as heavy axial load.
- Normally, oil lubrication is employed.

Copper alloy machined cage

Hydroelectric generators, vertical motors, propeller shafts for ships, screw down speed reducers, jib cranes, coal mills, pushing machines, molding machines

Housing race

Currently, as bearing design has become diversified, their application range is being increasingly extended. In order to select the most suitable bearings for an application, it is necessary to conduct a comprehensive study on both bearings and the equipment in which the bearings will be installed, including operating conditions, the performance required of the bearings, specifications of the other components to be installed along with the bearings, marketability, and cost performance, etc. In selecting bearings, since the shaft diam-

eter is usually determined beforehand, the prospective bearing type is chosen based upon installation space, intended arrangement, and according to the bore diameter required. Next, from the bearing specifications are determined the service life required when compared to that of the equipment in which it is used, along with a calculation of the actual service life from operational loads.

Internal specifications including bearing accuracy, internal clearance, cage, and lubricant are also selected, depending on the application.

For reference, general selection procedure and operating conditions are described in Fig. 2-1. There is no need to follow a specific order, since the goal is to select the right bearing to achieve optimum performance.

Kovo

Fig. 2-1(1) Bearing selection procedure

3. Selection of bearing type

In selecting bearings, the most important thing is to fully understand the operating conditions of the bearings.

The main factors to be considered are listed in Table 3-1, while bearing types are listed in Table 3-2.

Table 3-1 (1) Selection of bearing type

Iter	ns to be considered	Selection method	Reference page No.	
1) Installation space	Bearing can be installed in target equipment	 When a shaft is designed, its rigidity and strength are considered essential; therefore, the shaft diameter, i.e., bore diameter, is deter- mined at start. For rolling bearings, since wide variety with dif- ferent dimensions are available, the most suit- able bearing type should be selected. (Fig. 3-1) 	A 52	
2) Load	Load magnitude, type and direction which applied (Load resistance of bearing) is specified in terms of the basic load rating, and its value is specified in the bearing specification table.)	 Since various types of load are applied to bearings, load magnitude, types (radial or axial) and direction of application (both directions or single direction in the case of axial load), as well as vibration and impact must be considered in order to select the proper bearing. The following is the general order for radial resistance ; deep groove ball bearings < angular contact ball bearings < cylindrical roller bearings < target tapered roller bearings < spherical roller bearings 	A 18 (Table 3-2) A 87	
3) Rotational speed	Response to rotational speed of equipment in which bearings will be installed (The limiting speed for bear- ing is expressed as allow- able speed, and this value is specified in the bearing specification table.	 Since the allowable speed differs greatly depend-ing not only upon bearing type but on bearing size, cage, accuracy, load and lubrication, all factors must be considered in selecting bearings. In general, the following bearings are the most widely used for high speed operation. (deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings 	A 18 (Table 3-2) A 84	
4) Running accuracy	Accurate rotation delivering required performance (Dimension accuracy and running accuracy of bearings are provided by JIS, etc.	 Performance required differs depending on equipment in which bearings are installed : for instance, machine tool spindles require high running accuracy, gas turbines require high speed rotation, and control equipment requires low friction. In such cases, bearings of tolerance class 5 or higher are required. The following are the most widely used bearings. (deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings) 	A 18 (Table 3-2) A 58	
5) Rigidity	Rigidity that delivers the bear- ing performance required When load is applied to a bearing, elastic deformation occurs at the point where its rolling elements contact the raceway surface. The higher the rigidity that bearings possess, the better they control elastic deforma- tion.	 In machine tool spindles and automobile final drives, bearing rigidity as well as rigidity of equipment itself must be enhanced. Elastic deformation occurs less in roller bearings than in ball bearings. Rigidity can be enhanced by providing preload. This method is suitable for use with angular contact ball bearings and tapered roller bearings. 	A 18 (Table 3-2) A 112	

		Koyo
Table 3-1 (2)	Selection of bearing type	
sidered	Selection method	Reference page No.
nditions which gnment (shaft used by load, inac-	 Internal load caused by excessive misalign- ment damages bearings. Bearings designed to absorb such misalignment should be selected. 	A 18 (Table 3-2)
aft and housing, ors) can affect ormance misalignment (in each bearing type d in the section bearing specifica- to facilitate deter-	• The higher the self-aligning capability that bearings possess, the larger the angular mis- alignment that can be absorbed. The following is the general order of bearings when compar- ing allowable angular misalignment : (cylindrical roller bearings < tapered roller- bearings < deep groove ball bearings, angu-	

A 18

(Table 3-2)

lar contact ball bearings < spherical roller-bearings, self-aligning ball bearings

ings and tapered roller bearings, with separable

Cylindrical roller bearings, needle roller bear-

inner and outer rings, are recommended for applications in which mounting and dismounting

· Use of sleeve eases the mounting of self-aligning ball bearings and spherical roller bearings

is conducted frequently.

with tapered bore.

Items to be considered

Operating conditions which

deflection caused by load, inac-curacy of shaft and housing,

tion table, to facilitate deter-

mination of the self-aligning capability of bearings.

Methods and frequency of

mounting and dismounting

dismounting required for periodic inspection

cause misalignment (shaft

mounting errors) can affect bearing performance Allowable misalignment (in angle) for each bearing type is described in the section before the bearing specifica-

6) Misalign-

(aligning capability)

7) Mounting

and

ment

Fig. 3-1 Radial bearing dimension series

 Table 3-2
 Performance comparison of bearing type

		Deep		r contact ba		Four-point	Self-	(Cylindrical r	oller bearing	g	Needle roller	Tapered r	oller bearing	Spherical		all bearing		Cylindrical	Needle	Tapered	Spherical	
		groove ball bearing	Single- row	Matched pair or	Double- row	contact ball bearing	aligning ball bearing	NU·N	NJ·NF	NUP · NH		bearing (machined ring type)	Single- row	Double-row, four-row	roller bearing	With flat	With aligning	direction angular con- tact thrust	roller thrust bearing	roller thrust	roller thrust	thrust roller	Reference page No.
			D	stack		 										back faces	seat race	ball bearing		bearing	bearing	bearing	
		P								F			P					r P		-			
	Radial load	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	×	×	×	×	×		_
resistance	Axial load	•	•	© ↔ *	© ↔ ∗			×			×	×	•	 ♣		○ ◆*	○ ← *	•	•		•		_
g	Combined load radial and axial	0	0	0	0	0		×			×	×	0	0		×	×	×	×	×	×		_
	Vibration or impact load							0	0	0	0	0	0	0	0				0	0	0	0	_
-	h speed ptability	0	0	0	0	0		0	0	0	0	0	0	0	0			0					A16 A84
	gh curacy	0	0	0		0		0			0		0			0		0					A16, 58 A117
lev	w noise /el/low 'que	0						0															A16
	igidity			0		0		0	0	0	0	0	0	0				0	0	0	0		A16
Mis	alignment	0		×	×	×	0							Δ	0	×	0	×	×	×	×	0	A17 Description before specification table
out	er and er ring parability	×	×	×	×	*	×		-						×		-		-	*	-	-	_
ement	Fixed side		÷		*			×	—		×	×	+										A20
ang	Free side																						A20
R	emarks		A pair of bearings mounted facing each other.	*DT arrange- ment is effective for one direction only.	*Filling slot type is effective for one direction only.	*Non- separable type is also available.							A pair of bearings mounted facing each other.			bearing effectiv				*Non-sep- arable type is also available.			_
	eference ge No.	A4 B4		A5 B54		<u>A6</u>	A6 B124		A7 B1			A8 B362	A B	9 184	A10 B290	A [.] B	11 336	_	A12 B448	A12 B444	A13	A13 B354	_

 \bigcirc Excellent \bigcirc Good \triangle Fair \times Unacceptable \iff Both directions \Leftarrow One direction only

Acceptable

Acceptable, but shaft shrinkage must be compensated for.

4. Selection of bearing arrangement

As bearing operational conditions vary depending on devices in which bearings are mounted, different performances are demanded of bearings. Normally, two or more bearings are used on one shaft. In many cases, in order to locate shaft positions in the axial direction, one bearing is mounted on the fixed side first, then the other bearing is mounted on the free side.

Table 4-1Bearings on fixed and free sides

	Features	Recommended bearing type	Example No.
Fixed side bearing	 This bearing determines shaft axial position. This bearing can accommodate both radial and axial loads. Since axial load in both directions is imposed on this bearing, strength must be considered in selecting the bearing for this side. 	Deep groove ball bearing Matched pair or stack angular contact ball bearing Double-row angular contact ball bearing Self-aligning ball bearing Cylindrical roller bearing with rib (NUP and NH types) Double-row tapered roller bearing Spherical roller bearing	
Free side bearing	 This bearing is employed to compensate for expansion or shrinkage caused by operating temperature change and to allow ajustment of bearing position. Bearings which accommodate radial load only and whose inner and outer rings are separable are recommended as free side bearings. In general, if non-separable bearings are used on free side, clearance fit is provided between outer ring and housing to compensate for shaft movement through bearings. In some cases, clearance fit between shaft and inner ring is utilized. 	 Separable types Cylindrical roller bearing (NU and N types) Needle roller bearing (NA type, etc.) Non-separable types Deep groove ball bearing Matched pair angular contact ball bearing (Back-to-back arrangement) Double-row angular contact ball bearing Self-aligning ball bearing Double-row tapered roller bearing (TDO type) Spherical roller bearing 	Examples 1–11
When fixed and free sides are not distin- guished	 When bearing intervals are short and shaft shrink-age does not greatly affect bearing operation, a pair of angular contact ball bearings or tapered roller bearings is used in paired mounting to accommodate axial load. After mounting, the axial clearance is adjusted using nuts or shims. 	Deep groove ball bearing Angular contact ball bearing Self-aligning ball bearing Cylindrical roller bearing (NJ and NF types) Tapered roller bearing Spherical roller bearing	Examples 12–16
Bearings for verti- cal shafts	 Bearings which can accommodate both radial and axial loads should be used on fixed side. Heavy axial load can be accommodated using thrust bearings together with radial bearings. Bearings which can accommodate radial load only are used on free side, compensating for shaft movement. 	 Fixed side Matched pair angular contact ball bearing (Back-to-back arrangement) Double-row tapered roller bearing (TDO type) Thrust bearing + radial bearing 	Examples 17 and 18

		Table 4-2 (1)	Example bearing arrangements	
Example	Bearing an Fixed side	rangement Free side	Recommended application	Application example
Ex. 1			 Suitable for high-speed operation; used for various types of applications. Not recommended for applications that have center displacement between bearings or shaft deflection. 	Medium size motors, air blowers
Ex. 2			 More suitable than Ex. 1 for operation under heavy load or impact load. Suitable also for high-speed operation. Due to separability, suitable for applications requiring interference of both inner and outer rings. Not recommended for applications that have center displacement between bearings or shaft deflection. 	Traction motors for rail- way rolling stock
Ex. 3			 Recommended for applications under heavier or greater impact load than those in Ex. 2. This arrangement requires high rigidity from fixed side bearings mounted back to back, with preload provided. Shaft and housing of accurate dimensions should be selected and mounted properly. 	Steel manufac- turing table rollers, lathe spindles
Ex. 4			 This is recommended for operation at high speed or axial load lighter than in Ex. 3. This is recommended for applications requiring interference of both inner and outer rings. Some applications use double-row angular con- tact ball bearings on fixed side instead of matched pair angular contact ball bearings. 	Motors
Ex. 5			 This is recommended for operations under relatively small axial load. This is recommended for applications requiring interference of both inner and outer rings. 	Paper manufac- turing calender rollers, diesel locomotive axle journals
Ex. 6			 This is recommended for operations at high speed and heavy radial load, as well as normal axial load. When deep groove ball bearings are used, clear- 	Diesel locomotive transmissions

Table 4-2 (1) Example bearing arrangements

Koyo

Ex. 7

load as well as radial load.

ance must be provided between outside diameter and housing, to prevent application of radial load.

Pumps,

automobile

transmissions

° This arrangement is most widely employed.

• This arrangement can accommodate partial axial

Bearing arrangement Application Example Recommended application Fixed side example Free side This is recommended for operations with relatively Worm gear speed reducers heavy axial load in both directions. \frown Some applications use matched pair angular con-Ex. 8 tact ball bearings on fixed side instead of doublerow angular contact ball bearings. This is the optimum arrangement for applications Steel manufacturing table with possible mounting errors or shaft deflection. H H roller speed Bearings in this arrangement can accommodate Ex. 9 reducers, partial axial load, as well as heavy radial load. overhead crane wheels This is optimum arrangement for applications with General industrial possible mounting errors or shaft deflection. equipment Ease of mounting and dismounting, ensured by counter shafts use of adaptor, makes this arrangement suitable -AOO Ex. 10 for long shafts which are neither stepped nor threaded. This arrangement is not recommended for applications requiring axial load capability. This is the optimum arrangement for applications Steel manufacturwith possible mounting errors or shaft deflection. ing table roll-This is recommended for operations under impact ers Ex. 11 load or radial load heavier than that in Ex. 10. This arrangement can accommodate partial axial load as well as radial load. Arrangement in which fixed and Application Recommended application free sides are not distinguished example This arrangement is most popular when applied to Small motors. small equipment operating under light load. small speed When used with light preloading, thicknessreducers. Ex. 12 small pumps adjusted shim or spring is mounted on one side of outer ring. This is suitable for applications in which rigidity is Machine tool spindles enhanced by preloading. This is frequently employed in applications requiring high speed operation under relatively large axial load. Back-to-back Back-to-back arrangement is suitable for Ex. 13 applications in which moment load affects operation. When preloading is required, care should be taken in preload adjustment. Face-to-face

Table 4-2 (2) Example bearing arrangements

Table 4-2 (3) Example bearing arrangements

Example	Arrangement in which fixed and free sides are not distinguished	Recommended application	Application example
Ex. 14	Back-to-back Face-to-face	 This is recommended for operation under impact load or axial load heavier than in Ex. 13. This is suitable for applications in which rigidity is enhanced by preloading. Back-to-back arrangement is suitable for applications in which moment load affects operation. When interference is required between inner ring and shaft, face-to-face arrangement simplifies mounting. This arrangement is effective for appli- cations in which mounting error is possible. When preloading is required, care should be taken in preload adjustment. 	Speed reducers, automobile wheels
Ex. 15		 This is recommended for applications requiring high speed and high accuracy of rotation under light load. This is suitable for applications in which rigidity is enhanced by preloading. Tandem arrangement and face-to-face arrangement are possible, as is back-to-back arrangement. 	Machine tool spindles
Ex. 16		 This arrangement provides resistance against heavy radial and impact loads. This is applicable when both inner and outer rings require interference. Care should be taken not to reduce axial internal clearance a critical amount during operation. 	Construction equipment final drive
A	pplication to vertical shafts	Recommended application	Application example
Ex. 17	Fixed side Free side	 This arrangement, using matched pair angular contact ball bearings on the fixed side and cylin- drical roller bearings on the free side, is suitable for high speed operation. 	Vertical motors, vertical pumps
Ex. 18	Free side	 This is recommended for operation at low speed and heavy load, in which axial load is heavier than radial load. Due to self-aligning capability, this is suitable for applications in which shaft runout or deflection occurs. 	Crane center shafts, vertical pumps

5. Selection of bearing dimensions

5-1 Bearing service life

When bearings rotate under load, material flakes from the surfaces of inner and outer rings or rolling elements by fatigue arising from repeated contact stress (ref. A 152).

This phenomenon is called flaking. The total number of bearing rotations until flaking occurs is regarded as the bearing "(fatique) service life".

"(Fatigue) service life" differs greatly depending upon bearing structures, dimensions, materials, and processing methods. Since this phenomenon results from fatigue distribution in bearing materials themselves, differences in bearing service life should be statistically considered.

When a group of identical bearings are rotated under the same conditions, the total number of revolutions until 90 % of the bearings are left without flaking (i.e. a service life of 90 % reliability) is defined as the basic rating life. In operation at a constant speed, the basic rating life can be expressed in terms of time.

In actual operation, a bearing fails not only because of fatigue, but other factors as well. such as wear, seizure, creeping, fretting, brinelling, cracking etc (ref. A 152, 16. Examples of bearing failures).

These bearing failures can be minimized by selecting the proper mounting method and lubricant, as well as the bearing most suitable for the application.

5-2**Calculation of service life**

5-2-1 Basic dynamic load rating C

The basic dynamic load rating is either pure radial (for radial bearings) or central axial load (for thrust bearings) of constant magnitude in a constant direction, under which the basic rating life of 1 million revolutions can be obtained. when the inner ring rotates while the outer ring is stationary, or vice versa. The basic dynamic load rating, which represents the capacity of a bearing under rolling fatigue, is specified as the basic dynamic radial load rating (C_r) for radial bearings, and basic dynamic axial load rating (C_a) for thrust bearings. These load ratings are listed in the specification table.

These values are prescribed by ISO 281/ 1990, and are subject to change by conformance to the latest ISO standards.

5-2-2 Basic rating life L_{10}

The basic rating life L_{10} is a service life of 90 % reliability when used under normal usage conditions for bearings of high manufacturing quality where the inside of the bearing is of a standard design made from bearing steel materials specified in JIS or equivalent materials.

The relationship between the basic dynamic load rating, dynamic equivalent load, and basic rating life of a bearing can be expressed using equation (5-1). This life calculation equation does not apply to bearings that are affected by factors such as plastic deformation of the contact surfaces of raceways and rolling elements due to extremely high load conditions (when P exceeds either the basic static load rating C_0 (refer to p. A 42) or 0.5C) or, conversely, to bearings that are affected by factors such as the contact surfaces of raceways and rolling elements slipping due to extremely low load conditions.

If conditions like these may be encountered. consult with JTEKT.

It is convenient to express the basic rating life in terms of time, using equation (5-2), when a bearing is used for operation at a constant speed: and, in terms of traveling distance (km), using equation (5-3), when a bearing is used in railway rolling stock or automobiles.

$\begin{pmatrix} Total \\ revolutions \end{pmatrix}$	$L_{10} = \left(\frac{C}{P}\right)^p \dots $
(Time)	$L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p$ (5-2)
(Running)	$L_{10s} = \pi D L_{10}$ (5-3)

where :

L_{10} : basic rating life	10 ⁶ revolutions
L_{10h} : basic rating life	h
$L_{10\mathrm{s}}$: basic rating life	km
P : dynamic equivalent l	oad N
	(refer to p. A 38.)
C: basic dynamic load r	ating N
n : rotational speed	\min^{-1}
p : for ball bearings	$\cdot p = 3$
for roller bearings	· <i>p</i> = 10/3
D : wheel or tire diameter	er mm

Accordingly, where the dynamic equivalent load is P, and rotational speed is n, equation (5-4) can be used to calculate the basic dynamic load rating C; the bearing size most suitable for a specified purpose can then be selected, referring to the bearing specification table.

The recommended bearing service life differs depending on the machines with which the bearing is used, as shown in Table 5-5, p. A 31.

[Ball bearing]

[Ball bearing]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Basic rate f_h 0.5 0.7 0.8 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 ing life L_{10h} L_{00h} 200 300 400 500 100 2000 30000 50000 100000
[Roller bearing]
Rotational f_n 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.19 0.18 speed n 10 20 40 50 70 100 200 300 500 1000 2000 3000 5000 10000

Basic rat-	$f_{\rm h}$	0.62											1.8 1.9 2.0		3.0	3.5		4.5 4	
Dasic Tal-					1					ll				Li Li Li Li Li	hele hele hele	L.L.L.L.L	والمراجل والمراجل		1
ing life				بليبيني	ببلبب	որող	اسابيت	huhuh			mp		արոր	ւլուրորությու		ստղու	փուրուի	արորոն	7
5	L_{10}	h 100	200	300	400	500	700	1 000)	2 00	0 3	8 000	5 000	10 000	20 000	30 000	50 000	100	000

[Reference] Rotational speed (n) and its coefficients (f_n) , and

A 25

service life coefficient ($f_{\rm b}$) and basic rating life ($L_{10\rm b}$)

$C = P \left(L_{10h} \times \frac{60n}{10^6} \right)^{1/p}$(5-4)

Koyo

[Reference]

The equations using a service life coefficient $(f_{\rm h})$ and rotational speed coefficient $(f_{\rm h})$ respectively, based on equation (5-2), are as follows :

$L_{10h} = 500 f_h^p$	 (5-5)
$L_{10h} = 500 f_{h}^{2}$	 (3-3)

Coefficient of service life :

$$f_{\rm h} = f_n \frac{C}{D} \qquad (5-6)$$

Coefficient of rotational speed :

For reference, the values of f_n , f_h , and L_{10h} can be easily obtained by employing the nomograph attached to this catalog, as an abbreviated method.

5-2-3 Correction of basic dynamic load rating for high temperature use and dimension stabilizing treatment

In high temperature operation, bearing material hardness deteriorates, as material compositions are altered. As a result, the basic dynamic load rating is diminished. Once altered, material composition is not recovered, even if operating temperatures return to normal.

Therefore, for bearings used in high temperature operation, the basic dynamic load rating should be corrected by multiplying the basic dynamic load rating values specified in the bearing specification table by the temperature coefficient values in Table 5-1.

Table 5-1 Temperature coefficient values

	Bearing emperature,	°C	125	150	175	200	250
٦ د	emperature		1	1	0.95	0.90	0.75

Since normal heat treatment is not effective in maintaining the original bearing size in extended operation at 120 °C or higher, dimension stabilizing treatment is necessary. Dimension stabilizing treatment codes and their effective temperature ranges are described in Table 5-2.

Since dimension stabilizing treatment diminishes material hardness, the basic dynamic load rating may be reduced for some types of bearings.

Table 5-2 Dimension stabilizing treatment

Dimension stabilizing treatment code	Effective temperature range
S0	Over 100°C, up to 150°C
S1	150°C 200°C
S2	200°C 250°C

5-2-4 Modified rating life L_{nm}

The life of rolling bearings was standardized as a basic rating life in the 1960s, but in actual applications, sometimes the actual life and the basic rating life have been guite different due to the lubrication status and the influence of the usage environment. To make the calculated life closer to the actual life, a corrected rating life has been considered since the 1980s. In this corrected rating life, bearing characteristic factor a_2 (a correction factor for the case in which the characteristics related to the life are changed due to the bearing materials, manufacturing process, and design) and usage condition factor a_3 (a correction factor that takes into account usage conditions that have a direct influence on the bearing life, such as the lubrication) or factor a_{23} formed from the interdependence of these two factors, are considered with the basic rating life. These factors were handled differently by each bearing manufacturer, but they have been standardized as a modified rating life in ISO 281 in 2007. In 2013. JIS B 1518 (dynamic load ratings and rating life) was amended to conform to the ISO.

The basic rating life (L_{10}) shown in equation (5-1) is the (fatigue) life with a dependability of 90 % under normal usage conditions for rolling bearings that have standard factors such as internal design, materials, and manufacturing quality. JIS B 1518:2013 specifies a calculation method based on ISO 281:2007. To calculate accurate bearing life under a variety of operating conditions, it is necessary to consider elements such as the effect of changes in factors that can be anticipated when using different reliabilities and system approaches. and interactions between factors. Therefore. the specified calculation method considers additional stress due to the lubrication status. lubricant contamination, and fatigue load limit $C_{\rm p}$ (refer to p. A 29) on the inside of the bearing. The life that uses this life modification factor a_{1SO} , which considers the above factors. is called modified rating life L_{nm} and is calculated with the following equation (5-8).

$L_{nm} = \alpha_1 \alpha_{ISO} L_{10}$(5-8)

In this equation,

 L_{nm} : Modified rating life 10⁶ rotations (This rating life has been modified for one of or a combination of the following: reliability of 90 % or higher, fatigue load limit, special bearing characteristics, lubrication contamination, and special operating conditions.

L₁₀ : Basic rating life 10⁶ rotations (reliability: 90 %)

*a*₁ : Life modification factor for reliability refer to section (1)

 $a_{\rm ISO}$: Life modification factor

······ refer to section (2)

[Remark]

When bearing dimensions are to be selected given L_{nm} greater than 90 % in reliability, the strength of shaft and housing must be considered.

(1) Life modification factor for reliability a_1

The term "reliability" is defined as "for a group of apparently identical rolling bearings, operating under the same conditions, the percentage of the group that is expected to attain or exceed a specified life" in **ISO 281**:2007. Values of a_1 used to calculate a modified rating life with a reliability of 90 % or higher (a failure probability of 10 % or less) are shown in Table 5-3.

Table 5-3Life modification factor
for reliability a_1

Reliability, %	$L_{n\mathrm{m}}$	a_1
90	L 10m	1
95	L_{5m}	0.64
96	$L_{ m 4m}$	0.55
97	$L_{ m 3m}$	0.47
98	$L_{ m 2m}$	0.37
99	$L_{1\mathrm{m}}$	0.25
99.2	$L_{0.8\mathrm{m}}$	0.22
99.4	$L_{0.6\mathrm{m}}$	0.19
99.6	$L_{0.4\mathrm{m}}$	0.16
99.8	$L_{ m 0.2m}$	0.12
99.9	$L_{0.1\mathrm{m}}$	0.093
99.92	$L_{0.08\mathrm{m}}$	0.087
99.94	$L_{ m 0.06m}$	0.080
99.95	$L_{0.05m}$	0.077

(2) Life modification factor $a_{\rm ISO}$

a) System approach

The various influences on bearing life are dependent on each other. The system approach of calculating the modified life has been evaluated as a practical method for determining life modification factor $a_{\rm ISO}$ (ref. Fig. 5-1). Life modification factor $a_{\rm ISO}$ is calculated with the following equation. A diagram is available for each bearing type (radial ball bearings, radial roller bearings). (Each diagram (Figs. 5-2 to 5-5) is a citation from **JIS B 1518**:2013.)

Koyo

Note that in practical use, this is set so that life modification factor $\alpha_{\rm ISO} \leq 50$.

$$a_{\rm ISO} = f\left(\frac{e_{\rm c} C_{\rm u}}{P}, \kappa\right)$$
 (5-9)

Bearing			Application	
Туре		rotational speed, load, sealing performance		
Bearing number (bearing dimens		usage temperature, kinematic viscosity of lubricating oil		
C, C_0		lubricating method, contamination particles		
Fatigue load	Viso	cosity	Contamination	
U U		ioκ	factor $e_{\rm c}$	
		•		
Life m	difica	♥ Hon fo	ator -	
Life mo	Juillea	lion ta	ctor $a_{\rm ISO}$	

Fig. 5-1 System approach

Fig. 5-2 Life modification factor $a_{\rm ISO}$ (Radial ball bearings)

Fig. 5-4 Life modification factor $a_{\rm ISO}$ (Thrust ball bearings)

Fig. 5-3 Life modification factor $a_{\rm ISO}$ (Radial roller bearings)

Fig. 5-5 Life modification factor $a_{\rm ISO}$ (Thrust roller bearings)

(Figs. 5-2 to 5-5 Citation from **JIS B 1518**:2013)

b) Fatigue load limit $C_{\rm u}$

For regulated steel materials or alloy steel that has equivalent quality, the fatigue life is unlimited so long as the load condition does not exceed a certain value and so long as the lubrication conditions, lubrication cleanliness class, and other operating conditions are favorable. For general high-quality materials and bearings with high manufacturing quality, the fatigue stress limit is reached at a contact stress of approximately 1.5 GPa between the raceway and rolling elements. If one or both of the material quality and manufacturing quality are low, the fatigue stress limit will also be low.

The term "fatigue load limit" $C_{\rm u}$ is defined as "bearing load under which the fatigue stress limit is just reached in the most heavily loaded raceway contact" in ISO 281:2007. and is affected by factors such as the bearing type, size, and material.

For details on the fatigue load limits of special bearings and other bearings not listed in this catalog, contact JTEKT.

c) Contamination factor $e_{\rm c}$

If solid particles in the contaminated lubricant are caught between the raceway and the rolling elements, indentations may form on one or both of the raceway and the rolling elements. These indentations will lead to localized increases in stress, which will decrease the life. This decrease in life attributable to the contamination of the lubricant can be calculated from the contamination level as contamination factor $e_{\rm c}$.

Koyo

 $D_{\rm pw}$ shown in this table is the pitch diameter of ball/roller set, which is expressed simply as $D_{\rm pw} = (D + d)/2$. (*D*: Outside diameter, *d*: Bore diameter)

For information such as details on special lubricating conditions or detailed investigations, contact JTEKT.

Table 5-4Values of contamination factor e_c

Contamination level	ec			
Containination level	$D_{\rm pw}$ < 100 mm	$D_{ m pw} \ge 100~ m mm$		
Extremely high cleanliness: The size of the particles is approximately equal to the thickness of the lubricant oil film, this is found in laboratory-level environments.	1	1		
High cleanliness: The oil has been filtered by an extremely fine filter, this is found with standard grease-packed bearings and sealed bearings.	0.8 to 0.6	0.9 to 0.8		
Standard cleanliness: The oil has been filtered by a fine filter, this is found with standard grease-packed bearings and shielded bearings.	0.6 to 0.5	0.8 to 0.6		
Minimal contamination: The lubricant is slightly contaminated.	0.5 to 0.3	0.6 to 0.4		
Normal contamination: This is found when no seal is used and a coarse filter is used in an environment in which wear debris and particles from the surrounding area penetrate into the lubricant.	0.3 to 0.1	0.4 to 0.2		
High contamination: This is found when the surrounding environment is considerably contaminated and the bearing sealing is insufficient.	0.1 to 0	0.1 to 0		
Extremely high contamination	0	0		

(Table 5-4 Citation from JIS B 1518:2013)

d) Viscosity ratio κ

The lubricant forms an oil film on the roller contact surface, which separates the raceway and the rolling elements. The status of the lubricant oil film is expressed by viscosity ratio κ , the actual kinematic viscosity at the operating temperature v divided by the reference kinematic viscosity v_1 as shown in the following equation.

A κ greater than 4, equal to 4, or less than

0.1 is not applicable.

For details on lubricants such as grease and lubricants with extreme pressure additives, contact JTEKT.

 $\kappa = \frac{V}{V_1}$

- v : Actual kinematic viscosity at the operating temperature; the viscosity of the lubricant at the operating temperature (refer to Fig. 12-3, p. A129)
- v_1 : Reference kinematic viscosity; determined according to the speed and pitch diameter of ball/roller set $D_{\rm pw}$ of the bearing (ref. Fig. 5-6)

5-2-5 Service life of bearing system comprising two or more bearings

Even for systems which comprise two or more bearings, if one bearing is damaged, the entire system malfunctions.

Where all bearings used in an application are regarded as one system, the service life of the bearing system can be calculated using the following equation,

where :

 $\begin{array}{l} L: \text{rating life of system} \\ L_1, L_2, L_3 & \cdots : \text{rating life of each bearing} \\ e: \text{constant} \\ \left(\begin{array}{c} e = 10/9 & \cdots & \text{ball bearing} \\ e = 9/8 & \cdots & \text{roller bearing} \end{array} \right) \end{array}$

```
The mean value is for a system using both ball and roller bearings.
```

[Example]

When a shaft is supported by two roller bearings whose service lives are 50 000 hours and 30 000 hours respectively, the rating life of the bearing system supporting this shaft is calculated as follows, using equation (5-11):

$$\frac{1}{L^{9/8}} = \frac{1}{50\ 000^{9/8}} + \frac{1}{30\ 000^{9/8}}$$

 $L\doteqdot$ 20 000 h

The equation suggests that the rating life of these bearings as a system becomes shorter than that of the bearing with the shorter life. This fact is very important in estimating bearing service life for applications using two or more bearings.

5-2-6 Applications and recommended bearing service life

Since longer service life does not always contribute to economical operation, the most suitable service life for each application and operating conditions should be determined. For reference, Table 5-5 describes recommended service life in accordance with the application, as empirically determined.

Table 5-5 Recommended bearing service life (reference)

Operating condition	Application	Recommended (h)
Short or intermittent operation	Household electric appliance, electric tools, agricultural equipment, heavy cargo hoisting equipment	4 000 - 8 000
Not extended duration, but stable operation required	Household air conditioner motors, construction equipment, conveyers, elevators	8 000 - 12 000
Intermittent but extended	Rolling mill roll necks, small motors, cranes	8 000 - 12 000
operation	Motors used in factories, general gears	12 000 - 20 000
	Machine tools, shaker screens, crushers	20 000 - 30 000
	Compressors, pumps, gears for essential use	40 000 - 60 000
Daily operation more than	Escalators	12 000 - 20 000
8 hr. or continuous extended operation	Centrifugal separators, air conditioners, air blowers, woodworking equipment, passenger coach axle journals	20 000 - 30 000
	Large motors, mine hoists, locomotive axle journals, railway rolling stock traction motors	40 000 - 60 000
	Paper manufacturing equipment	100 000 - 200 000
24 hr. operation (no failure allowed)	Water supply facilities, power stations, mine water discharge facilities	100 000 - 200 000

5-3 Calculation of loads

Loads affecting bearings includes force exerted by the weight of the object the bearings support, transmission force of devices such as gears and belts, loads generated in equipment during operation etc.

Seldom can these kinds of load be determined by simple calculation, because the load is not always constant.

In many cases, the load fluctuates, and it is difficult to determine the frequency and magnitude of the fluctuation.

Therefore, loads are normally obtained by multiplying theoretical values with various coefficients obtained empirically.

5-3-1 Load coefficient

Even if radial and axial loads are obtained through general dynamic calculation, the actual load becomes greater than the calculated value due to vibration and impact during operation.

In many cases, the load is obtained by multiplying theoretical values by the load coefficient.

Table 5-6 Values of load coefficient f_w

Operating condition	Application example	$f_{\rm w}$
Operation with little vibration or impact	Motors Machine tools Measuring instrument	1.0 – 1.2
Normal operation (slight impact)	Railway rolling stock Automobiles Paper manufacturing equipment Air blowers Compressors Agricultural equipment	1.2 – 2.0
Operation with severe vibration or impact	Rolling mills Crushers Construction equipment Shaker screens	2.0 - 3.0

$F = f_{\rm w} \cdot F_{\rm c}$ (5-1)	2)
where : <i>F</i> : measured load	N
I' . Illeasuleu loau	TN 1
$F_{ m c}$: calculated load	Ν
$f_{ m w}$: load coefficient (ref. Table 5-6)	

5-3-2 Load generated through belt or chain transmission

In the case of belt transmission, the theoretical value of the load affecting the pulley shafts can be determined by obtaining the effective transmission force of the belt.

For actual operation, the load is obtained by multiplying this effective transmission force by the load coefficient (f_w) considering vibration and impact generated during operation, and the belt coefficient (f_b) considering belt tension.

In the case of chain transmission, the load is determined using a coefficient equivalent to the belt coefficient.

This equation (5-13) is as follows;

where :

- $F_{
 m b}$: estimated load affecting pulley shaft or sprocket shaft N M : torque affecting pulley or sprocket $mN \cdot m$ W : transmission force kW
- $D_{\rm p}$: pitch circle diameter of pulley or sprocket mm
- n : rotational speed \min^{-1}
- $f_{\rm w}$: load coefficient (ref. Table 5-6)
- $f_{\rm b}$: belt coefficient (ref. Table 5-7)

Table 5-7 Values of belt coefficient f_b

Belt type	f_{b}
Timing belt (with teeth)	1.3 – 2.0
V-belt	2.0 – 2.5
Flat belt (with tension pulley)	2.5 – 3.0
Flat belt	4.0 - 5.0
Chain	1.2 – 1.5

5-3-3 Load generated under gear transmission

(1) Loads affecting gear and gear coefficient In the case of gear transmission, loads transmitted by gearing are theoretically classified into three types: tangential load (K_t) , radial load (K_r) and axial load (K_a) .

Those loads can be calculated dynamically (using equations (a), (b) and (c), described in section (2)).

To determine the actual gear loads, these theoretical loads must be multiplied by coefficients considering vibration and impact during operation (f_w) (ref. Table 5-6) and the gear coefficient (f_g) (ref. Table 5-8) considering the finish treatment of gears.

Table 5-8 Values of gear coefficient f_g

Gear type	fg
Precision gears (both pitch error and tooth shape error less than 0.02 mm)	1.0 – 1.1
Normal gears (both pitch error and tooth shape error less than 0.1 mm)	1.1 – 1.3

2) Calculation of load on gea	ars
-------------------------------	-----

a Tangential load (tangentia	al force) $K_{ m t}$
$ \left(\begin{array}{c} \text{Spur gears, helical gears, double-straight bevel gears, spiral bevel g} \\ K_{\rm t} = \frac{2M}{D_{\rm p}} = \frac{19.1 \times 10^6 \ W}{D_{\rm p} n} \cdots \cdots $	
a∼© where :	
$K_{\rm t}$: gear tangential load	N
$K_{\rm r}$: gear radial load	N
$K_{ m a}$: gear axial load	N
M: torque affecting gears	$mN \cdot m$
$D_{\rm p}$: gear pitch circle diameter	mm
W : transmitting force	kW
n : rotational speed	\min^{-1}
lpha : gear pressure angle	deg
eta : gear helix (spiral) angle	deg
δ : bevel gear pitch angle	deg

		\textcircled{b} Radial load (separating force) $K_{ m r}$	\bigcirc Axial load (axial force) $K_{ m a}$
Spur gears	6	$K_{\rm r} = K_{\rm t} \tan \alpha (5-15)$	0
Helical gea	ars	$K_{\rm r} = K_{\rm t} \frac{\tan \alpha}{\cos \beta} \cdots (5-16)$	$K_{\rm a} = K_{\rm t} \tan \beta$ (5-22)
Double-he gears	lical	$K_{\rm r} = K_{\rm t} \frac{\tan \alpha}{\cos \beta} \dots $	0
Straight ¹⁾	Drive side	$K_{\rm r1} = K_{\rm t} \tan \alpha \cos \delta_1 \cdots (5-18)$	$K_{\rm a1} = K_{\rm t} \tan \alpha \sin \delta_1$
bevel gears	Driven side	$K_{\rm r2} = K_{\rm t} \tan \alpha \cos \delta_2 \cdots (5-19)$	$K_{\rm a2} = K_{\rm t} \tan \alpha \sin \delta_2$ (5-24)
a (1), 2)	Drive	$K_{\rm r1} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \cos\delta_1 \pm \sin\beta\sin\delta_1 \right)$	$K_{\rm a1} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \sin\delta_1 \mp \sin\beta \cos\delta_1 \right)$
Spiral ^{1), 2)}	side	(5-20)	(5-25)
bevel gears	Driven	$K_{\rm r2} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \cos\delta_2 \mp \sin\beta \sin\delta_2 \right)$	$K_{\rm a2} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \ \sin\delta_2 \pm \sin\beta \ \cos\delta_2 \right)$
	side	(5-21)	(5-26)

[Notes] 1) Codes with subscript 1 and 2 shown in equations are respectively applicable to drive side gears and driven side gears.

2) Symbols (+) and (-) denote the following ;

Symbols in upper row : clockwise rotation accompanied by right-handed spiral or counterclockwise rotation with left-handed spiral Symbols in lower row : counterclockwise rotation with right-handed spiral or clockwise rotation with left-handed spiral

[Remark] Rotating directions are described as viewed at the back of the apex of the pitch angle.

Fig. 5-7 Load on spur gears

Fig. 5-8 Load on helical gears

Fig. 5-9 Load on straight bevel gears

Fig. 5-10 Load on spiral bevel gears

Clockwise rotation

Counterclockwise rotation

 K_{t1}

Drive side

spiral

clockwise rotation with left-handed

[counterclockwise rotation]

with right-handed spiral

The load distribution affecting bearings can be calculated as follows: first, radial force components are calculated, then, the sum of vectors of the components is obtained in accordance with the load direction.

Calculation examples of radial load distribution are described in the following section.

[Remark]

components of axial force when these bearings accommodate radial load, and axial load (K_a) which is transferred externally, i.e. from gears. For calculation of the axial load in this case, refer

Description of signs in Examples 1 to 5

,		
$F_{ m rA}$: radial load on bearing A	Ν	$D_{ m p}$: gear pitch circle diameter $ m mm$
$F_{ m rB}$: radial load on bearing B	Ν	\odot : denotes load direction (upward
K : shaft load	Ν	perpendicular to paper surface)
$K_{\rm t}, K_{ m r}, K_{ m a}$: gear load	Ν	\otimes : denotes load direction (downward
(ref. A 34)		perpendicular to paper surface)
`		'

Koyo

Example 2 Fundamental calculation (2)

Bearing A Bearing B Ð F_{r1} $F_{\rm rA}$ Φ Þ a

> $F_{\rm rA} = \frac{b}{c}K$ $F_{\rm rB} = \frac{a}{c}K$

Example 5 Simultaneous application of gear load and other load

Gears 1 and 2 are engaged with each other at angle θ . External load F, moment M, are applied to these gears at angles θ_1 and θ_2 .

• Perpendicular radial component force (upward and downward along diagram) л 31

$$F_{\rm rAV} = \frac{\theta}{c} \left(K_{\rm r} \cos \theta + K_{\rm t} \sin \theta \right) - \frac{D_{\rm P}}{2c} K_{\rm a} \cos \theta + \frac{m}{c} F \cos \theta_1 - \frac{M}{c} \cos \theta_2$$
$$F_{\rm rBV} = \frac{a}{c} \left(K_{\rm r} \cos \theta + K_{\rm t} \sin \theta \right) + \frac{D_{\rm P}}{2c} K_{\rm a} \cos \theta + \frac{e}{c} F \cos \theta_1 + \frac{M}{c} \cos \theta_2$$

• Horizontal radial component force (upward and downward perpendicular to diagram)

$$F_{\rm rAH} = \frac{b}{c} \left(K_{\rm r} \sin \theta - K_{\rm t} \cos \theta \right) - \frac{D_{\rm p}}{2c} K_{\rm a} \sin \theta + \frac{m}{c} F \sin \theta_1 - \frac{M}{c} \sin \theta_2$$
$$F_{\rm rBH} = \frac{a}{c} \left(K_{\rm r} \sin \theta - K_{\rm t} \cos \theta \right) + \frac{D_{\rm p}}{2c} K_{\rm a} \sin \theta + \frac{e}{c} F \sin \theta_1 + \frac{M}{c} \sin \theta_2$$

Combined radial force

$$F_{\rm rA} = \sqrt{F_{\rm rAV}^2 + F_{\rm rAH}^2}$$

$$F_{\rm rB} = \sqrt{F_{\rm rBV}^2 + F_{\rm rBH}^2}$$
(5-31) (When θ , F , and M are zero, the same result as in Ex. 3 is obtained (

 K_r

∃Gear 2

Bearing B

Bearings shown in Exs. 3 to 5 are affected by to page A 38.

5-4 Dynamic equivalent load

Bearings are used under various operating conditions; however, in most cases, bearings receive radial and axial load combined, while the load magnitude fluctuates during operation.

Therefore, it is impossible to directly compare the actual load and basic dynamic load rating.

The two are compared by replacing the loads applied to the shaft center with one of a constant magnitude and in a specific direction, that yields the same bearing service life as under actual load and rotational speed.

This theoretical load is referred to as the dynamic equivalent load (P).

5-4-1 Calculation of dynamic equivalent load

Dynamic equivalent loads for radial bearings and thrust bearings ($\alpha \neq 90^{\circ}$) which receive a combined load of a constant magnitude in a specific direction can be calculated using the following equation,

 $P = XF_{\rm r} + YF_{\rm a} \qquad (5-32)$ where : P: dynamic equivalent load Ν for radial bearings, $P_{\rm r}$: dynamic equivalent radial load for thrust bearings, $P_{\rm a}$: dynamic equivalent axial load F_r : radial load Ν F_a : axial load Ν X : radial load factor Y : axial load factor (values of X and Y are listed in the bearing specification table.)

When $F_a/F_r \le e$ for single-row radial bearings, it is taken that X = 1, and Y = 0. Hence, the dynamic equivalent load rating is $P_r = F_r$.

Values of e, which designates the limit of $F_{\rm a}/F_{\rm r}$, are listed in the bearing specification table.

For single-row angular contact ball bearings and tapered roller bearings, axial component forces (F_{ac}) are generated as shown in Fig. 5-11, therefore a pair of bearings is arranged face-to-face or back-to-back. The axial component force can be calculated using the following equation.

Table 5-9 describes the calculation of the dynamic equivalent load when radial loads and external axial loads (K_a) are applied to bearings.

Fig. 5-11 Axial component force

For thrust ball bearings with contact angle $\alpha = 90^\circ$, to which an axial load is applied, $P_a = F_a$.

Koyo

The dynamic equivalent load of spherical thrust roller bearing can be calculated using the following equation.

$$P_{\rm a} = F_{\rm a} + 1.2 F_{\rm r}$$
 (5-34)
where : $F_{\rm r}/F_{\rm a} \le 0.55$

Table 5-9	Dynamic equivalent load calculation : when a pair of single-row angular contact
	ball bearings or tapered roller bearings is arranged face-to-face or back-to-back.

Paired mounting	Loading cond	dition Bearing	Axial load	Dynamic equivalent load
Back-to-back arrangement Face-to-face arrangement		Dearing	Axiai loau	Dynamic equivalent load
	$\frac{F_{\mathrm{rB}}}{2Y_{\mathrm{p}}} + K_{\mathrm{a}} \ge$	Bearing A	$\frac{\overline{F_{\rm rB}}}{2Y_{\rm B}} + K_{\rm a}$	$P_{A} = XF_{rA} + Y_{A} \left(\frac{F_{rB}}{2Y_{B}} + K_{a} \right)$ $P_{A} = F_{rA}$, where $P_{A} < F_{rA}$
$\begin{array}{c c} & K_{a} \\ \hline \\ F_{rA} \\ \hline \\ F_{rB} \\ \hline \\ F_{rB} \\ \hline \\ F_{rB} \\ \hline \\ F_{rA} \\ \hline \hline \hline \hline \\ F_{rA} \\ \hline \hline \hline \hline \\ F_{rA} \\ \hline $	$2Y_{\rm B} + n_{\rm a} =$	2Y _A Bearing B	_	$P_{\rm B} = F_{\rm rB}$
	$rac{F_{ m rB}}{2Y_{ m R}}$ + $K_{ m a}$ $<$	Bearing A	_	$P_{\rm A} = F_{\rm rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2Y _B	Bearing B	$rac{F_{ m rA}}{2Y_{ m A}}-K_{ m a}$	$\begin{split} P_{\rm B} &= X F_{\rm rB} + Y_{\rm B} \left(\frac{F_{\rm rA}}{2 Y_{\rm A}} - K_{\rm a} \right) \\ P_{\rm B} &= F_{\rm rB}, \text{where} P_{\rm B} \! < \! F_{\rm rB} \end{split}$
	$rac{F_{ m rB}}{2Y_{ m p}} \leq rac{F_{ m rA}}{2Y_{ m p}}$	Bearing A	-	$P_{\rm A} = F_{\rm rA}$
$\begin{array}{c c} & K_{\rm a} \\ \hline & F_{\rm rA} \end{array} \xrightarrow{F_{\rm rB}} F_{\rm rB} \xrightarrow{F_{\rm rB}} F_{\rm rB} \xrightarrow{F_{\rm r}} F_{\rm rA} \end{array}$	$2Y_{\rm B} - 2Y_{\rm A}$	Bearing B	$rac{F_{\mathrm{rA}}}{2Y_{\mathrm{A}}}+K_{\mathrm{a}}$	$P_{ m B} = XF_{ m rB} + Y_{ m B} \left(rac{F_{ m rA}}{2Y_{ m A}} + K_{ m a} ight)$ $P_{ m B} = F_{ m rB}$, where $P_{ m B} < F_{ m rB}$
	$rac{F_{ m rB}}{2Y_{ m p}} > rac{F_{ m rA}}{2Y_{ m r}}$	Bearing A	$rac{F_{ m rB}}{2Y_{ m B}}-K_{ m a}$	$P_{A} = XF_{rA} + Y_{A} \left(\frac{F_{rB}}{2Y_{B}} - K_{a} \right)$ $P_{A} = F_{rA}, \text{ where } P_{A} < F_{rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$2Y_{\rm B} \stackrel{<}{} 2Y_{\rm A}$	Bearing B	_	$P_{\rm B} = F_{ m rB}$

[Remarks] 1. These equations can be used when internal clearance and preload during operation are zero.

^{2.} Radial load is treated as positive in the calculation, if it is applied in a direction opposite that shown in Fig. in Table 5-9.

5-4-2 Mean dynamic equivalent load

When load magnitude or direction varies, it is necessary to calculate the mean dynamic equivalent load, which provides the same length of bearing service life as that under the actual load fluctuation.

The mean dynamic equivalent load (P_m) under different load fluctuations is described using Graphs (1) to (4).

As shown in Graph (5), the mean dynamic equivalent load under stationary and rotating load applied simultaneously, can be obtained using equation (5-39).

(1) Staged fluctuation		(2) Stageless fluctuation	(3) Fluctuation forming sine curve	(4) Fluctuation forming sine curve (upper half of sine curve)	
$P \xrightarrow{P_1} P_2 \xrightarrow{P_m} P_n$		P P_{max} P_{max} P_{min} D $\Sigma n_i t_i$	P P_{max} P_{m} P_{m} D D $\Sigma n_i t_i$	$\begin{array}{c c} P \\ P_{max} \\ P_{m} \\ 0 \\ 0 \\ \hline \Sigma n_i t_i \\ \end{array}$	
$P_{\rm m} = \sqrt[p]{\frac{P_1^{\ p} \ n_1 t_1 + P_2^{\ p} \ n_2 t_2 + \dots + P_{\rm n}^{\ p} \ n_n t_{\rm n}}{n_1 t_1 + n_2 t_2 + \dots + n_{\rm n} t_{\rm n}}}$ (5-35)	F	$P_{\rm m} = \frac{P_{\rm min} + 2 P_{\rm max}}{3}$ (5-36)	$P_{\rm m} = 0.68 P_{\rm max}$ (5-37)	$P_{\rm m} = 0.75 P_{\rm max}$ (5-38)	

(5) Stationary load and rotating load acting simultaneously

Symbols for Graphs (1) to (4)

r =			
i I	$P_{\rm m}$: mean dynamic equivalent load	Ν
Ì.	P_1	: dynamic equivalent load applied for t_1 hours at rotational speed n_1	Ν
i i	P_2	: dynamic equivalent load applied for t_2 hours at rotational speed n_2	Ν
I I	÷	i i	
I I	$P_{\rm n}$: dynamic equivalent load applied for $t_{ m n}$ hours at rotational speed $n_{ m n}$	Ν
	P_{\min}	: minimum dynamic equivalent load	Ν
i.	$P_{\rm max}$: maximum dynamic equivalent load	Ν
I I	$\Sigma n_i t_i$	t_i : total rotation in (t_1 to t_i) hours	
I I	p	: for ball bearings, $p = 3$	
I I		for roller bearings, $p = 10/3$	
L _			

[Reference] Mean rotational speed $n_{\rm m}$ can be calculated using the following equation :

 $n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_{\rm m} t_{\rm m}}{t_1 + t_2 + \dots + t_{\rm m}}$

 $P_{\rm m} = f_{\rm m} (P + P_{\rm u})$ (5-39)

where	
where	•

$P_{ m m}$: mean dynamic equivalent load	Ν
$f_{\rm m}$: coefficient (refer. Fig. 5-12)	
P : stationary load	Ν
$P_{\rm u}$: rotating load	Ν

Fig. 5-12 Coefficient f_m

5-5-1 Basic static load rating

Excessive static load or impact load even at very low rotation causes partial permanent deformation of the rolling element and raceway contacting surfaces. This permanent deformation increases with the load; if it exceeds a certain limit, smooth rotation will be hindered.

The basic static load rating is the static load which responds to the calculated contact stress shown below, at the contact center between the raceway and rolling elements which receive the maximum load.

- Self-aligning ball bearings --- 4 600 MPa
- Other ball bearings ------ 4 200 MPa
- Roller bearings ------ 4 000 MPa

The total extent of contact stress-caused permanent deformation on surfaces of rolling elements and raceway will be approximately 0.000 1 times greater than the rolling element diameter.

The basic static load rating for radial bearings is specified as the basic static radial load rating, and for thrust bearings, as the basic static axial load rating. These load ratings are listed in the bearing specification table, using C_{0r} and C_{0a} respectively.

These values are prescribed by ISO 78/1987 and are subject to change by conformance to the latest ISO standards.

5-5-2 Static equivalent load

The static equivalent load is a theoretical load calculated such that, during rotation at very low speed or when bearings are stationary, the same contact stress as that imposed under actual loading condition is generated at the contact center between raceway and rolling element to which the maximum load is applied.

For radial bearings, radial load passing through the bearing center is used for the calculation; for thrust bearings, axial load in a direction along the bearing axis is used.

The static equivalent load can be calculated using the following equations.

the bearing specification table.)

5-5-3 Safety coefficient

The allowable static equivalent load for a bearing is determined by the basic static load rating of the bearing; however, bearing service life, which is affected by permanent deformation, differs in accordance with the performance required of the bearing and operating conditions.

Therefore, a safety coefficient is designated, based on empirical data, so as to ensure safety in relation to basic static load rating.

$$f_{\rm s} = \frac{C_0}{P_0}$$
 (5-44)

where :

$f_{\rm s}$: safety coefficient (ref. Table 5-1	0)
C_0 : basic static load rating	Ν
P_0 : static equivalent load	Ν

Table 5-10Values of safety coefficient f_s

		$f_{ m s}$ (min.)	
Operating condition		Ball bearing	Roller bearing
	When high accuracy is required	2	3
With bearing rotation	Normal operation	1	1.5
	When impact load is applied	1.5	3
Without bear- ing rotation	Normal operation	0.5	1
(occasional oscillation)	When impact load or uneven distribution load is applied	1	2

[Remark] For spherical thrust roller bearings, $f_s \ge 4$.

5-6 Allowable axial load for cylindrical roller bearings

Bearings whose inner and outer rings comprise either a rib or loose rib can accommodate a certain magnitude of axial load, as well as radial load. In such cases, axial load capacity is controlled by the condition of rollers, load capacity of rib or loose rib, lubrication, rotational speed etc.

For certain special uses, a design is available to accommodate very heavy axial loads. In general, axial loads allowable for cylindrical roller bearings can be calculated using the following equation, which are based on empirical data.

where :

- $F_{\rm ap}$: maximum allowable axial load N $f_{\rm a}$: coefficient determined from
- f_{a} : coefficient determined from (Table 5-11) f_{b} : coefficient determined from
- bearing diameter series (Table 5-12)
- $f_{\rm p}$: coefficient for rib surface pressure (Fig. 5-13)
- $d_{\rm m}$: mean value of bore diameter d and outside diameter D mm

$$\left(\frac{d+D}{2}\right)$$

Table 5-11Values of coefficient determined
from loading condition f_a

Loading condition	f_{a}
Continuous loading	1
Intermittent loading	2
Instantaneous loading	3

 Table 5-12
 Values of coefficient determined from bearing diameter series fb

Diameter series	$f_{ m b}$
9	0.6
0	0.7
2	0.8
3	1.0
4	1.2

Fig. 5-13 Relationship between coefficient for rib surface pressure f_p and value $d_m n$ (n : rotational speed, min⁻¹)

5-7 Applied calculation examples

[Example 1] Bearing service life (time) with 90 % reliability	[Example 2] Bearing service life (time) with 96 % reliability
(Conditions) Deep groove ball bearing : 6308 Radial load $F_r = 3500$ N Axial load not applied $(F_a = 0)$ Rotational speed $n = 800 \text{ min}^{-1}$ F_r 1 Basic dynamic load rating (C_r) is obtained from the bearing specification table.	(Conditions) Deep groove ball bearing : 6308 Radial load $F_r = 3500$ N Axial load $F_a = 1000$ N Rotational speed $n = 800$ min ⁻¹ Therefore F_r (1) From the bearing specification table ; • Basic load rating (C_r , C_{0r}) f_0 factor is obtained.
$C_r = 50.9 \text{ kN}$ (2) Dynamic equivalent radial load (<i>P</i> _r) is calculated using equation (5-32). $P_r = F_r = 3500 \text{ N}$ (3) Bearing sevice life (<i>L</i> _{10h}) is calculated using equation (5-2). $L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p$	$\begin{array}{l} C_{\rm r} = 50.9 \ {\rm kN} \\ C_{0\rm r} = 24.0 \ {\rm kN} \\ f_0 = 13.2 \end{array}$ • Values X and Y are obtained by comparing value e, calculated from value $f_0 F_{\rm a} / C_{0\rm r}$ via proportional interpolation, with value $f_0 F_{\rm a} / F_{\rm r}$. $\frac{f_0 F_{\rm a}}{C_{0\rm r}} = \frac{13.2 \times 1000}{24.0 \times 10^3} = 0.550 \end{array}$
$= \frac{10^{6}}{60 \times 800} \times \left(\frac{50.9 \times 10^{3}}{3\ 500}\right)^{3} \doteq \underline{64\ 100\ h}$	$e = 0.22 + (0.26 - 0.22) \times \frac{(0.550 - 0.345)}{(0.689 - 0.345)}$ = 0.24 $\frac{F_a}{F_r} = \frac{1000}{3500} = 0.29 > e$ The result is, $X = 0.56$ $Y = 1.99 - (1.99 - 1.71) \times \frac{(0.550 - 0.345)}{(0.689 - 0.345)}$ = 1.82
	$ \begin{array}{ll} \hline & \hline $
	$= \frac{10^{6}}{60 \times 800} \times \left(\frac{50.9 \times 10^{3}}{3780}\right)^{3} \doteq \frac{50900\mathrm{h}}{100}$

[Example 3] Calculation of the *a*_{ISO} factor with the conditions in Example 2 (Conditions) Oil lubrication (Oil that has been filtered by a fine filter) Operating temperature 70 °C 96 % reliability

④ Lubricating oil selection

From the bearing specification table, the pitch diameter $D_{\rm pw}$ = (40 + 90)/2 = 65 is obtained.

 d_{mn} = 65 \times 800 = 52 000. Therefore, select VG 68 from Table 12-8, p. A 129.

 \bigcirc Calculating the $a_{\rm ISO}$ factor

The operating temperature is 70 °C, so according to Fig. 12-3, p. A 129, the viscosity when operating is $v = 20 \text{ mm}^2/\text{s}$ According to Fig. A, $v_1 = 21.7 \text{ mm}^2/\text{s}$

 $\kappa = v/v_1 = 20/21.7 = 0.92$

The oil has been filtered by a fine filter, so Table 5-4 shows $e_{\rm c}$ is 0.5 to 0.6.

To stringently estimate the value, $e_{\rm c} = 0.5$.

$$\frac{e_{\rm c} \cdot C_{\rm u}}{P} = \frac{0.5 \times 1\ 850}{3\ 780} = 0.24$$

Therefore, according to Fig. B

 $a_{\rm ISO} = 7.7$

6 Service life with 96 % reliability (L_{nm}) is obtained using equation (5-8).

According to Table 5-3, $a_1 = 0.55$.

 $L_{4m} = a_1 a_{ISO} L_{10} = 0.55 \times 7.7 \times 50\ 900 \doteqdot 216\ 000\ h$

The $a_{\rm ISO}$ factor can also be calculated on our website.

1 From the bearing specification table, the following specifications are obtained.

	Basic dynamic load rating (C_r)	е	$X^{1)}$	$Y^{1)}$
Bearing A	68.8 kN	0.37	0.4	1.60
Bearing B	83.9 kN	0.40	0.4	1.48

[Note] 1) Those values are used, where $F_a/F_r > e$. Where $F_3/F_r \leq e, X = 1, Y = 0$.

 Axial load applied to shafts must be calculated, considering the fact that component force in the axial direction is generated when radial load is applied to tapered roller bearings. (ref. equation 5-33, Table 5-9)

$$\frac{F_{\rm rA}}{2 Y_{\rm A}} + K_{\rm a} = \frac{5200}{2 \times 1.60} + 1\,600 = 3\,225\,\,{\rm N}$$
$$\frac{F_{\rm rB}}{2 Y_{\rm B}} = \frac{6\,800}{2 \times 1.48} = 2\,297\,\,{\rm N}$$

Consequently, axial load $\frac{F_{rA}}{2V_{A}} + K_{a}$ is applied to bearing B.

(3) Dynamic equivalent load (P_r) is obtained from Table 5-9.

$$P_{rA} = F_{rA} = 5 \ 200 \ N$$
$$P_{rB} = XF_{rB} + Y_B \ \left(\frac{F_{rA}}{2 \ Y_A} + K_a\right)$$
$$= 0.4 \times 6 \ 800 + 1.48 \times 3 \ 225 = 7493 \ N$$

④ Each bearing service life (L_{10}) is calculated using equation (5-1).

$$\begin{split} L_{10\text{A}} \; = \; \left(\frac{C_{\text{rA}}}{P_{\text{rA}}} \right)^{10/3} \; = \left(\frac{68.8 \times 10^3}{5\,200} \right)^{10/3} \\ \approx & 5\,480 \times 10^6 \, \text{revolutions} \\ L_{10\text{B}} \; = \; \left(\frac{C_{\text{rB}}}{P_{\text{rB}}} \right)^{10/3} \; = \left(\frac{83.9 \times 10^3}{7\,493} \right)^{10/3} \\ \approx & 3\,140 \times 10^6 \, \text{revolutions} \end{split}$$

 $n = 1\ 600\ {
m min}^{-1}$

1 The dynamic equivalent load (P_r) is hypothetically calculated.

The resultant value, $F_a/F_r = 300/2\ 000 = 0.15$, is smaller than any other values of e in the bearing specification table.

Hence, JTEKT can consider that $P_r = F_r = 2000$ N. 2 The required basic dynamic load rating (C_r) is

calculated according to equation (5-4).

$$C_{\rm r} = P_{\rm r} \left(L_{10\rm h} \times \frac{60n}{10^6} \right)^{1/p}$$

$$= 2\,000 \times \left(10\,000 \times \frac{60 \times 1\,600}{10^6} \right)^{1/3}$$

= 19730 N

③ Among those covered by the bearing specification table, the bearing of the 62 series with C_r exceeding 19 730 N is 6205 R, with bore diameter for 25 mm. ④ The dynamic equivalent load obtained at step ① is confirmed by obtaining value e for 6205 R. Where C_{0r} of 6205 R is 9.3 kN, and f_0 is 12.8

 $f_0 F_a / C_{0r} = 12.8 \times 300/9 \ 300 = 0.413$ Then, value e can be calculated using proportional

interpolation. (0.410 0.045)

$$e = 0.22 + (0.26 - 0.22) \times \frac{(0.413 - 0.343)}{(0.689 - 0.345)}$$

= 0.23
As a result, it can be confirmed that

 $F_{o}/F_{r} = 0.15 \le e$ Hence, $P_r = F_r$.

[Example 8] Calculation of service life of spur gear shaft bearings

(Conditions)

lly machined)
$\alpha_1 = \alpha_2 = 20^{\circ}$
D_{p1} = 360 mm
D_{p2} = 180 mm
W = 150 kW
$n = 1\ 000\ { m min}^{-1}$

 Using equations (5-14) and (5-15), theoretical loads applied to gears (tangential load, *K*_t; radial load, *K*_r) are calculated.

$$K_{t1} = \frac{19.1 \times 10^{6}W}{D_{p}n} = \frac{19.1 \times 10^{6} \times 150}{360 \times 1000}$$

= 7 958 N
$$K_{r1} = K_{t1} \tan \alpha_{1} = 2 896 \text{ N}$$

iiri iiritaane

[Gear 2]

$$K_{t2} = \frac{19.1 \times 10^6 \times 150}{180 \times 1000} = 15\ 917\ N$$

$$K_{r2} = K_{t2} \tan \alpha_2 = 5\ 793\ N$$

② The radial load applied to the bearing is calculated, where the load coefficient is determined as $f_w = 1.5$ from Table 5-6, and the gear coefficient as $f_g = 1.2$ from Table 5-8.

[Bearing A]

• Load consisting of K_{t1} and K_{t2} is :

$$\begin{aligned} K_{\rm tA} &= f_{\rm w} f_{\rm g} \left(\frac{a_2}{c} K_{\rm t1} + \frac{b_2}{c} K_{\rm t2} \right) \\ &= 1.5 \times 1.2 \times \left(\frac{265}{360} \times 7\,958 + \frac{115}{360} \times 15\,917 \right) = 19\,697\,\,\rm N \end{aligned}$$

• Load consisting of K_{r1} and K_{r2} is :

$$\begin{aligned} K_{\rm rA} &= f_{\rm w} f_{\rm g} \left(\frac{a_2}{c} K_{\rm r1} - \frac{b_2}{c} K_{\rm r2} \right) \\ &= 1.5 \times 1.2 \times \left(\frac{265}{360} \times 2\,896 - \frac{115}{360} \times 5\,793 \right) \\ &= 506 \,\,\mathrm{N} \end{aligned}$$

Operating condition: accompanied by impact Installation locations $a_1 = 95 \text{ mm}, a_2 = 265 \text{ mm},$ $b_1 = 245 \text{ mm}, b_2 = 115 \text{ mm},$

- $c = 360 \,\mathrm{mm}$
- Combining the loads of $K_{\rm tA}$ and $K_{\rm rA}$, the radial load ($F_{\rm rA}$) applied to bearing A can be calculated as follows :

$$F_{\rm rA} = \sqrt{K_{\rm tA}^2 + K_{\rm rA}^2}$$

$$= \sqrt{19\ 697^2\ +\ 506^2} = 19\ 703\ N$$

[Bearing B]

• Load consisting of K_{t1} and K_{t2} is :

$$K_{tB} = f_w f_g \left(\frac{a_1}{c} K_{t1} + \frac{b_1}{c} K_{t2}\right)$$

= 1.5 × 1.2 × $\left(\frac{95}{360} \times 7\,958 + \frac{245}{360} \times 15\,917\right)$ = 23 278 N

• Load consisting of K_{r1} and K_{r2} is :

$$K_{\rm rB} = f_{\rm w} f_g \left(\frac{a_1}{c} K_{\rm r1} - \frac{b_1}{c} K_{\rm r2}\right)$$
$$= 1.5 \times 1.2 \times \left(\frac{95}{360} \times 2\,896 - \frac{245}{360} \times 5\,793\right) = -5\,721\,\,\rm N$$

 The radial load (*F*_{rB}) applied to bearing B can be calculated using the same steps as with bearing A.

$$F_{\rm rB} = \sqrt{K_{\rm tB}^2 + K_{\rm rB}^2}$$

= $\sqrt{23278^2 + (-5721)^2} = 23971 \,\mathrm{N}$

③ The following specifications can be obtained from the bearing specification table.

Where $F_a/F_r \le e$, X = 1, Y = 0.

④ When an axial load is not applied externally, if the radial load is applied to the tapered roller bearing, an axial component force is generated. Considering this fact, the axial load applied from the shaft and peripheral parts is to be calculated :

(Equation 5-33, Table 5-9)

$$\frac{F_{\rm rB}}{2 Y_{\rm B}} = \frac{23\,971}{2 \times 1.74} > \frac{F_{\rm rA}}{2 Y_{\rm A}} = \frac{19\,703}{2 \times 1.74}$$

According to the result, it is clear that the axial component force ($F_{\rm rB}/2Y_{\rm B}$) applied to bearing B is also applied to bearing A as an axial load applied from the shaft and peripheral parts.

(5) Using the values listed in Table 5-9, the dynamic equivalent load is calculated, where $K_{\rm a} = 0$:

$$\begin{aligned} P_{\rm rA} &= XF_{\rm rA} + Y_{\rm A}\frac{F_{\rm rB}}{2\,Y_{\rm B}} \\ &= 0.4 \times 19\,703 \, \times 1.74 \, \times \, \frac{23\,971}{2 \times 1.74} \\ &= 19\,867\,{\rm N} \\ P_{\rm rB} &= F_{\rm rB} = 23\,971\,{\rm N} \end{aligned}$$

6 Using equation (5-2), the basic rating life of each bearing is calculated :

[Bearing A]

$$L_{10hA} = \frac{10^{6}}{60n} \left(\frac{C_{rA}}{P_{A}} \right)^{p}$$

= $\frac{10^{6}}{60 \times 1000} \times \left(\frac{183 \times 10^{3}}{19867} \right)^{10/3}$
\approx 27 300 h

[Bearing B]

$$\begin{split} L_{10\mathrm{hB}} &= \frac{10^6}{60n} \left(\frac{C_{\mathrm{rB}}}{P_{\mathrm{B}}}\right)^p \\ &= \frac{10^6}{60 \times 1\,000} \, \times \, \left(\frac{221 \times 10^3}{23\,971}\right)^{10/3} \\ &\doteq \underline{27\,400\,\mathrm{h}} \end{split}$$

Using equation (5-11), the system service life (L_{10hS}) using a pair of bearings is :

- Reference -

6. Boundary dimensions and bearing numbers

6-1 Boundary dimensions

Bearing boundary dimensions are dimensions required for bearing installation with shaft or housing, and as described in Fig. 6-1, include the bore diameter, outside diameter, width. height, and chamfer dimension.

These dimensions are standardized by the International Organization for Standardization (ISO 15). JIS B 1512 "rolling bearing boundary dimensions" is based on ISO.

These boundary dimensions are provided, classified into radial bearings (tapered roller bearings are provided in other tables) and thrust bearings.

Boundary dimensions of each bearing are listed in Appendixes at the back of this catalog. In these boundary dimension tables, the outside diameter, width, height, and chamfer dimensions related to bearing bore diameter numbers and bore diameters are listed in diameter series and dimension series.

Reference

- 1) Diameter series is a series of nominal bearing outside diameters provided for respective ranges of bearing bore diameter; and, a dimension series includes width and height as well as diameters.
- 2) Tapered roller bearing boundary dimensions listed in the Appendixes are adapted to conventional dimension series (widths and diameters). Tapered roller bearing boundary dimensions provided in JIS B 1512-2000 are new dimension series based on ISO 355 (ref. descriptions before the bearing specification table); for reference, the bearing specification table covers numeric codes used in these dimension series.

 ϕd_1

 ϕd

 ϕD_1 ϕD

 ϕD

 ϕD_1

 ϕD_1

 ϕd_3

 ϕD

[Notes]

value.

value

(single/double direction)

1) The bearing specification

2) The bearing specification

table includes the minimum

table includes the maximum

 $r_{1} + r_{2}$

 T_1

Cross-section dimensions of radial bearings and thrust bearings expressed in dimension series can be compared using Figs. 6-2 and 6-3.

In this way, many dimension series are provided; however, not all dimensions are practically adapted.

Some of them were merely prescribed, given expected future use.

6-2 Dimensions of snap ring grooves and locating snap rings

JIS B 1509 "rolling bearing -radial bearing with locating snap ring-dimensions and tolerances" conforms to the dimensions of snap ring groove for fitting locating snap ring on the outside surface of bearing and the dimensions and tolerances of locating snap ring.

Fig. 6-3 Thrust bearing dimension series diagram (diameter series 5 omitted)

Fig. 6-2 Radial bearing dimension series diagram (diameter series 7 omitted)

Fig. 6-1 Bearing boundary dimensions

(Ex. 4)

320⁰⁵ J R P 6 X

6-3 Bearing number

A bearing number is composed of a basic number and a supplementary code, denoting bearing specifications including bearing type, boundary dimensions, running accuracy, and internal clearance.

Bearing numbers of standard bearings corresponding to JIS B 1512 "rolling bearing boundary dimensions" are prescribed in JIS B 1513.

As well as these bearing numbers, JTEKT uses supplementary codes other than those provided by JIS.

Among basic numbers, bearing series codes are listed in Table 6-1, and the composition of bearing numbers is described in Table 6-2. showing the order of arrangement of the parts.

[Examples of bearing numbers]

(Ex. 1)

62	03 ZZ C 2 Internal clearance code (clearance C2)
	Shield code (both sides shielded)
	Bore diameter number (nominal bore diameter, 17 mm)
	Bearing series code (single-row deep groove ball bearing)

of dimension series 02 (Ex. 2)

72 10 C DT P 5

Tolerance class code (class 5) Matched pair or stack code

(tandem arrangement) Contact angle code

(nominal contact angle, 15°)

- Bore diameter number (nominal bore diameter, 50 mm)

Bearing series code single-row angular contact ball bearing of dimension series 02

(Ex. 3)

,			
NU 3	18 C	3 P	6
	Τ		– – Tolerance class code
			(class 6)

Internal clearance code (clearance C3)

Bore diameter number (nominal bore diameter, 90 mm)

Bearing series code single-row cylindrical roller bearing of dimension series 03

(class 6X)	
Internal design code (high load capacity)	
Code denoting that boundary dimensions and sub unit dimensions are based on ISO standards.	
Bore diameter number (nominal bore diameter, 25 mm)	
Bearing series code (single-row tapered roller bearing of dimension series 20	
(Ex. 5)	
<u>232/500 RZ K C4</u>	
Internal clearance code (clearance C4)	
Bearing ring shape code	
(inner ring tapered bore) (taper 1 : 12)	
(with convex symmetric rollers, pressed cage	
Bore diameter number (nominal bore diameter, 500 mm)	
Bearing series code (spherical roller bearing of dimension series 32)	
(Ex. 6)	
<u>512 15</u>	

- Tolerance class code

Bore diameter number (nominal bore diameter, 75 mm)

Bearing series code single direction thrust ball bearing of dimension series 12

Single-row deep groove ball bearing	series code 67 68 69 160 ²⁾	Type code 6 6	Width series ¹⁾ (1)	Diameter series		ype ode		
deep groove	68 69 160 ²⁾	6				code		
deep groove	69 160 ²⁾			7	329	3		
deep groove	160 ²⁾	~	(1)	8	320	3		
deep groove		6	(1)	9	330	3		
		6	(0)	0	331	3		
Ū	60	6	(1)	0	Tapered 302	3		
	62	6	(0)	2	roller bearing 322	3		
	63	6	(0)	3	332	3		
	64	6	(0)	4	303	3		
Double-row	42	4	(2)	2	313	3		
deep groove ball bearing	42	4	(2)	3	323	3		
(with filling slot)	43	4	(2)	3	239	2		
	79	7	(1)	9	230	2		
Single-row	70	7	(1)	0	240	2		
angular contact	72	7	(0)	2		2		
ball bearing	73	7	(0)	3	Spherical 241	2		
	74	7	(0)	4	222	2		
Double-row						2		
angular contact	32	(0)	3	2	213 ²⁾	2		
ball bearing	33	(0)	3	3	223	2		
(with filling slot)					Single 511	5		
Double-row angular	52	5	(3)	2	direction 512	5		
contact	53	5	(3)	3	thrust 513 ball bearing	5		
ball bearing			(-)		514	5		
	12	1	(0)	2		5		
	22	2	(2)	2	thrust ball bearing 533 with spherical back	5		
Self-aligning	13	1	(0)	3		5		
ball bearing	23	2	(2)	3	Double 522	5		
	112 ²⁾	1	(0) ³⁾	2	direction thrust 523	5		
	113 ²⁾	1	(0) ³⁾	3	ball bearing 524	5		
	NU 10	NU ⁴⁾	1	0	Double 542	5		
	NU 2	NU ⁴⁾	(0)	2	direction thrust	5		
Single-row	NU 22	NU ⁴⁾	2	2	with spherical	5		
cylindrical roller bearing	NU 32	NU ⁴⁾	3	2	back laces	2		
Toller bearing	NU 3	NU ⁴⁾	(0)	3	Sprierical	2		
	NU 23	NU ⁴⁾	2	3	rollor booring	2		
	NU 4	NU ⁴⁾	(0)	4		2		
Double-row cylindrical	NNU 49	NNU	4	9	[Notes] 1) Width series codes in parenthe	eses		
roller bearing	NN 30	NN	3	0	series codes.			
Single-row	NA 48	NA	4	8	 2) These are bearing series code 3) Nominal outer ring width serie 			
needle	NA 49	NA	4	9	wide).	,5 (if		
roller bearing	NA 59	NA	5	9	4) Besides NU type, NJ, NUP, N	l, NF		
Double-row needle roller bearing	NA 69	NA	6	9				

Table 6-1 Bearing series code

	320	3	2	0
	330	3	3	0
	331	3	3	1
Tapered	302	3	0	2
roller bearing	322	3	2	2
	332	3	3	2
	303	3	0	3
	313	3	1	3
	323	3	2	3
	239	2	3	9
	230	2	3	0
	240	2	4	0
	231	2	3	1
Spherical	241	2	4	1
roller bearing	222	2	2	2
	232	2	3	2
	213 ²⁾	2	0	3
	223	2	2	3
	511	5	1	1
Single direction	512	5	1	2
thrust	513	5	1	3
ball bearing	514	5	1	4
Single direction	532	5	3	2
thrust ball bearing	533	5	3	3
with spherical back face	534	5	3	4
D. H.	522	5	2	2
Double direction thrust	523	5	2	3
ball bearing	524	5	2	4
Double	542	5	4	2
direction thrust ball bearing	543	5	4	3
with spherical back faces	544	5	4	4
Spherical	292	2	9	2
thrust	293	2	9	3
roller bearing	294	2	9	4

Kovo

Dimension series code

Diameter

9

series

Width

2

series

odes customarily used.

ries (inner rings only are

N, NF, and NH are provided

Table 6-2 Bearing	g number configuration														
Basic number	Supplementary	code													
Order of Bearing series Bore diameter Contact angl	le Internal design code, Shield/seal Ring shape code, Iubrication	Material code, Matched pair Internal clearanc													
arrengement code No. code	cage guide code code hole/groove code	special treatment code or stack code code, preload co	de code shape code code												
(Codes and descriptions)		(Codes and descriptions)													
Bearing series code	G Equal stand-out is provided on both sides of the ring of angular contact ball bearing	NY Creep prevention synthetic resin ring on outer ring outside surface provided	CM Radial internal clear- ance for electric (Deep groove ball bearing)												
68 Deep groove ball bearing 69	(In general, C2 clearance is used)	SG Spiral groove on inner ring bore surface	CT motor bearing (Cylindrical roller bearing)												
60	GST Angular contact ball bearing described above with standard internal clearance provided	 provided W Lubrication hole and lubrication groove on cylindrical roller bearing outer ring outside surface provided 	NA Non-interchangeable cylindrical roller bearing radial internal clearance (C1NA to C5NA)												
(For standard bearing code, refer to Table 6-1)	J Tapered roller bearing, whose outer ring	W33 Lubrication hole and lubrication groove	,												
Bore diameter No.	width, contact angle and outer ring small inside diameter conform to ISO standards	on spherical roller bearing outer ring outside surface provided	S Slight preload L Light preload M Medium preload (Preload for angular contact ball bearing)												
/ 0.6 0.6 mm (Bore diameter) 1 1	R With convex asymmetric rollers and machined cage	Material code, special treatment code	M Medium preload (contact ball bearing) H Heavy preload												
/1.5 1.5 9 9 00 10 01 12 02 15 03 17 04 20 Bore diameters (mm) of bearing in the bore diameter range 04 to 96 can be obtained by multiplying their bore ge6 96 480 diameter number by five. /500 500 /2500 2500	RZ With convex symmetric rollers and pressed cage Spherical roller bearings RHA With convex symmetric rollers and one-piece machined cage Spherical roller bearings V Full complement type ball or roller bearing (with no cage) Shield/seal code one side both sides Z ZZ Z ZZ Fixed shield ZX ZZX Removable shield ZU 2RU Non-contact seal RS 2RS Contact seal U UU Contact seal	Code not High carbon chrome bearing steel given F H Y Case carburizing steel ST Stainless steel SH Special heat treatment S0 Up to 150 °C S1 Dimension stabilizing treatment S2 Up to 250 °C Matched pair or stack code, cage guide code DB Back-to-back arrangement DT Angular contact ball bearing PA With outer ring guide cage (Ball bearing)	Spacer code Spacer width (mm) is affixed to the end of each code. + Inner and outer ring spacers provided Deep groove ball bearing / Inner and outer ring spacers provided Angular contact ball bearing /P Outer ring spacer provided Angular contact ball bearing +DP Inner ring spacer provided (Angular contact ball bearing) +DP Inner ring spacer provided (Cylindrical roller bearing, spherical roller bearing) +DP Inner ring spacer provided (Cylindrical roller bearing) +DP Outer ring spacer provided (Pressed) coller bearing +ODP Outer ring spacer provided (Pressed) cage // Steel sheet (Pressed) cage FT Phenol resin FY (Machined) cage FW High-tensile brass casting (separable type) (Machined) cage												
A (omitted) 30° AC 25°	RD 2RD Extremely light contact seal	Q3 With roller guide cage (Roller bearing)	MG FG Polyamide (Molded cage)												
B 40° Angular contact	, ,	Internal clearance code, preload code	FP Carbon steel (Pin type cage)												
C 15° (ball bearing	Ring shape code, lubrication hole/groove code	C1 Smaller than C2	Tolerance code (JIS)												
CA 20° E 35°	K Inner ring tapered bore provided (1 : 12)K30 Inner ring tapered bore provided (1 : 30)	C2 Smaller than standard clearance (Radial	Omitted Class 0												
B (omitted)Less than 17°		C3 Greater than standard clearance clearance	P6 Class 6 P6X Class 6X												
C 20° Tapered roller	N Snap ring groove on outer ring outside surface provided	C4 Greater than C3	P5 Class 5												
D 28° 30' bearing	NR Snap ring groove and locating snap ring	C5 Greater than C4 (bearing)	P4 Class 4												
DJ 28° 48' 39"	on outer ring outside surface provided	M1 (Radial internal clearance for extra-small/	P2 Class 2												
Internal design code		M6 (miniature ball bearing)	Grease code												
R High load capacity		CD2 Smaller than standard (Radial internal clearance for	A2 Alvania 2												
(Deep groove ball bearing, cylindrical rolle	r	CDN Standard clearance double-row	AC Andok C												
bearing, tapered roller bearing)		CD3 Greater than standard angular contact clearance ball bearing	B5 Beacon 325 SR Multemp SRL												

7. Bearing tolerances

7-1 Tolerances and tolerance classes for bearings

Bearing tolerances and permissible values for the boundary dimensions and running accuracy of bearings are specified.

These tolerances are prescribed in JIS B 1514-1, JIS B 1514-2, and JIS B 1514-3 (roller bearings - bearing tolerances part 1: radial bearings, part 2: thrust bearings, and part 3: permissible values for chamfer dimensions). (These JIS standards are based on ISO standards.)

Bearing tolerances are standardized by classifying bearings into the following six classes (accuracy in tolerances becomes higher in the order described): 0, 6X, 6, 5, 4 and 2.

Class 0 bearings offer adequate performance for general applications; and, bearings of class 5 or higher are required for demanding applications and operating conditions including those described in Table 7-1.

These tolerances follow ISO standards, but some countries use different names for them. Tolerances for each bearing class, and organizations concerning bearings are listed in Table 7-2.

- Boundary dimension accuracy (items on shaft and housing mounting dimensions
 - Tolerances for bore diameter, outside diameter, ring width, assembled bearing width
 - Tolerances for set bore diameter and set outside diameter of rollers
 - Tolerance limits for chamfer dimensions
 - Permissible values for width variation
 - Tolerance and permissible values for tapered bore
- Running accuracy
- (items on runout of rotating elements)
 - Permissible values for radial and axial runout of inner and outer rings
 - Permissible values for perpendicularity of inner ring face
 - Permissible values for perpendicularity of outer ring outside surface
- Permissible values for thrust bearing raceway thickness

Accuracies for dimensions and running of each bearing type are listed in Tables 7-3 through 7-10; and, tolerances for tapered bore and limit values for chamfer dimensions of radial bearings are in Tables 7-11 and 7-12.

Table 7-1 High precision bearing applications

Required performance	Applications	Tolerance class
	Acoustic / visual equipment spindles (VTR, tape recorders)	P 5, P 4
	Radar / parabola antenna slewing shafts	P 4
High accuracy in	Machine tool spindles	P 5, P 4, P 2, ABEC 9
runout is required for rolling elements.	Computers, magnetic disc spindles	P 5, P 4, P 2, ABEC 9
J	Aluminum foil roll necks	P 5
	Multi-stage mill backing bearings	P 4
	Dental spindles	P 2, ABMA 5P, ABMA 7P
	Superchargers	P 5, P 4
	Jet engine spindles and accessories	P 5, P 4
High apond rotation	Centrifugal separators	P 5, P 4
High speed rotation	LNG pumps	P 5
	Turbo molecular pump spindles and touch-down	P 5, P 4
	Machine tool spindles	P 5, P 4, P 2, ABEC 9
	Tension reels	P 5, P 4
Low friction or	Control equipment (synchronous motors, servomotors, gyro gimbals)	P 4, ABMA 7P
low friction variation	Measuring instruments	P 5
is required.	Machine tool spindles	P 5, P 4, P 2, ABEC 9

	E	Bearing	g type	Applied standards	Applied tolerance class											
D	eep groo	ove bal	l bearing		Class 0	-	Class 6	Class 5	Class 4	Class 2						
Ar	ngular c	ontact I	ball bearing	JIS B 1514-1	Class 0	-	Class 6	Class 5	Class 4	Class 2						
Se	elf-aligni	ng ball	bearing	JIS B 1514-1	Class 0	-	-	-	-	-	Table 7-3					
C	ylindrica	l roller	bearing		Class 0	-	Class 6	Class 5	Class 4	Class 2						
	eedle ro nachined			JIS B 1536-1	Class 0	-	-	-	-	-						
			c series e-row)	JIS B 1514-1	Class 0	Class 6X	(Class 6)	Class 5	Class 4	Class 2	Table 7-5					
	apered ller		c series ble or four-row)	BAS 1002	Class 0	-	-	-	-	-	Table 7-6					
be	earing	Inch s	series	ANSI/ABMA	Class 4	-	Class 2	Class 3	Class 0	Class 00	Table 7-7					
		Metrie (J-sei	c series ries)		Class PK	-	Class PC	Class PB	-	Table 7-8						
Sp	oherical	roller b	earing	JIS B 1514-1	Class 0	-	-	-	-	-	Table 7-3					
Tł	nrust bal	ll beariı	ng	JIS B 1514-2	Class 0	-	Class 6	Class 5	Class 4	-	Table 7-9					
Sp	oherical	thrust	roller bearing	JIS B 1514-2	Class 0	-	-	-	-	-	Table 7-10					
	recision ipport be		rew	JTEKT standards	-	-	-	Class P5Z	Class P4Z	-	-					
	ouble di	rection rust ba	angular II bearing		-	-	-	Equivalent to class 5	Equivalent to class 4	-	-					
		80	Radial bearing	ISO 492	Normal Class	Class 6X	Class 6	Class 5	Class 4	Class 2	-					
rison		50	Thrust bearing	ISO 199	Normal Class	-	Class 6	Class 5	Class 4	-	-					
ss comps	DIN BS NF C C C DIN BS NF Radial and thrust bearin Radial bearin ABMA AMSI ABMA		Radial and thrust bearings	DIN 620 BS 6107 NF E 22-335	Normal Class	Class 6X	Class 6	Class 5	Class 4	Class 2	-					
ance) Cla	CO CO Radial bearin		Radial bearing	ABMA std. 20	ABEC 1 RBEC 1	-	ABEC 3 RBEC 3	ABEC 5 RBEC 5	ABEC 7	ABEC 9 -	-					
(Refere	ANSI Instrume ABMA ball bear		Instrument ball bearing	ABMA std. 12	-	-	Class 3P	Class 5P Class 5T	Class 7P Class 7T	Class 9P	Table 7-4					

(Reference) Standards and organizations concerned with bearings
JIS : Japanese Industrial Standard
BAS : The Japan Bearing Industrial Association Standard
ISO : International Organization for Standardization
ANSI : American National Standards Institute, Inc.
ABMA : American Bearing Manufactures Association
DIN : Deutsches Institut für Normung
BS : British Standards Institution
NF : Association Francaise de Normalisation

Class 2

Class N

Class 3

Class C

Class 0

Class B

Class 00

Class A

Table 7-7

Class 4

Class K

Tapered roller

bearing

ABMA std. 19

Table 7-2Bearing type and tolerance class

Table 7-3 (1) Radial bearing tolerances (tapered roller bearings excluded)

= JIS B 1514-1 =

		= JIS B IS14-1 = Unit : μm																																							
	omina amete	l bore er		Sing	gle plane	e mea			neter	devia	tion		Sin dia	gle bo neter	re deviati	on		Single	· ·				e diam		/ariatio		~P	rioc 2	2.4	Dia 1)	Mean		diamet			n Nominal bor diameter			B	- 1	
	d						Δ_{dmp}														_						eter se						V_{dmp}			(
	m	n	cla	ass 0	class	6	class	5	clas	is 4	clas	ss 2	cla	ss 4	clas	s 2	class 0	class 6	class 5	class 4	4	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	class 2	class 0	class 6	class 5	class 4	class 2	m	m	T			
0	ver	up to	upper	lower	upper Iov	ver u	ipper low	ver up	pper l	ower	upper	lower	upper	lower	upper l	ower		ma	ax.				ma	ax.			ma	х.		max.			max.			over	up to	Ī		1	
	-	0.6	0	- 8	0 -	7	0 –	5	0 -	- 4	0 -	- 2.5	0	- 4	0 –	2.5	10	9	5	4		8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	-	0.6				_
	0.6	2.5	0	- 8	0 -	7	0 –	5	0 -	- 4	0 -	- 2.5	0	- 4	0 -	2.5	10	9	5	4		8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	0.6	2.5				. <u>†</u>
	2.5	10	0	- 8	0 -	7	0 –	5	0 -	- 4	0 -	- 2.5	0	- 4	0 –	2.5	10	9	5	4		8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	2.5	10	ϕD	+	+	ϕd
	10	18	0	- 8	0 –	7	0 –	5	0 -	- 4	0 -	- 2.5	0	- 4	0 -	2.5	10	9	5	4		8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	10	18				1
	18	30	0	- 10	0 -	8	0 –	6	0 -	- 5	0 -	- 2.5	0	- 5	0 –	2.5	13	10	6	5		10	8	5	4	8	6	5	4	2.5	8	6	3	2.5	1.5	18	30		_	4	
	30	50	0	- 12	0 -	10	0 –	8	0 -	- 6	0 -	- 2.5	0	- 6	0 –	2.5	15	13	8	6		12	10	6	5	9	8	6	5	2.5	9	8	4	3	1.5	30	50	•	F	-	
	50	80	0	- 15	0 -	12	0 –	9	0 -	- 7	0 -	- 4	0	- 7	0 -	4	19	15	9	7		19	15	7	5	11	9	7	5	4	11	9	5	3.5	2	50	80	C	Cylindrica	al bor	re
	80	120	0	- 20	0 -	15	0 -	10	0 -	- 8	0 -	- 5	0	- 8	0 -	5	25	19	10	8		25	19	8	6	15	11	8	6	5	15	11	5	4	2.5	80	120		-		
1	20	150	0	- 25	0 -	18	0 -	13	0 -	- 10	0 -	-7	0	- 10	0 -	7	31	23	13	10		31	23	10	8	19	14	10	8	7	19	14	7	5	3.5	120	150		В		
1	50	180	0	- 25	0 -	18	0	13	0 -	- 10	0 -	- 7	0	- 10	0 -	7	31	23	13	10		31	23	10	8	19	14	10	8	7	19	14	7	5	3.5	150	180		-		
1	80	250	0	- 30	0 -	22	0 -	15	0 -	- 12	0 -	- 8	0	- 12	0 -	8	38	28	15	12		38	28	12	9	23	17	12	9	8	23	17	8	6	4	180	250	1			
2	250	315	0	- 35	0 –	25	0 -	18	0 -	- 15	-	-	0	- 15	-	-	44	31	18	15		44	31	14	11	26	19	14	11	-	26	19	9	8	-	250	315	1 I	_	1	
3	815	400	0	- 40	0 -	30	0 - 2	23	0 -	- 18	-	-	0	- 18	-	-	50	38	23	18		50	38	18	14	30	23	18	14	-	30	23	12	9	-	315	400			_ _	
4	00	500	0	- 45	0 –	35	0 -2	28	0 -	- 23	-	-	0	-23	-	-	56	44	28	23		56	44	21	17	34	26	21	17	-	34	26	14	12	-	400	500		Taper	1	.†
Ę	500	630	0	- 50	0 –	40	0 -3	35	-	-	-	-	-	-	-	-	63	50	35	-		63	50	26	-	38	30	26	-	-	38	30	18	-	-	500	630	ϕD	0r 1/30		ϕd
e	630	800	0	- 75	0 -	50	0 - 4	45	-	-	-	-	-	-	-	-	94	63	45	-		94	63	34	-	56	38	34	-	-	56	38	23	-	-	630	800		0' 30		
8	800	1 000	0	- 100	0 -	60	0 -0	60	-	-	-	-	-	-	-	-	125	75	60	-		125	75	45	-	75	45	45	-	-	75	45	30	-	-	800	1 000			7	
1 (000	1 250	0	- 125	0 –	75	0 -2	75	-	-	-	-	-	-	-	-	156	94	75	-		156	94	56	-	94	56	56	-	-	94	56	38	-	-	1 000	1 250	+	F	-	
12	250	1 600	0	- 160		-		-	-	-	-	-	-	-	-	-	200	-	-	-		200	-	-	-	120	-	-	-	-	120	-	-	-	-	1 250	1 600	-	Tapered	j bore	e
16	600	2 000	0	- 200		-		-	-	-	-	-	-	-	-	-	250	-	-	-		250	-	-	-	150	-	-	-	-	150	-	-	-	-	1 600	2 000				-

(2) Inner ring (running accuracy and width)

Nomir diame		bore			out of a ner ring Kia		nbled		$S_{ m d}$			$S_{ia}^{2)}$				Single	inner ⊿ _B	•	idth		devia	ation				Sing	jle in	nner ring	g wid	th devia	ation		Inn	er ring	width V _{Bs}	varia		diame	
	d nm		class 0	class 6		class 4	class 2	class 5		class 2	class 5		class 2	clas	ss O	class		class	5		cla	ass 4	cl	ass 2	clas	ss 0 4)	cla	ISS 6 4)	class 5 4)		4) classes 4, 2		class 0	class 6		class 4	class 2		d 1m
over	up	p to			max.				max.			max.		<u> </u>	lower	upper low	ver u	pper low	ver	-	upper		upper		upper		upper		upper		upper				max.			over	up to
_		0.6	10	5	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	40	0 -	40	0 -	40		0	- 40	0	- 40	-	-	-	_	0	- 250	0	- 250	12	12	5	2.5	1.5	-	0.6
0.6	;	2.5	10	5	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	40	0 -	40	0 –	40		0	- 40	0	- 40	-	-	-	_	0	- 250	0	- 250	12	12	5	2.5	1.5	0.6	2.5
2.5	5	10	10	6	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	120	0 -	120	0 –	40		0	- 40	0	- 40	0	- 250	0	- 250	0	- 250	0	- 250	15	15	5	2.5	1.5	2.5	10
10		18	10	7	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	120	0 –	120	0 –	80		0	- 80	0	- 80	0	- 250	0	- 250	0	- 250	0	- 250	20	20	5	2.5	1.5	10	18
18	1	30	13	8	4	3	2.5	8	4	1.5	8	4	2.5	0 -	120	0 -	120	0 -	120		0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	0	- 250	20	20	5	2.5	1.5	18	30
30		50	15	10	5	4	2.5	8	4	1.5	8	4	2.5	0 -	120	0 -	120	0 -	120		0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	0	- 250	20	20	5	3	1.5	30	50
50		80	20	10	5	4	2.5	8	5	1.5	8	5	2.5	0 -	150	0 -	150	0 -	150		0	- 150	0	- 150	0	- 380	0	- 380	0	- 250	0	- 250	25	25	6	4	1.5	50	80
80	1	120	25	13	6	5	2.5	9	5	2.5	9	5	2.5	0 -	200	0 –	200	0 – 2	200		0	- 200	0	- 200	0	- 380	0	- 380	0	- 380	0	- 380	25	25	7	4	2.5	80	120
120	1	150	30	18	8	6	2.5	10	6	2.5	10	7	2.5	0 –	250	0 –	250	0 – 2	250		0	- 250	0	- 250	0	- 500	0	- 500		- 380	0	- 380	30	30	8	5	2.5	120	150
150	1	180	30	18	8	6	5	10	6	4	10	7	5	0 -	250	0 - 1	250	0 - 2	250		0	- 250	0	- 250	0	- 500	0	- 500	0	- 380	0	- 380	30	30	8	5	4	150	180
180	2	250	40	20	10	8	5	11	7	5	13	8	5	0 -	300	0 -	300	0 - 3	300		0	- 300	0	- 300	0	- 500	0	- 500	0	- 500	0	- 500	30	30	10	6	5	180	250
250	3	315	50	25	13	10	-	13	8	-	15	9	-	0 -	350	0 -	350	0 - 3	350		0	- 350	-	-	0	- 500	0	- 500	0	- 500	-	-	35	35	13	8	-	250	315
315	4	400	60	30	15	13	-	15	9	-	20	12	-	0 -	400	0	400	0 - 4	400		0	- 400	-	-	0	- 630	0	- 630	0	- 630	-	-	40	40	15	9	-	315	400
400	5	500	65	35	20	15	-	18	11	-	25	15	-	0 -	450	0 -	450	0	450		0	- 450	-	-	-	-	-	-	-	-	-	-	50	45	18	11	-	400	500
500		530	70	40	25	-	-	25	-	-	30	-	-	0 -	000	-		0 - 6			-	-	-	-	-	-	-	-	-	-	-	-	60	50	20	-	-	500	630
630		800	80	50	30	-	-	30	-	-	35	-	-	0 -	750	-		-	750		-	-	-	-	-	-	-	-	-	-	-	-	70	60	23	-	-	630	800
800		000	90	60	40	-	-	40	-	-	45	-	-	0 -				0 -1			-	-	-	-	-	-	-	-	-	-	-	-	80	60	35	-	-	800	1 000
1 000	12		100	70	50	-	-	50	-	-	60	-	-	0 -		0 -1.	250	0 -12	250		-	-	-	-	-	-	-	-	-	-	-	-	100	60	45	-	-	1 000	1 250
1 250	16		120	-	-	-	-	-	-	-	-	-	-	0 -			-		-		-	-	-	-	-	-	-	-	-	-	-	-	120	-	-	-	-	1 250	1 600
1 600	2 0	000	140	-	-	-	-	-	-	-	-	-	-	0 -	2 000		-		-		-	-	-	-	-	-	-	-	-	-	-	-	140	-	-	-	-	1 600	2 000

 $S_{
m d}$: perpendicularity of inner ring face with respect to the bore $S_{
m ia}$: axial runout of assembled bearing inner ring

[Notes] 1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.

2) These shall be applied to deep groove ball bearings and angular contact ball bearings.

These shall be appplied to individual bearing rings manufactured for matched pair or stack bearings.
 Also applicable to the inner ring with tapered bore of d ≥ 50 mm.

[Remark] Values in Italics are prescribed in JTEKT standards.
Table 7-3 (2) Radial bearing tolerances (tapered roller bearings excluded)

(3) Outer ring (outside diameter)

	omin			Singl	e pla	ine me	an ou	itside d	diame	eter dev	viatio	on		ngle ou imeter		lian		Single	e plan	e	out	side d	iamet	er var	iation	V_{Dsp}			[sealed type		Mean diame				Nom	
ou	utside D						Δ	1_{Dmp}					ula		1)	uon	Dian	neter s	eries	7, 8, 9	Dia	neter	serie	s 0, 1	Diar	neter s	eries 2	2, 3, 4	Dia. ¹⁾ series		er series 0, 1, 2, 3, 4		ulame	V_{Dmp}		а		ide dia.
	mr	n	cl	ass O	cl	ass 6	cl	ass 5	c	lass 4	С	lass 2	clas	ss 4 ⁵⁾	cla	ss 2	class 0 ²⁾	class 6 ²⁾	class 5 ⁵	class 4 ⁵	class 0 ²	class 6 ²⁾	class 5 ⁵	class 4 ⁵⁾	class 0	²⁾ class 6 ²⁾	class 5 ⁵⁾	class 4 ⁵	class 2	class 0 $^{2)}$	class 6 2)	class 0 ²⁾	class 6 ²⁾	class 5	class 4	4 class 2	1	mm
ov	/er	up to	upper	lower	upper	lower	upper	lower	upper	r lower	uppe	er lower	upper	lower	upper	lower		ma	ax.			ma	ax.	-		m	ax.		max.	m	ax.			max.	-		over	up to
-	-	2.5	0	- 8	0	- 7	0	- 5	0	- 4	0	- 2.5	0	- 4	0 -	2.5	10	9	5	4	8	7	4	3	6	5	4	3	2.5	10	9	6	5	3	2	1.5	-	2.5
	2.5	6	0	- 8	0	- 7	0	- 5	0	- 4	0	- 2.5	0	- 4	0 -	- 2.5	10	9	5	4	8	7	4	3	6	5	4	3	2.5	10	9	6	5	3	2	1.5	2.5	i 6
	6	18	0	- 8	0	- 7	0	- 5	0	- 4	0	- 2.5	0	- 4	0 -	- 2.5	10	9	5	4	8	7	4	3	6	5	4	3	2.5	10	9	6	5	3	2	1.5	6	18
1	18	30	0	- 9	0	- 8	0	- 6	0	- 5	0	- 4	0	- 5	0 -	- 4	12	10	6	5	9	8	5	4	7	6	5	4	4	12	10	7	6	3	2.5	2	18	30
3	30	50	0	- 11	0	- 9	0	- 7	0	- 6	0	- 4	0	- 6	0 -	- 4	14	11	7	6	11	9	5	5	8	7	5	5	4	16	13	8	7	4	3	2	30	50
5	50	80	0	- 13	0	- 11	0	- 9	0	- 7	0	- 4	0	- 7	0 -	- 4	16	14	9	7	13	11	7	5	10	8	7	5	4	20	16	10	8	5	3.5	2	50	80
8	80	120	0	- 15	0	- 13	0	- 10	0	- 8	0	- 5	0	- 8	0 -	- 5	19	16	10	8	19	16	8	6	11	10	8	6	5	26	20	11	10	5	4	2.5	80	120
12	20	150	0	- 18	0	- 15	0	- 11	0	- 9	0	- 5	0	- 9	0 -	- 5	23	19	11	9	23	19	8	7	14	11	8	7	5	30	25	14	11	6	5	2.5	120	150
15	50	180	0	- 25	0	- 18	0	- 13	0	- 10	0	- 7	0	- 10	0 -	- 7	31	23	13	10	31	23	10	8	19	14	10	8	7	38	30	19	14	7	5	3.5	150	180
18	80	250	0	- 30	0	- 20	0	- 15	0	- 11	0	- 8	0	- 11	0 -	- 8	38	25	15	11	38	25	11	8	23	15	11	8	8	-	-	23	15	8	6	4	180	250
25	50	315	0	- 35	0	- 25	0	- 18	0	- 13	0	- 8	0	- 13	0 -	- 8	44	31	18	13	44	31	14	10	26	19	14	10	8	-	-	26	19	9	7	4	250	315
31	15	400	0	- 40	0	- 28	0	- 20	0	- 15	0	- 10	0	- 15	0 -	- 10	50	35	20	15	50	35	15	11	30	21	15	11	10	-	-	30	21	10	8	5	315	400
40	00	500	0	- 45	0	- 33	0	- 23	0	- 17	-	-	0	- 17	-	-	56	41	23	17	56	41	17	13	34	25	17	13	-	-	-	34	25	12	9	-	400	500
50	00	630	0	- 50	0	- 38	0	- 28	0	- 20	-	_	0	-20	_	_	63	48	28	20	63	48	21	15	38	29	21	15	-	-	-	38	29	14	10	-	500	630
63	30	800	0	- 75	0	- 45	0	- 35	_	_	_	_	_	_	_	_	94	56	35	-	94	56	26	_	55	34	26	_	_	_	_	55	34	18	_	_	630	800
80	00 .	1 000	0	- 100	0	- 60	0	- 50	-	_	-	_	-	-	_	-	125	75	50	-	125	75	38	-	75		38	-	-	-	_	75	45	25	-	-	800	1 000
1 00		1 250	0	- 125	0	- 75		- 63	_	_	_	_	_	_	_	_	156	94	63	_	156	94	47	_	94		47	_	_	_	_	94	56	31	_	_	1 000	1 250
1 25		1 600	0	- 160	0		-	- 80	_	_	_	_	_	_	_	_	200	113	80	_	200	113	60	_	120	68	60	_	_	_	_	120	68	40		_	1 250	1 600
-			0		-			_	-	_	-		-	_	_			150		-	-			-		_	-	-	-	_	_			-	_		1 600	2 000
			0										_	_					_	_				_			_			_	_							2 500
1 60 2 00		2 000 2 500	0 0	- 200 - 250	0	- 120 -	-	-	-	_	-				-	-	250 313	150 -			250 313	150 -			150 188							150 188	90 -			-	1 60 2 00	

(4) Outer ring (running accuracy and width)

Unit : μm

	ninal side dia.			out of ter rin		bled								Ring		varia	tion
out	D		J	K_{ea}	5			$S_{\mathrm{D}}{}^{4)}$			$S_{ea}^{(3)4}$)	$\Delta c_{\rm s}^{3)}$		V_{Cs}	3) s	
	mm	class 0	class 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	classes 0, 6, 5, 4, 2	classes 0, 6	class 5	class 4	class 2
ove	r up to			max.		_		max.			max.		upper lower		ma	x.	
-	2.5	15	8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
2	.5 6	15	8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
e	i 18	15	8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
18	30	15	9	6	4	2.5	8	4	1.5	8	5	2.5			5	2.5	1.5
30	50	20	10	7	5	2.5	8	4	1.5	8	5	2.5			5	2.5	1.5
50	80	25	13	8	5	4	8	4	1.5	10	5	4	Shall	Shall	6	3	1.5
80	120	35	18	10	6	5	9	5	2.5	11	6	5	conform to the tol-	con- form to	8	4	2.5
120	150	40	20	11	7	5	10	5	2.5	13	7	5	erance	the tol-	8	5	2.5
150	180	45	23	13	8	5	10	5	2.5	14	8	5	Δ_{Bs} on d	erance	8	5	2.5
180	250	50	25	15	10	7	11	7	4	15	10	7	of the	$V_{B{ m s}}$ on	10	7	4
250	315	60	30	18	11	7	13	8	5	18	10	7	same	d of	11	7	5
315	400	70	35	20	13	8	13	10	7	20	13	8	bearing	the same	13	8	7
400	500	80	40	23	15	-	15	12	-	23	15	-		bear-	15	9	-
500	630	100	50	25	18	-	18	13	-	25	18	-		ing	18	11	-
630	800	120	60	30	-	-	20	-	-	30	-	-			20	-	-
800	1 000	140	75	40	-	-	23	-	-	40	-	-			23	-	-
1 000	1 250	160	85	45	-	-	30	-	-	45	-	-			30	-	-
1 250	1 600	190	95	60	-	-	45	-	-	60	-	-			45	-	-
1 600	2 000	220	110	-	-	-	-	-	-	-	-	-			-	-	-
2 000	2 500	250	_	-	_	-	-	_	-	_	-	-			-	-	-

[Notes]

1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.

2) Shall be applied when locating snap ring is not fitted.

3) These shall be applied to deep groove ball bearings and angular contact ball bearings.

4) These shall not be applied to flanged bearings.

5) These shall not be applied to shielded bearings and sealed bearings.

[Remark]

Values in Italics are prescribed in JTEKT standards.

- d: nominal bore diameter
- D : nominal outside diameter
- B: nominal assembled bearing width

 $S_{
m D}$: perpendicularity of outer ring outside surface with respect to the face $S_{
m ea}$: axial runout of assembled bearing outer ring \varDelta_{C_8} : deviation of a single outer ring width

Koyo

7. Bearing tolerances

Koyo

Unit : µm

Unit : μm

(Refer.) Table 7-4 Tolerances for measuring instrument ball bearings (inch series) = ANSI/ABMA standards = (reference) (1)

) [Inner	ring	and	outer	ring	width	
-----	-------	------	-----	-------	------	-------	--

Nom bore	dia.	4			Single bo diameter	devi	ation		variation	Mean bor diameter	variation		l runout o nbled bea ring K _{ia}		asse	l runout d embled be r ring S _{ia}		Perpend ring face the bore	e with res		Single in outer rin deviation \mathcal{A}_{Bs}	g width	width	or outer variation $V_{B_{\rm S}}$, $V_{C_{\rm S}}$	
mı	n	classes 5P, 7P	class 9P		classes 5P, 7P		ass 9P	classes 5P, 7P	class 9P	classes 5P, 7P	class 9P	class 5P	class 7P	class 9P	class 5P	class 7P	class 9P	class 5P	class 7P	class 9P	clas 5P, 7		class 5P	class 7P	class 9P
over	up to	upper lowe	r upper low	er u	pper lower	uppe	r lower	ma	x.	ma	ax.		max.			max.			max.	1	upper	lower		max.	
-	10	0 - 5.1	0 - 2	.5	0 – 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	0	- 25.4	5.1	2.5	1.3
10	18	0 - 5.1	0 - 2	.5	0 - 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	0	- 25.4	5.1	2.5	1.3
18	30	0 – 5.1	0 - 2	.5	0 – 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	3.8	2.5	7.6	3.8	1.3	7.6	3.8	1.3	0	- 25.4	5.1	2.5	1.3

(2) Outer ring

Nominal		outsid deviati	le dia				neter o	tside deviat	ion			e plane ou eter variat V _{Dsp}			n outside neter varia V _{Dmp}		as	idial rui semble ter ring K	d bea	-	asse	runout o mbled be rring $S_{\rm ea}$		ring out		ace with	Single out flange out diameter o \varDelta_1	side deviation		
outside D mm	dia.	classe 5P, 7I		class 9P	Op	clas 5P,		Ided/	g	ass)P oen		sses 9, 7P Shielded/	class 9P Open		sses , 7P Shielded/	class 9P Open	clas 5P		ass P	class 9P	class 5P	class 7P	class 9P	class 5P	class 7P	class 9P	clas 5P,			sses , 7P
		5P, 71	P	9P		pe	seale	ed		pe	type	sealed type	type	type	sealed type	type	5P		P	9P	JP	78	9P	5P	78	9P	эг,	78	эг,	/P
over up	o to l	upper lo	wer u	pper lowe	upper	lower	upper	lower	upper	lower		max.			max.			m	ax.			max.			max.		upper	lower	upper	lower
	18	0 –	5.1	0 - 2.5	0	- 5.1	+ 1	- 6.1	0	- 2.5	2.5	5.1	1.3	2.5	5.1	1.3	5.1	3	.8	1.3	7.6	5.1	1.3	7.6	3.8	1.3	0	- 25.4	0	- 50.8
18 3	30	0 –	5.1	0 - 3.8	0	- 5.1	+ 1	- 6.1	0	- 3.8	2.5	5.1	2	2.5	5.1	2	5.1	3	.8	2.5	7.6	5.1	2.5	7.6	3.8	1.3	0	- 25.4	0	- 50.8
30 5	50	0 –	5.1	0 - 3.8	0	- 5.1	+ 1	- 6.1	0	- 3.8	2.5	5.1	2	2.5	5.1	2	5.1	5	.1	2.5	7.6	5.1	2.5	7.6	3.8	1.3	0	- 25.4	0	- 50.8

d : nominal bore diameter

D : nominal outside diameter

B : nominal assembled bearing width

D1: nominal outer ring flange outside diameter

 C_1 : nominal outer ring flange width

Table 7-5 (1) Tolerances for metric series tapered roller bearings

= JIS B 1514-1 =

(1) Inner ring

Nom		Single plane		re	Singl diam		re deviation		le pla leter \				Mean)		dial i semb		ut of							s	Single in	ner ring	width	devi	ation				minal
bore diam d	eter	diameter de \varDelta				Δ	ds		V_{di}	sp		`	variat V _d			be		inn K _{ia}	er ring		$S_{ m c}$	L	S_{ia}					\varDelta_{I}	Bs					bor dia	meter d
m	m	classes 0, 6X classes 6, 5	class 4	class 2	clas	s 4	class 2	classes 0, 6X cla	ass 6 class	5 class 4	class 2	classes 0, 6X cla	iss 6 clas	s 5 class	4 class 2	classes 0, 6X	class 6 d	ass 5 c	lass 4 clas	s 2 class	5 class	4 class 2 cla	ss 4 class	s2 C	lass 0	cl	ass 6X	clas	s 6	class	ses 5, 4	С	lass 2	1	nm
over	up to	upper lower upper lower	upper lower	upper lower	upper Ic	ower u	upper lower		ma	x.			ma	ix.			'n	nax.			ma	к.	max.	upper	lower	upper	lower	upper Ic	ower	upper	lower	upper	lower	over	up to
-	10	0 - 12 0 - 7 ¹⁾	0 - 5	0 - 4	0 -	- 5	0 - 4	12	- 5	5 4	2.5	9		5 4	1.5	15	-	5	3 2	7	3	1.5	3 2	0	- 120	0	- 50	-	-	0 -	- 200	0	- 200	-	10
10	18	0 - 12 0 - 7	0 - 5	0 - 4	0 -	- 5	0 - 4	12	7 5	5 4	2.5	9	5	5 4	1.5	15	7	5	3 2	7	3	1.5	3 2	0	- 120	0	- 50	0 –	120	0 –	- 200	0	- 200	10	18
18	30	0 - 12 0 - 8	0 - 6	0 - 4	0 -	- 6	0 - 4	12	8 6	5 5	2.5	9	6	5 4	1.5	18	8	5	3 2.	5 8	4	1.5	4 2.5	5 0	- 120	0	- 50	0 –	120	0 -	200	0	- 200	18	30
30	50	0 - 12 0 - 10	0 - 8	0 - 5	0 -	- 8	0 - 5	12	10 8	3 6	3	9	8	5 5	2	20	10	6	4 2.	5 8	4	2	4 2.5	5 0	- 120	0	- 50	0 -	120	0 -	- 240	0	- 240	30	50
50	80	0 - 15 0 - 12	0 - 9	0 - 5	0 -	9	0 - 5	15	12 9	9 7	4	11	9	6 5	2	25	10	7	4 3	8	5	2	4 3	0	- 150	0	- 50	0 –	150	0 -	- 300	0	- 300	50	80
80	120	0 - 20 0 - 15	0 - 10	0 - 6	0 -	- 10	0 - 6	20	15 11	8	5	15	11	8 5	2.5	30	13	8	5 3	9	5	2.5	5 3	0	- 200	0	- 50	0 –	200	0 -	400	0	- 400	80	120
120	180	0 - 25 0 - 18	0 - 13	0 - 7	0 -	- 13	0 - 7	25	18 14	l 10	7	19 .	14	9 7	3.5	35	18	11	6 4	10	6	3.5	7 4	0	- 250	0	- 50	0 -	250	0 -	500	0	- 500	120	180
180	250	0 - 30 0 - 22	0 - 15	0 - 8	0 -	- 15	0 - 8	30 2	22 17	11	7	23	16 1	1 8	4	50	20	13	8 5	11	7	5	8 5	0	- 300	0	- 50	0 –	300	0 -	600	0	- 600	180	250
250	315	$0 - 35 0 - 25^{1)}$	0 - 18	0 - 8	0 -	- 18	0 - 8	35 2	25 19	12	8	26	19 1	3 9	5	60	30	13	9 6	13	8	5.5	9 6	0	- 350	0	- 50	0 -	350	0 -	700	0	- 700	250	315
315	400	$0 - 40 \ 0 - 30^{1)}$			-	-		40 3	30 23	3 –	-	30 2	23 1	5 –	-	70	35	15		15	-			0	- 400	0	- 50	0 -	400	0 -	- 800 ²⁾	-	-	315	400
400	500	$0 - 45 0 - 35^{1)}$			-	-		45 3	35 28	3 –	_	34 2	26 1	7 _	-	80	40	20		17	-		- -	0	- 450	0	- 50	0 –	450	0 –	900 ²⁾	-	-	400	500
500	630	$0 - 60 0 - 40^{1)}$			-	-		60 4	40 35	5 –	_	40 3	30 2	0 -	-	90	50	25		20	-		- -	0	- 500	-	-	0 –	500	0 -	- 1 100 ²⁾	-	-	500	630
630	800	$0 - 75 \ 0 - 50^{1)}$			-	-		75 ह	50 45	5 –	-	45 3	38 2	5 –	-	100	60	30		25	-		- -	0	- 750	-	-	0 -	750	0 -	- 1 600 ²⁾	-	-	630	800
800	1 000	$0 - 100 0 - 60^{1)}$			-	-		100 6	60 60) –	_	55 4	45 3	0 -	-	115	75	37		30	-		- -	0	- 1 000	-	-	0 - 1	1 000	0 -	2 000 ²⁾	-	-	800	1 000

 S_{d} : perpendicularity of inner ring face with respect to the bore

 S_{D} : perpendicularity of outer ring outside surface with respect to the face

 S_{ea} : axial runout of assembled bearing outer ring

 S_{ia} : axial runout of assembled bearing inner ring

(2-1) Outer ring

Radial runout of Single plane mean outside Single outside Single plane Mean outside Single outer ring Nominal Nominal Nominal assembled diameter deviation diameter deviation outside diameter diameter variation width deviation outside outside bore bearing outer ring variation diameter diameter diameter K_{ea} $S_{ea}^{(3)}$ $S_{
m D}{}^{3)}$ $\Delta D_{\rm mp}$ $\Delta D_{\rm S}$ V_{Dsp} V_{Dmp} $\Delta c_{\rm s}$ DDdclasses 0.6X class 6 class 5 class 4 class 2 classes class 6 class 5 class 4 class 2 classes 0.6X class 6 class 5 class 4 class 2 class 5 class 4 class 2 class 4 class 2 classes mm classes 0. 6X classes 6. 5 class 4 class 4 class 2 $\mathbf{m}\mathbf{m}$ mm class 6X class 2 0, 6, 5, 4, 2 over up to upper lower upper lower over up to lower upper lower upper lower upper lower max. over | up to upper upper lower upper lower max max max max В 18 4 2.5 6 4 2.5 4 1.5 18 10 0 - 100 0 12 0 -8 0 0 - 5 0 - 6 0 - 5 12 6 5 4 9 5 18 8 5 2.5 6 ϕD 4 1.5 ϕd 18 30 0 12 0 -8 0 6 0 5 0 - 6 0 - 5 12 8 6 5 4 9 6 5 4 2.5 18 9 6 4 2.5 8 5 2.5 18 30 10 18 0 - 100 30 50 7 0 5 7 7 5 2.5 20 7 5 2.5 8 4 2 5 2.5 30 50 18 30 0 0 14 0 q 0 0 5 - 7 0 14 9 5 4 11 5 10 - 100 50 25 13 30 50 80 0 16 0 -11 0 - 9 0 6 0 - 9 0 - 6 16 11 8 4 12 8 6 5 2.5 8 5 4 8 4 2.5 5 4 50 80 0 - 100 - 100 Shall 80 120 0 0 - 13 - 10 0 0 - 10 18 13 10 5 14 10 5 3 35 18 10 6 5 9 5 3 6 5 80 120 50 80 0 18 0 6 0 - 6 8 comform 120 0 20 15 5 15 40 20 11 7 5 10 5 3.5 7 5 120 150 80 120 0 - 100 150 0 - 20 0 - 15 0 - 11 0 - 7 - 11 0 - 7 11 8 11 8 6 3.5 to the 13 10 120 180 150 180 - 13 0 25 18 14 10 7 19 14 9 7 4 45 23 8 5 5 4 8 5 150 180 0 0 - 25 0 - 18 0 0 - 7 - 13 0 - 7 - 100 d : nominal bore tolerance diameter 180 250 0 - 30 0 - 20 - 15 0 - 15 - 8 30 20 15 11 8 23 15 8 5 50 25 15 10 7 11 7 5 10 7 180 250 180 250 0 - 100 Δ_{Bs} on 0 0 - 8 0 10 d of the D : nominal outside 250 315 0 - 35 0 - 25 0 - 18 0 - 9 0 - 18 0 - 9 35 25 19 14 8 26 19 13 9 5 60 30 18 11 7 13 8 6 10 7 250 315 250 315 0 - 100 diameter same 315 400 28 - 20 22 30 21 70 35 315 315 400 0 0 40 - 20 - 10 0 - 10 40 28 10 20 13 8 13 10 7 13 8 400 - 100 0 -0 0 0 15 14 10 6 bearing B : nominal inner ring 26 34 2517 400 500 0 0 – 33¹ 45 33 17 80 40 24 400 500 400 500 0 - 100 - 45 width 500 630 0 50 0 – 381 60 38 30 38 2920 100 50 30 20 500 630 500 630 C : nominal outer ring width 630 800 0 - 75 0 -45¹ 80 45 38 55 34120 60 36 25 630 800 630 800 25 T : nominal assembled 140 75 800 1 000 0 - 100 0 -60¹ 100 60 50 75 4530 43 _ 30 800 1 000 800 1 000 _ _ bearing width 1 000 - 125 $0 - 80^{1}$ 130 75 65 90 56 38 160 85 52 38 1 000 1 250 1 250 0 _ _ _ _ _ 170 90 90 100 68 50 180 95 62 50 1 250 1 600 0 -160 0 -100^{1} 1 250 1 600

[Notes] 1) Class 6 values are prescribed in JTEKT standards.

2) These shall be applied to bearings of tolerance class 5.

These shall not be applied to flanged bearings.

[Remark] Values in Italics are prescribed in JTEKT standards.

A 66

(2-2) Outer ring

Unit : µm

Unit : µm

Koyo

Unit : μm

Table 7-5 (2) Tolerances for metric series tapered roller bearings

(3) Assembled bearing width and effective width

Unit : µm

diame	al bore ter			Act	ual be	Ŭ,	width Ts	deviation						nit wic	tive in th de T1s		ı	
m	ım	clas	ss 0	clas	s 6X	clas	s 6	classes 5, 4	cla	ss 2	clas	ss 0	clas	s 6X		es 5, 4	clas	ss 2
over	up to	upper	lower	upper	lower	upper	lower	upper lowe	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
-	10	+ 200	0	+ 100	0	-	-	+ 200 - 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
10	18	+ 200	0	+ 100	0	+ 200	0	+ 200 - 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
18	30	+ 200	0	+ 100	0	+ 200	0	+ 200 - 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
30	50	+ 200	0	+ 100	0	+ 200	0	+ 200 - 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
50	80	+ 200	0	+ 100	0	+ 200	0	+ 200 - 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
80	120	+ 200	- 200	+ 100	0	+ 200	- 200	+ 200 - 200	+ 200	- 200	+ 100	- 100	+ 50	0	+ 100	- 100	+ 100	- 100
120	180	+ 350	- 250	+ 150	0	+ 350	- 250	+ 350 - 250	+ 200	- 250	+ 150	- 150	+ 50	0	+ 150	- 150	+ 100	- 100
180	250	+ 350	- 250	+ 150	0	+ 350	- 250	+ 350 - 250	+ 200	- 300	+ 150	- 150	+ 50	0	+ 150	- 150	+ 100	- 150
250	315	+ 350	- 250	+ 200	0	+ 350	-250	+ 350 - 250	+ 200	- 300	+ 150	- 150	+ 100	0	+ 150	- 150	+ 100	- 150
315	400	+ 400	- 400	+ 200	0	+400	-400	+ 400 - 400) _	-	+ 200	- 200	+ 100	0	+ 200	$-200^{1)}$	-	-
400	500	+ 450	- 450	+ 200	0	+ 400	-400	+ 450 - 450) –	-	+ 225	- 225	+ 100	0	+ 225	- 225 ¹⁾	-	-
500	630	+ 500	- 500	-	-	+ 500	-500	+ 500 - 500) –	-	-	-	-	-	-	-	-	-
630	800	+ 600	- 600	-	-	+ 600	- 600	+ 600 - 600) _	-	-	-	-	-	-	-	-	-
800	1 000	+ 750	- 750	-	-	+ 750	- 750	+ 750 - 750) –	-	-	-	-	-	-	-	-	-

Nomin diamet				ctual e idth de	eviati	ve outer rin on T2s	g	
m	m	clas	ss O	clas	s 6X	classes 5, 4	clas	ss 2
over	up to	upper	lower	upper	lower	upper lower	upper	lower
-	10	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100
10	18	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100
18	30	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100
30	50	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100
50	80	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100
80	120	+ 100	- 100	+ 50	0	+ 100 - 100	+ 100	- 100
120	180	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150
180	250	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150
250	315	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150
315	400	+ 200	- 200	+ 100	0	$+200 - 200^{1)}$	-	-
400	500	+ 225	- 225	+ 100	0	$+ 225 - 225^{1)}$	-	-
500	630	-	-	-	-		-	-
630	800	-	-	-	-		-	-
800	1 000	-	-	-	-		-	-

[Remark] Values in Italics are prescribed in JTEKT standards.

-		Master outer ring
ϕd		$-\phi d$
	Master in sub-unit	iner
	φ d	

Table 7-6Tolerances for metric series double-row and four-row
tapered roller bearings (class 0)= BAS 1002 =

(1) Inner ring, outer ring width and overall width

Nomii	nal bore	Single pl	ane mean	Single plane bore	Mean bore		Single ou	ıter rina			l inner ri idth devi	
diame ر		bore diar deviation	neter	diameter variation	diameter variation			ring width	Doubl	le-row	Four	-row
m	m	Δ	dmp	V_{dsp}	V_{dmp}	$K_{\rm ia}$	Δ_{Bs}	, ⊿ _{Cs}	Δ	Ts	\varDelta_{Ts} ,	$\varDelta_{\rm Ws}$
over	up to	upper	lower	max.	max.	max.	upper	lower	upper	lower	upper	lower
30	50	0	- 12	12	9	20	0	- 120	+ 240	- 240	-	-
50	80	0	- 15	15	11	25	0	- 150	+ 300	- 300	-	-
80	120	0	- 20	20	15	30	0	- 200	+ 400	- 400	+ 500	- 500
120	180	0	- 25	25	19	35	0	- 250	+ 500	- 500	+ 600	- 600
180	250	0	- 30	30	23	50	0	- 300	+ 600	- 600	+ 750	- 750
250	315	0	- 35	35	26	60	0	- 350	+ 700	- 700	+ 900	- 900
315	400	0	- 40	40	30	70	0	- 400	+ 800	- 800	+ 1 000	- 1 000
400	500	0	- 45	45	34	80	0	- 450	+ 900	- 900	+ 1 200	- 1 200
500	630	0	- 60	60	40	90	0	- 500	+ 1 000	$- \ 1 \ 000$	+ 1 200	- 1 200
630	800	0	- 75	75	45	100	0	- 750	+ 1 500	- 1 500	-	-
800	1 000	0	- 100	100	55	115	0	- 1 000	+ 1 500	- 1 500	-	-

Kia : radial runout of assembled bearing inner ring

(2) Outer ring Unit : μm

diamet 1	al outside er D m	outside d deviation		Single plane outside diameter variation V_{Dsp}	Mean out- side diameter variation V_{Dmp}	K _{ea}
over	up to	upper	lower	max.	max.	max.
50	80	0	- 16	16	12	25
80	120	0	- 18	18	14	35
120	150	0	- 20	20	15	40
150	180	0	- 25	25	19	45
180	250	0	- 30	30	23	50
250	315	0	- 35	35	26	60
315	400	0	- 40	40	30	70
400	500	0	- 45	45	34	80
500	630	0	- 50	60	38	100
630	800	0	- 75	80	55	120
800	1 000	0	- 100	100	75	140
1 000	1 250	0	- 125	130	90	160
1 250	1 600	0	- 160	170	100	180

Kea : radial runout of assembled bearing outer ring

Koyo

Unit : µm

- d : nominal bore diameter D : nominal outside diameter
- *B* : nominal double inner ring width
- C : nominal double outer ring width
- *T*, *W* : nominal overall width of outer rings (inner rings)

d : nominal bore diameter

- T : nominal assembled bearing width
- T_1 : nominal effective width of inner sub-unit
- ${\it T}_2$: nominal effective width of outer ring

Table 7-7 Tolerances and permissible values for inch series tapered roller bearings = ANSI/ABMA 19 =

			(1) Ir	nner r	ing						Un	iit : μm
Applied	Nominal bo				Deviat	ion of a	a single	bore o	diamete	er⊿ _{ds}		
bearing	d , mm	(1/25.4)	clas	ss 4	clas	ss 2	clas	ss 3	cla	ss O	clas	s 00
type	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
	-	76.2 (3.0)	+ 13	0	+ 13	0	+ 13	0	+ 13	0	+ 8	0
	76.2 (3.0)	266.7 (10.5)	+ 25	0	+ 25	0	+ 13	0	+ 13	0	+ 8	0
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+ 25	0	+ 13	0	+ 13	0	+ 8	0
All types	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	+ 25	0	-	-	-	-
()poo	609.6 (24.0)	914.4 (36.0)	+ 76	0	-	-	+ 38	0	-	-	-	-
	914.4 (36.0)	1 219.2 (48.0)	+ 102	0	-	-	+ 51	0	-	-	-	-
	1 219.2 (48.0)	-	+ 127	0	-	-	+ 76	0	-	-	-	_

					0							•
Applied	Nominal outs	ide diameter		D	eviatio	n of a s	single o	outside	diame	ter <i>A</i>	Ds	
bearing	D , mm	(1/25.4)	clas	ss 4	clas	ss 2	clas	ss 3	clas	ss 0	clas	s 00
type	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
	-	266.7 (10.5)	+ 25	0	+ 25	0	+ 13	0	+ 13	0	+ 8	0
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+ 25	0	+ 13	0	+ 13	0	+ 8	0
All	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	+ 25	0	-	-	-	-
types	609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 76	0	+ 38	0	-	-	-	-
	914.4 (36.0)	1 219.2 (48.0)	+ 102	0	-	-	+ 51	0	-	-	-	-
	1 219.2 (48.0)	-	+ 127	0	-	-	+ 76	0	-	-	-	-

(3) Radial runout of assembled bearing inner ring/outer ring

Unit : µm

Unit : µm

Applied	Nominal outs	ide diameter	Radial runout of inner ring/outer ring K_{ia} , K_{ea}										
bearing	D , mm	(1/25.4)	class 4	class 2	class 3	class 0	class 00						
type	over	up to	max.	max.	max.	max.	max.						
	-	266.7 (10.5)	51	38	8	4	2						
	266.7 (10.5)	304.8 (12.0)	51	38	8	4	2						
All	304.8 (12.0)	609.6 (24.0)	51	38	18	-	-						
types	609.6 (24.0)	914.4 (36.0)	76	51	51	-	-						
	914.4 (36.0)	1 219.2 (48.0)	76	-	76	-							
	1 219.2 (48.0)	-	76	-	76	-	-						

Applied	Nominal bo	re diameter	Nominal outs	ide diameter	Deviation of	f the actual I	bearing width	n and overall	width of inn	er rings/oute	er rings $arDelta$ $_{1}$	$r_{\rm s}, \varDelta_{\rm Ws}$
bearing	d, mm	(1/25.4)	D, mm	(1/25.4)	clas	ss 4	clas	ss 2	clas	ss 3	classe	es 0,00
type	over	up to	over	up to	upper	lower	upper	lower	upper	lower	upper	lower
	-	101.6 (4.0)	-	-	+ 203	0	+ 203	0	+ 203	- 203	+ 203	- 203
	101.6 (4.0)	266.7 (10.5)			+ 356	- 254	+ 203	0	+ 203	- 203	+ 203	- 203
Single-row	266.7 (10.5)	304.8 (12.0)	-	-	+ 356	- 254	+ 203	0	+ 203	- 203	+ 203	$-203^{(1)}$
Single-row	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-	-	+ 381	- 381	+ 203	- 203	-	-
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-	-	+ 381	- 381	+ 381	- 381	-	-
	609.6 (24.0)		-	-	+ 381	- 381	-	-	+ 381	- 381	-	-
	-	101.6 (4.0)	-	-	+ 406	0	+ 406	0	+ 406	- 406	+ 406	- 406
	101.6 (4.0)	266.7 (10.5)	-	-	+ 711	- 508	+ 406	- 203	+ 406	- 406	+ 406	- 406
Double-row	266.7 (10.5)	304.8 (12.0)	-	-	+ 711	- 508	+ 406	- 203	+ 406	- 406	+ 406	$- 406^{1)}$
Double-tow	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-	-	+ 762	- 762	+ 406	- 406	-	-
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-	-	+ 762	- 762	+ 762	- 762	-	-
	609.6 (24.0)		-	-	+ 762	- 762	-	-	+ 762	- 762	-	-
Double-row	-	127.0 (5.0)	-	-	-	-	+ 254	0	+ 254	0	-	-
(TNA type)	127.0 (5.0)		-	-	-	-	+ 762	0	+ 762	0	-	-
Four-row	Total dimen	sional range	-	-	+1 524	-1 524	+1 524	-1 524	+1 524	-1 524	+1 524	-1 524

[Note] 1) These shall be applied to bearings of class 0.

Koyo

Unit : µm

d : nominal bore diameter

D : nominal outside diameter

T, *W* : nominal assembled bearing width and nominal overall width of outer rings (inner rings)

(2) Outer ring

7. Bearing tolerances

Table 7-8Tolerances for metric J series tapered roller bearings $^{1)}$

(1) Bore diameter and width of inner ring and assembled bearing width

Nomin diame	al bore ter		Devi	ation	of a sin ⊿	•	re dian	neter			Devia	tion o	fasing ⊿		er ring	width			Devi	iation o	f the ac \varDelta		aring w	vidth		Nomin diame	nal bore ter
m		class	s PK	clas	s PN	class	B PC	class	s PB	class	s PK	clas	s PN	clas	s PC	class	s PB	class	B PK	class	5 PN	class	s PC	class	B PB		d 1m
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	over	up to
10	18	0	- 12	0	- 12	0	- 7	0	- 5	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	10	18
18	30	0	- 12	0	- 12	0	- 8	0	- 6	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	18	30
30	50	0	- 12	0	- 12	0	- 10	0	- 8	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	30	50
50	80	0	- 15	0	- 15	0	- 12	0	- 9	0	- 150	0	- 50	0	- 300	0	- 300	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	50	80
80	120	0	- 20	0	- 20	0	- 15	0	- 10	0	- 150	0	- 50	0	- 300	0	- 300	+ 200	- 200	+ 100	0	+ 200	- 200	+ 200	- 200	80	120
120	180	0	- 25	0	- 25	0	- 18	0	- 13	0	- 200	0	- 50	0	- 300	0	- 300	+ 350	- 250	+ 150	0	+ 350	- 250	+ 200	- 250	120	180
180	250	0	- 30	0	- 30	0	- 22	0	- 15	0	- 200	0	- 50	0	- 350	0	- 350	+ 350	- 250	+ 150	0	+ 350	- 250	+ 200	- 300	180	250
250	315	0	- 35	0	- 35	0	- 22	0	- 15	0	- 200	0	- 50	0	- 350	0	- 350	+ 350	- 250	+ 200	0	+ 350	- 300	+ 200	- 300	250	315

(2) Outside diameter and width of outer ring and radial runout of assembled bearing inner ring/ outer ring

diamete			Devia	tion of	fasing ⊿	le outs	ide dia	meter			Devia	ition o	fasino	jle out _{Cs}	er ring	width		Radia		ner ring/oute	r ring	Nominal diameter	r
I m		clas	s PK	clas	s PN	clas	s PC	class	s PB	class	s PK	clas	s PN	clas	s PC	clas	s PB	class PK	class PN	class PC	class PB	-	D im
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	max.	max.	max.	max.	over	up to
18	30	0	- 12	0	- 12	0	- 8	0	- 6	0	- 150	0	- 100	0	- 150	0	- 150	18	18	5	3	18	30
30	50	0	- 14	0	- 14	0	- 9	0	- 7	0	- 150	0	- 100	0	- 150	0	- 150	20	20	6	3	30	50
50	80	0	- 16	0	- 16	0	- 11	0	- 9	0	- 150	0	- 100	0	- 150	0	- 150	25	25	6	4	50	80
80	120	0	- 18	0	- 18	0	- 13	0	- 10	0	- 200	0	- 100	0	- 200	0	- 200	35	35	6	4	80	120
120	150	0	- 20	0	- 20	0	- 15	0	- 11	0	- 200	0	- 100	0	- 200	0	- 200	40	40	7	4	120	150
150	180	0	- 25	0	- 25	0	- 18	0	- 13	0	- 200	0	- 100	0	- 250	0	- 250	45	45	8	4	150	180
180	250	0	- 30	0	- 30	0	- 20	0	- 15	0	- 250	0	- 100	0	- 250	0	- 250	50	50	10	5	180	250
250	315	0	- 35	0	- 35	0	- 25	0	- 18	0	- 250	0	- 100	0	- 300	0	- 300	60	60	11	5	250	315
315	400	0	- 40	0	- 40	0	- 28	-	-	0	- 250	0	- 100	0	- 300	-	-	70	70	13	-	315	400

[Note] 1) Bearings with supplementary code "J" attached at the front of bearing number

Ex. JHM720249/JHM720210, and the like

TCB ϕD δd

d : nominal bore diameter

D : nominal outside diameter

 \boldsymbol{B} : nominal inner ring width

C : nominal outer ring width

 ${\cal T}$: nominal assembled bearing width

Koyo

Unit : µm

Table 7-9 Tolerances for thrust ball bearings = JIS B 1514-2 = (1) Shaft race and central race

Single plane mean bore diameter deviation Single plane bore Nominal bore Race raceway to back diameter variation face thickness variation diameter of shaft \varDelta_{dmp} or \varDelta_{d2mp} V_{dsp} or V_{d2sp} $S_{i}^{(1)(2)}$ or central race classes classes 0.6.5 class 4 class 4 class 0 class 6 class 5 class 4 d or d_2 , mm 0, 6, 5 lower lower over up to upper upper max. max. 18 0 8 - 7 5 10 5 3 2 _ 0 6 2 18 30 0 - 10 0 - 8 8 6 10 5 3 30 50 0 - 12 0 - 10 9 8 10 6 3 2 50 80 0 - 15 0 - 12 11 9 10 7 4 3 80 120 0 - 20 0 - 15 15 11 15 8 4 3 120 180 0 0 19 14 15 9 5 4 - 25 - 18 180 250 - 22 17 20 10 5 4 0 - 30 0 23 250 315 - 35 - 25 26 19 25 13 7 5 0 0 400 0 - 30 30 23 30 15 7 5 315 0 - 40 400 500 0 - 45 0 - 35 34 26 30 18 9 6 500 630 0 - 50 0 - 40 38 30 35 21 11 7 25 630 800 0 - 75 0 - 50 55 40 40 13 8 800 1 000 0 - 100 _ 75 45 30 15 1 000 1 250 50 18 0 - 125 95 35 _

[Notes] 1) Double direction thrust ball bearings shall be included in d of single direction thrust ball bearings of the same diameter series and nominal outside diameter.

2) Applies only to thrust ball bearings and cylindrical roller thrust bearings with 90° contact angle.

(2) Housing race

Unit : µm

Nominal diameter	r		le plane ieter dev ⊿ i		itside	Single p outside o variation V _I	diameter	$\begin{array}{c} \text{Race raceway to} \\ \text{back face thickness} \\ \text{variation} \\ S_{\text{e}}^{(1)(2)} \end{array}$
m	m	classes	s 0, 6, 5		ss 4	classes 0, 6, 5	class 4	classes 0, 6, 5, 4
over	up to	upper	lower	upper	lower	ma	ax.	max.
10	18	0	- 11	0	- 7	8	5	
18	30	0	- 13	0	- 8	10	6	
30	50	0	- 16	0	- 9	12	7	
50	80	0	- 19	0	- 11	14	8	
80	120	0	- 22	0	- 13	17	10	
120	180	0	- 25	0	- 15	19	11	
180	250	0	- 30	0	- 20	23	15	Shall conform to
250	315	0	- 35	0	- 25	26	19	the tolerance S_i on d or d_2 of the
315	400	0	- 40	0	- 28	30	21	same bearing
400	500	0	- 45	0	- 33	34	25	
500	630	0	- 50	0	- 38	38	29	
630	800	0	- 75	0	- 45	55	34	
800	1 000	0	- 100	0	- 60	75	45	1
1 000	1 250	0	- 125	-	-	95	-	
1 250	1 600	0	- 160	-	-	120	-	

[Notes] 1) These shall be applied to race with flat back face only.

2) Applies only to thrust ball bearings and cylindrical roller thrust bearings with 90° contact angle.

 ϕd

Unit : µm

- d : shaft race nominal bore diameter
- d_2 : central race nominal bore diameter
- D: housing race nominal outside diameter
- B : central race nominal height
- T: nominal bearing height (single direction)
- T_1 , T_2 : nominal bearing height (double direction)

(3) Bearing height and central race height	Unit : μm
--	----------------

		Single o	lirection			Double	direction			
diame	al bore ter d m	bearing he	of the actual ight	bearing hei	of the actual $ight$	bearing he	of the actual $ight$	Deviation central rac ⊿	•	
		clas	class 0		ss O	clas	ss O	class 0		
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	
-	30	0	- 75	+ 50	- 150	0	- 75	0	- 50	
30	50	0	- 100	+ 75	-200	0	- 100	0	- 75	
50	80	0	- 125	+ 100	-250	0	- 125	0	- 100	
80	120	0	- 150	+ 125	- 300	0	- 150	0	- 125	
120	180	0	- 175	+ 150	- 350	0	- 175	0	- 150	
180	250	0	- 200	+ 175	- 400	0	-200	0	- 175	
250	315	0	- 225	+ 200	- 450	0	- 225	0	- 200	
315	400	0	- 300	+ 250	- 600	0	- 300	0	-250	

[Note] 1) Double direction thrust ball bearings shall be included in d of single direction thrust ball bearings of the same diameter series and nominal outside diameter.

[Remark] Values in Italics are prescribed in JTEKT standards.

Table 7-10 Tolerances for spherical thrust roller bearings (class 0) = JIS B 1514-2 = (1) Shaft race

Unit : µm

Koyo

Nominal bo	ore diameter	•••	ne mean bore	Single plane bore		Refer.	
(d	diameter d	eviation	diameter variation		Actual bearing	height deviation
m	ım	Δ	dmp	V_{dsp}	$S_{ m d}$	4	1 _{Ts}
over	up to	upper	lower	max.	max.	upper	lower
50	80	0	- 15	11	25	+ 150	- 150
80	120	0	- 20	15	25	+ 200	-200
120	180	0	- 25	19	30	+ 250	- 250
180	250	0	- 30	23	30	+ 300	- 300
250	315	0	- 35	26	35	+ 350	-350
315	400	0	- 40	30	40	+ 400	-400
400	500	0	- 45	34	45	+450	- 450

 S_{d} : perpendicularity of inner ring face with respect to the bore

[Remark] Values in Italics are prescribed in JTEKT standards.

	(2) Hous	sing race	Unit : μm
Nominal outs	side diameter	diameter dev	mean outside iation
over	up to	upper	lower
120	180	0	- 25
180	250	0	- 30
250	315	0	- 35
315	400	0	- 40
400	500	0	- 45
500	630	0	- 50
630	800	0	- 75
800	1 000	0	- 100

d : shaft race nominal bore diameter D : housing race nominal outside diameter T : nominal bearing height

Theoretical tapered bore

Tapered bore with single plane mean bore diameter deviation

Nominal bore

(1) Basically tapered bore (taper 1:12) Unit : µm

Nomin diame		Δ	dmp	⊿ _{d1mp}	-⊿ _{dmp}	$V_{dsp}{}^{1)}$
over	up to	upper	lower	upper	lower	max.
-	10	+ 22	0	+ 15	0	9
10	18	+ 27	0	+ 18	0	11
18	30	+ 33	0	+ 21	0	13
30	50	+ 39	0	+ 25	0	16
50	80	+ 46	0	+ 30	0	19
80	120	+ 54	0	+ 35	0	22
120	180	+ 63	0	+ 40	0	40
180	250	+ 72	0	+ 46	0	46
250	315	+ 81	0	+ 52	0	52
315	400	+ 89	0	+ 57	0	57
400	500	+ 97	0	+ 63	0	63
500	630	+ 110	0	+ 70	0	70
630	800	+ 125	0	+ 80	0	-
800	1 000	+ 140	0	+ 90	0	-
1 000	1 250	+ 165	0	+ 105	0	-
1 250	1 600	+ 195	0	+ 125	0	-

(2) Basically tapered bore (taper 1:30) Unit : µm

-	50	+ 15	0	+ 30	0	19
50	80	+ 15	0	+ 30	0	19
80	120	+ 20	0	+ 35	0	22
120	180	+ 25	0	+ 40	0	40
180	250	+ 30	0	+ 46	0	46
250	315	+ 35	0	+ 52	0	52
315	400	+ 40	0	+ 57	0	57
400	500	+ 45	0	+ 63	0	63
500	630	+ 50	0	+ 70	0	70

[Note] 1) These shall be applied to all radial planes with tapered bore, not be applied to bearings of diameter series 7, 8. [Remark] 1) Symbols of quantity d_1 : reference diameter at theoretical large end of tapered bore

$$d_1 = d + \frac{1}{12}B$$
 or $d_1 = d + \frac{1}{30}B$

 $\varDelta_{\rm \,dmp}$: single plane mean bore diameter deviation at theoretical small end of tapered bore

- $\varDelta_{d1\mathrm{mp}}$: single plane mean bore diameter deviation at theoretical large end of tapered bore
- $V_{d\rm sp}\,$: single plane bore diameter variation (a tolerance for the diameter variation given by a maximum value applying in any radial plane of the bore)
 - B : nominal inner ring width

 $\alpha:\frac{1}{2}$ of nominal tapered angle of tapered bore

(tapered ratio 1/12)	(tapered ratio 1/30)
$\alpha = 2^{\circ}23'9.4''$	$\alpha = 0^{\circ}57'17.4''$
= 2.385 94°	= 0.954 84°
= 0.041 643 rad	= 0.016 665 rad

Table 7-12 Tolerances and permissible values for flanged radial ball bearings

(1) Tolerances on flange outside diameters

Unit : μm

Koyo

Nominal outer ring flange outside diameter $D_1 \ ({\rm mm})$		Deviation of single outer ring flange outside diameter, \varDelta_{D1s}					
		Locatin	g flange	Non-locating flange			
over	up to	upper	lower	upper	lower		
-	6	0	- 36	+ 220	- 36		
6	10	0	- 36	+ 220	- 36		
10	18	0	- 43	+ 270	- 43		
18	30	0	- 52	+ 330	- 52		
30	50	0	- 62	+ 390	- 62		
50	80	0	- 74	+ 460	- 74		

(2) Tolerances and permissible values on flange widths and permissible values of running accuracies relating to flanges Unit : µm

$\begin{array}{c c} \textbf{Nominal} \\ \textbf{outside} \\ \textbf{diameter} \\ D \\ (mm) \end{array} \qquad \begin{array}{c} \text{Deviation of} \\ \text{single outer ring} \\ \text{flange width} \\ \mathcal{A}_{C1s}^{-1} \end{array}$		uter ring ridth	flange w	tion of outer ring e width $V_{C1s}^{1)}$			$\begin{array}{c c} \mbox{Perpendicularity of outer ring outside surface} \\ \mbox{with respect to the flange back face} \\ \hline S_{D1} \\ \mbox{Deep groove ball} \\ \mbox{bearings and angular} \\ \mbox{contact ball bearings} \\ \hline \mbox{bearings} \\ \hline \mbox{bearings}$				$ \begin{array}{ c c c } \mbox{Axial runout of assembled bearing outer ring flange back face $$S_{ea1}$ \\ \hline B_{ep} groove ball bearings and angular $$Contact ball bearings bearings $$ bearings $$$			d roller				
(111	,	classes 0	, 6, 5, 4, 2	classes 0, 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	class 4	class 2
over	up to	upper	lower		max.				max.			max.			max.		m	ax.
-	2.5	Shall c	on-	Shall con-	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
2.5	6	form to	o the	form to the	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
6	18	toleran Δ_{Bs} on		tolerance V_{Bs} on d of	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
18	30	the sar		the same	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	4	7	4
30	50	class a	and	class and	5	2.5	1.5	8	4	1.5	8	4	2	11	7	4	7	4
50	80	the bea	aring	the bearing	6	3	1.5	8	4	1.5	8	4	2.5	14	7	6	7	6

[Note] 1) These shall be applied to groove ball bearings, i.e. deep groove ball bearing and angular contact ball bearing etc.

d: nominal bore diameter

- D : nominal outside diameter
- B : nominal assembled bearing width
- D_1 : nominal outer ring flange outside diameter
- C_1 : nominal outer ring flange width

Table 7-13 Permissible values for chamfer dimensions = JIS B 1514-3 =

Unit : mm

(1) Radial bearing

(tapered roller bearings excluded)

	No. 1 al la s			Unit : mm
r _{min} or	Nominal bo	l	r _{max} o	$r_{1\mathrm{max}}$
$r_{1 \min}$	over up to		Radial direction	Axial direction
0.05	-	-	0.1	0.2
0.08	-	-	0.16	0.3
0.1	-	-	0.2	0.4
0.15	-	-	0.3	0.6
0.2	-	-	0.5	0.8
0.3	-	40	0.6	1
0.3	40	-	0.8	1
0.6	-	40	1	2
0.0	40	-	1.3	2
1	-	50	1.5	3
I	50	-	1.9	3
1.1	-	120	2	3.5
1.1	120	-	2.5	4
4.5	-	120	2.3	4
1.5	120	-	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	-	3.8	6
0.1	-	280	4	6.5
2.1	280	-	4.5	7
	-	100	3.8	6
2.5	100	280	4.5	6
	280	-	5	7
	-	280	5	8
3	280	-	5.5	8
4	-	-	6.5	9
5	-	-	8	10
6	-	-	10	13
7.5	-	-	12.5	17
9.5	-	-	15	19
12	-	-	18	24
15	-	-	21	30
19	-	-	25	38

[Remarks]

- 1. Value of r_{max} or $r_{1 \text{max}}$ in the axial direction of bearings with nominal width lower than 2 mm shall be the same as the value in radial direction.
- 2. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1\min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

groove side) and cylindrical roller bearings (separete							
thrust	thrust collar and loose rib side) Unit : mi						
$r_{1\mathrm{min}}$	Nominal be nominal ou d o	itside dia.	$r_{1 \max}$				
	over	up to	Radial direction	Axial direction			
0.2	-	-	0.5	0.5			
0.3	-	40	0.6	0.8			
0.3	40	-	0.8	0.8			
0.5	-	40	1	1.5			
0.5	40	-	1.3	1.5			
0.6	-	40	1	1.5			
0.0	40	-	1.3	1.5			
1	-	50	1.5	2.2			
	50	-	1.9	2.2			
1.1	-	120	2	2.7			
1.1	120	-	2.5	2.7			
1.5	-	120	2.3	3.5			
1.0	120	-	3	3.5			
	-	80	3	4			
2	80	220	3.5	4			
	220	-	3.8	4			
2.1	-	280	4	4.5			
2.1	280	-	4.5	4.5			
	-	100	3.8	5			
2.5	100	280	4.5	5			
	280	-	5	5			
3	-	280	5	5.5			
	280	-	5.5	5.5			
4	-	-	6.5	6.5			
5	-	-	8	8			
6	-	-	10	10			

(2) Radial bearings with locating snap ring (snap ring

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{1 \min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(3) Cylindrical roller bearings (non-rib side) and angular contact ball bearings

(front face side) Unit : mm

$r_{1\min}$	Nominal bo nominal ou d o	itside dia.	$r_{1 \max}$		
	over	up to	Radial direction	Axial direction	
0.1	-	-	0.2	0.4	
0.15	-	-	0.3	0.6	
0.2	-	-	0.5	0.8	
0.3	-	40	0.6	1	
0.5	40	-	0.8	1	
0.6	-	40	1	2	
0.0	40	-	1.3	2	
1	-	50	1.5	3	
	50	-	1.9	3	
1.1	-	120	2	3.5	
1.1	120	_	2.5	4	
1.5	-	120	2.3	4	
1.5	120	-	3	5	
	-	80	3	4.5	
2	80	220	3.5	5	
	220	-	3.8	6	

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{1 \min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(4) Metric series tapered roller bearing

(5) Thrust bearing

				Unit : mm	
r _{min} or	nominal or	ore dia. or utside dia. ¹⁾ D, mm	$r_{ m max}$ or $r_{ m 1max}$		
$r_{1 \min}$	over	up to	Radial direction	Axial direction	
0.3	-	40	0.7	1.4	
0.3	40	-	0.9	1.6	
0.6	-	40	1.1	1.7	
0.0	40	-	1.3	2	
1	-	50	1.6	2.5	
'	50	-	1.9	3	
	-	120	2.3	3	
1.5	120	250	2.8	3.5	
	250	-	3.5	4	
	-	120	2.8	4	
2	120	250	3.5	4.5	
	250	-	4	5	
	-	120	3.5	5	
2.5	120	250	4	5.5	
	250	-	4.5	6	
	-	120	4	5.5	
3	120	250	4.5	6.5	
3	250	400	5	7	
	400	-	5.5	7.5	
	-	120	5	7	
4	120	250	5.5	7.5	
4	250	400	6	8	
	400	-	6.5	8.5	
5	-	180	6.5	8	
5	180	-	7.5	9	
6	-	180	7.5	10	
6	180	-	9	11	
7.5	-	-	12.5	17	
9.5	-	_	15	19	

[Note] 1) Inner ring shall be included in division d, and outer ring, in division D.

[Remarks]

1. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{\rm min}$ or $r_{1\,{\rm min}}$ which contacts the inner ring back face and bore, or the outer ring back face and outside surface.

2. Values in Italics are provided in JTEKT standards.

	Unit : mm
r_{\min} or $r_{1\min}$	r max or r1 max
	Radial and axial direction
0.05	0.1
0.08	0.16
0.1	0.2
0.15	0.3
0.2	0.5
0.3	0.8
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5
4	6.5
5	8
6	10
7.5	12.5
9.5	15
12	18
15	21
19	25

Koyo

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r min or r1 min which contacts with the shaft or central race back face and bore, or the housing race back face and outside surface.

A 79

 $[\]begin{pmatrix} \mathbb{A} : r_{\min} \text{ or } r_{1\min} \\ \mathbb{B} : r_{\max} \text{ or } r_{1\max} \end{pmatrix}$

7. Bearing tolerances

7-2 Tolerance measuring method (reference)

The details on measuring methods for bearings are prescribed in JIS B 1515-2. This section outlines measuring methods for dimensional and running accuracy.

Dimensional accuracy (1)

A 81

Dimensional accuracy (2)

A 82

8. Limiting speed

The rotational speed of a bearing is normally affected by friction heat generated in the bearing. If the heat exceeds a certain amount, seizure or other failures occur, thus causing rotation to be discontinued.

The limiting speed is the highest speed at which a bearing can continuously operate without generating such critical heat.

The limiting speed differs depending on various factors including bearing type, dimensions and their accuracy, lubrication, lubricant type and amount, shapes of cages and materials and load conditions, etc.

The limiting speed determined under grease lubrication and oil lubrication (oil bath) for each bearing type are listed in the bearing specification table.

These speeds are applied when bearings of standard design are rotated under normal load conditions (approximately, $C/P \ge 16^*$, F_* , $F_r \le 0.25$).

Each lubricant has superior performance in use, according to type.

Some are not suitable for high speed ; when bearing rotational speed exceeds 80 % of catalog specification, consult with JTEKT.

Fig. 8-1a Values of correction coefficient f_1 of load magnitude (Excludes K type bearings and railway rolling stock axle journals)

Fig. 8-1b Values of correction coefficient f_1 of load magnitude (K type bearings and railway rolling stock axle journals)

A 84

8-1 Correction of limiting speed

When the load condition is $C/P < 16^*$, i.e. the dynamic equivalent load *P* exceeds approximately 6* % of basic dynamic load rating *C*, or when a combined load in which the axial load is greater than 25 % of radial load is applied, the limiting speed should be corrected by using equation (8-1) :

 $n_{\rm a} = f_1 \cdot f_2 \cdot n \quad (8-1)$

where :

- $\begin{array}{ll} n_{\rm a}: {\rm corrected limiting speed} & {\rm min}^{-1} \\ f_1: {\rm correction coefficient determined} \\ {\rm from the load magnitude (Fig. 8-1)} \\ f_2: {\rm correction coefficient determined} \\ {\rm from combined load} & (Fig. 8-2) \\ n: {\rm limiting speed under normal load} \\ {\rm condition} & {\rm min}^{-1} \\ ({\rm values in the bearing specification table}) \\ C: {\rm basic dynamic load rating} & {\rm N} \\ P: {\rm dynamic equivalent load} & {\rm N} \end{array}$
- $F_{\rm r}$: radial load N $F_{\rm a}$: axial load N

* 13 (8 %) for K type bearings and railway rolling stock axle journals

Fig. 8-2 Values of correction coefficient f₂ of combined load

8-2 Limiting speed for sealed ball bearings

The limiting speed of ball bearings with a contact seal (RS, RK type) are determined by the rubbing speed at which the seal contacts the inner ring. These allowable rubbing speeds differ depending on seal rubber materials; and, for ball bearings with the Koyo standard contact type seal (NBR), a rubbing speed of 15 m/s is utilized.

8-3 Considerations for high speed

When bearings are used for high speed, especially when the rotation speed approaches the limiting speed or exceeds it, the following should be considered :

(for further information on high speed, consult with $\ensuremath{\mathsf{JTEKT}}\xspace$

(1) Use of high precision bearings

- (2) Study of proper internal clearance Reduction in internal clearance caused by temperature increase should be considered.
- (3) Selection of proper cage type and materials

For high speed, copper alloy or phenolic resin machined cages are suitable. Synthetic resin molded cages for high speed are also available.

(4) Selection of proper lubrication Suitable lubrication for high speed should be selected jet lubrication, oil mist lubrication and oil air lubrication, etc.

8-4 Frictional coefficient (reference)

Kovo

The frictional moment of rolling bearings can be easily compared with that of plain bearings. The frictional moment of rolling bearings can be obtained from their bore diameter, using the following equation :

$M = \mu P \frac{d}{2}$	
-------------------------	--

where :	
M: frictional moment	$mN \cdot m$
μ : frictional coefficient	
P : load on the bearing	Ν
d: nominal bore diameter	mm

The friction coefficient is greatly dependent on bearing type, bearing load, rotation speed and lubrication, etc.

Reference values for the friction coefficient during stable operation under normal operating conditions are listed in Table 8-1.

For plain bearings, the value is normally 0.01 to 0.02; but, for certain cases, it is 0.1 to 0.2.

Table 8-1 Friction coefficient μ

Bearing type	Friction coefficient μ
Deep groove ball bearing	0.001 0 - 0.001 5
Angular contact ball bearing	0.001 2 - 0.002 0
Self-aligning ball bearing	0.000 8 - 0.001 2
Cylindrical roller bearing	0.000 8 - 0.001 2
Full complement type needle roller bearing	0.002 5 - 0.003 5
Needle roller and cage assembly	0.002 0 - 0.003 0
Tapered roller bearing	0.001 7 – 0.002 5
Spherical roller bearing	0.002 0 - 0.002 5
Thrust ball bearing	0.001 0 - 0.001 5
Spherical thrust roller bearing	0.002 0 - 0.002 5

9. Bearing fits

9-1 Purpose of fit

The purpose of fit is to securely fix the inner or outer ring to the shaft or housing, to preclude detrimental circumferential sliding on the fitting surface.

Such detrimental sliding (referred to as "creep") will cause abnormal heat generation, wear of the fitting surface, infiltration of abrasion metal particles into the bearing, vibration, and many other harmful effects, which cause a deterioration of bearing functions.

Therefore, it is necessary to fix the bearing ring which is rotating under load to the shaft or housing with interference.

9-2 Tolerance and fit for shaft & housing

For metric series bearings, tolerances for the shaft diameter and housing bore diameter are standardized in JIS B 0401-1 and 0401-2 "ISO system of limits and fits - Part 1 and Part 2" (based on ISO 286; shown in Appendixes at the back of this catalogue). Bearing fits on the shaft and housing are determined based on the tolerances specified in the above standard.

Fig. 9-1 shows the relationship between tolerances for shaft and housing bore diameters and fits for bearings of class 0 tolerance.

9-3 Fit selection

In selecting the proper fit, careful consideration should be given to bearing operating conditions.

Major specific considerations are :

- Load characteristics and magnitude
- Temperature distribution in operating
- Bearing internal clearance
- Surface finish, material and thickness of shaft and housing
- Mounting and dismounting methods
- Necessity to compensate for shaft thermal expansion at the fitting surface
- Bearing type and size

In view of these considerations, the following paragraphs explain the details of the important factors in fit selection.

1) Load characteristics

Load characteristics are classified into three types : rotating inner ring load; rotating outer ring load and indeterminate direction load. Table 9-1 tabulates the relationship between these characteristics and fit.

Fig. 9-1 Relationship between tolerances for shaft/housing bore diameters and fits (bearings of class 0 tolerance)

Rotation pattern	Direction of load	Loading conditions	F	it	Typical application
	Direction of load	Loading conditions	Inner ring & shaft	Outer ring & housing	i ypical application
Inner ring : rotating Outer ring : stationary	Stationary	Rotating inner ring load	Interference fit necessary	Clearance fit acceptable	Spur gear boxes, motors
Inner ring : stationary Outer ring : rotating	Rotating with outer ring	Stationary outer ring load	(k, m, n, p, r)	(F, G, H, JS)	Greatly unbal- anced wheels
Inner ring : stationary Outer ring : rotating	Stationary	Stationary inner ring load	Clearance fit acceptable	Interference fit necessary	Running wheels & pulleys with stationary shaft
Inner ring : rotating Outer ring : stationary	Rotating (with inner ring)	Rotating outer ring load	(f, g, h, js)	(K, M, N, P)	Shaker screens (unbalanced vibration)
Indeterminate	Rotating or stationary	Indeterminate direction load	Interference fit	Interference fit	Cranks

2) Effect of load magnitude

When a radial load is applied, the inner ring will expand slightly. Since this expansion enlarges the circumference of the bore minutely, the initial interference is reduced. The reduction can be calculated by the

following equations :

[In the case of
$$F_{\rm r} \leq 0.25~C_0$$
]
 $\varDelta_{d\rm F} = 0.08~\sqrt{\frac{d}{B}\cdot F_{\rm r}}~\times 10^{-3}$(9-1)

[In the case of $F_{
m r}$ > 0.25 C_0]

 $\Delta_{dF} = 0.02 \ \frac{F_r}{B} \times 10^{-3}$ (9-2)

where:

- Δ_{dF} : reduction of inner ring interference mm d: nominal bore diameter of bearing mm B: nominal inner ring width mm F_r : radial load N
- C_0 : basic static load rating

Consequently, when the radial load, exceeds the C_0 value by more than 25 %, greater interference is needed.

Much greater interference is needed, when impact loads are expected.

3) Effect of fitting surface roughness

The effective interference obtained after fitting differs from calculated interference due to plastic deformation of the ring fitting surface. When the inner ring is fitted, the effective interference, subject to the effect of the fitting surface finish, can be approximated by the following equations :

[In the case of a turned shaft]

where:

Δ_{deff} : effective interference	$\mathbf{m}\mathbf{m}$
Δ_d : calculated interference	$\mathbf{m}\mathbf{m}$
d : nominal bore diameter of bearing	$\mathbf{m}\mathbf{m}$

4) Effect of temperature

A bearing generally has an operating temperature, higher than the ambient temperature. When the inner ring operates under load, its temperature generally becomes higher than that of the shaft and the effective interference decreases due to the greater thermal expansion of the inner ring.

If the assumed temperature difference between the bearing inside and surrounding housing is \varDelta_t , the temperature difference at the fitting surfaces of the inner ring and shaft will be approximately (0.10 to 0.15) $\times \varDelta_t$.

The reduction of interference (Δ_{dt}) due to temperature difference is then expressed as follows :

\varDelta_{dt} = (0.10 to 0.15) $\varDelta_{t} \cdot \alpha \cdot d$

 $= 0.0015 \, \varDelta \, \mathrm{t} \cdot d \times 10^{-3} \, \mathrm{\cdots} \, (9-5)$

where:

Ν

Consequently, when a bearing is higher in temperature than the shaft, greater interference is required.

However, a difference in temperature or in the coefficient of expansion may sometimes increase the interference between outer ring and housing. Therefore, when clearance is provided to accommodate shaft thermal expansion, care should be taken.

5) Maximum stress due to fit

When a bearing is fitted with interference, the bearing ring will expand or contract, generating internal stress.

Should this stress be excessive, the bearing ring may fracture.

The maximum bearing fitting-generated stress is determined by the equation in Table 9-2.

In general, to avoid fracture, it is best to adjust the maximum interference to less than 1/1 000 of the shaft diameter, or the maximum stress (σ), determined by the equation in Table 9-2, should be less than 120 MPa.

6) Other considerations

When a high degree of accuracy is required, the tolerance of the shaft and housing must be improved. Since the housing is generally less easy to machine precisely than the shaft, it is advisable to use a clearance fit on the outer ring.

Koyo

With hollow shafts or thin section housings, greater than normal interference is needed.

With split housings, on the other hand, smaller interference with outer ring is needed. When the housing is made of aluminum or other light metal alloy, relatively greater than normal interference is needed.

In such a case, consult with JTEKT.

Table 9-2 Maximum fitting-generated stress in bearings

Shaft & inner ring	Housing bore & outer ring
(In the case of hollow shaft)	(In the case of $D_{\rm h} \neq \infty$)
$\sigma = \frac{E}{2} \cdot \frac{\Delta_{deff}}{d} \cdot \frac{\left(1 - \frac{d_0^2}{d^2}\right) \left(1 + \frac{d^2}{D_i^2}\right)}{\left(1 - \frac{d_0^2}{D_i^2}\right)}$	$\sigma = E \cdot \frac{\varDelta_{Deff}}{D} \cdot \frac{\left(1 - \frac{D^2}{D_h^2}\right)}{\left(1 - \frac{D_e^2}{D_h^2}\right)}$
(In the case of solid shaft)	(In the case of $D_{\rm h}$ = ∞)
$\sigma = \frac{E}{2} \cdot \frac{\Delta_{\text{deff}}}{d} \cdot \left(1 + \frac{d^2}{D_i^2}\right)$	$\sigma = E \cdot rac{\varDelta_{Deff}}{D}$
where :	

σ : maximum stress MPa $D_{\rm e}$: raceway contact diameter of outer ring mm ball bearing $\dots D_e = 0.2 \quad (4D+d)$ d: nominal bore diameter roller bearing $\cdots D_e \doteq 0.25 (3D + d)$ (shaft diameter) mm D: nominal outside diameter D_i: raceway contact diameter of inner ring mm (bore diameter of housing) ball bearing $\cdots D_i \doteq 0.2 \quad (D+4d)$ mmroller bearing $\cdots D_i \doteq 0.25 (D + 3 d)$ ΔD_{eff} : effective interference of outer ring $\mathbf{m}\mathbf{m}$ $D_{\rm h}$: outside diameter of housing Δ_{deff} : effective interference of inner ring mm mm 2.08×10^5 MPa d_0 : bore diameter of hollow shaft *E* : young's modulus mm

[Remark] The above equations are applicable when the shaft and housing are steel. When other materials are used, JTEKT should be consulted.

A 88

9-4 Recommended fits

As described in Section 9-3, the characteristics / magnitude of the bearing load, temperature, mounting / dismounting methods and other conditions must be considered to choose proper fits. Past experience is also valuable. Table 9-3 shows standard fits for the metric series bearings; Tables 9-4 to 9-8 tabulate the most typical and recommended fits for different bearings types.

Table 9-3 Standard fits for metric series bearings 1)

(1) Fits for bore diameter ²⁾ of radial bearings

Class of bearing	Rotating inner ring load or indeterminate direction load Stationary inner										
Class of bearing		Class of shaft tolerance range									
Classes 0, 6X, 6	r 6	p 6	n 6	m 6 m 5	k 6 k 5	js 6 js 5	h 5	h 6 h 5	g 6 g 5	f 6	
Class 5	-	-	-	m 5	k 4	js 4	h 4	h 5	-	-	
Fit		Int	erference	ə fit			Trans	ition fit		Clearance fit	

(2) Fits for outside diameter ²⁾ of radial bearings

Class of bearing	Stat	tionary or	uter ring	oad	Indeterminate direction load or rotating outer ring load					
Class of bearing			Cla	ss of hou	ising bore	sing bore tolerance range				
Classes 0, 6X, 6	G 7	H 7 H 6	JS 7 JS 6	-	JS 7 JS 6	K 7 K 6	M 7 M 6	N 7 N 6	P 7	
Class 5	-	H 5	JS 5	K 5	-	K 5	M 5	-	-	
Fit	Cleara	ince fit			Transi	tion fit			Interference fit	

(3) Fits for bore diameter ²⁾ of thrust bearings

	Control	axial load	Combined load (in the case of spherical thrust roller bearing)					
Class of bearing		hrust bearings)	indeterminate direction load race load		Stationary shaft race load			
		(Class of shaft t					
Classes 0, 6	js 6	h 6	n 6	m 6	k 6	js 6		
Fit	Trans	ition fit		Interference fit		Transition fit		

(4) Fits for outside diameter $^{2)}$ of thrust bearings

	Central axial load		Combined load (in the case of spherical thrust roller bearing)							
Class of bearing		hrust bearings)		housing rad		Rotating housing race load				
		C	lass of hous	sing bore tol	erance rang	e				
Classes 0, 6	-	H 8	G 7	H7 JS7		K 7	M 7			
Fit		Clearance fit Transition fit								

[Notes] 1) Bearings specified in JIS B 1512

2) Follow JIS B 1514-1 and 1514-2 for tolerance.

 Table 9-4 (1)
 Recommended shaft fits for radial bearings (classes 0, 6X, 6)

C	Conditions $^{1)}$		earing	Tapere roller l	bearing	bearing	al roller	Class of shaft tolerance range	Remarks	Applications (for refer- ence)
		over		over up to		, <i>,</i>		range		
			Cylin	drical	bore l	bearing	g (clas	ses 0, 6X, 6)	
	Light load or fluctuating load $\left(\frac{P_r}{C_r} \le 0.05\right)$	- 18 100 -	18 100 200 –	- - 40 140	_ 40 140 200			h 5 js 6 k 6 m 6	For applications requir- ing high accuracy, js 5,k 5 and m 5 should be used in place of js 6, k 6 and m 6.	Electric appliances, machine tools, pumps, blowers, carriers etc.
Rotating inner ring load or indeterminate direction load	Normal load $\left(0.05 < \frac{P_r}{C_r} \le 0.10\right)$	_ 18 100 140 200 _ _	18 100 140 200 280 - -	- 40 100 140 200 -	- 40 100 140 200 400 -	- 40 65 100 140 280	- 40 65 100 140 280 500	js 5 k 5 m 5 n 6 p 6 r 6	For single-row tapered roller bearings and angu- lar contact ball bearings, k 5 and m 5 may be replaced by k 6 and m 6, because internal clear- ance reduction due to fit need not be considered.	Electric motors, turbines, internal combustion engines, wood- working machines etc.
	Heavy load or impact load $\left(\frac{P_{\rm r}}{C_{\rm r}} > 0.10\right)$		- - -	50 140 200	140 200 -	50 100 140	100 140 200	n 6 p 6 r 6	Bearings with larger internal clearance than standard are required.	Railway rolling stock axle journals, traction motors
Stationary nner ring load	Inner ring needs to move smoothly on shaft.		All	shaft	diamet	ers		g 6	For applications requir- ing high accuracy, g 5 should be used. For large size bearing, f 6 may be used for easier movement.	Stationary shaft wheels
Static	Inner ring does not need to move smoothly on shaft.		All	shaft	diamet	ers		h 6	For applications requir- ing high accuracy, h 5 should be used.	Tension pulleys, rope sheaves etc.
Centra	al axial load only				diamet			js 6	_	
	Tapered	bore b	earing	(class	0) (wit	h adapt	er or w	ithdrawal slee	eve)	_
	All loads		All	shaft	diamet	ers		h 9/IT 5 ²⁾	For transmission shafts, h 10/IT 7 ²⁾ may be applied.	

[Notes] 1) Light, normal, and heavy loads refer to those with dynamic equivalent radial loads (*P*_r) of 5 % or lower, over 5 % up to 10 % inclusive, and over 10 % respectively in relation to the basic dynamic radial load rating (*C*_r) of the bearing concerned.

2) IT 5 and IT 7 mean that shaft roundness tolerance, cylindricity tolerance, and other errors in terms of shape should be within the tolerance range of IT 5 and IT 7, respectively. For numerical values for standard tolerance grades IT 5 and IT 7, refer to supplementary table at end of this catalog.

[Remark] This table is applicable to solid steel shafts.

Table 9-4 (2) Recommended housing fits for radial bearings (classes 0, 6X, 6)

	Co	onditions				
Housing	Load	Load type etc. $^{1)}$		Class of hous- ing bore toler- ance range	Remarks	Applications (for reference)
0		All load types		H7	G 7 may be applied when a large size bearing is used, or if the temperature differ- ence is large between the outer ring and housing.	Ordinary bearing devices, railway rolling stock axle boxes, power transmission equip- ment etc.
One-piece or split type		Light or normal load	Easily displaceable	H 8	-	
spirt type	Stationary outer ring load	High temperature at shaft and inner ring		G 7	F 7 may be applied when a large size bearing is used, or if the temperature differ- ence is large between the outer ring and housing.	Drying cylinders etc.
		Light or normal load, requiring	Not displaceable in principle	K 6	Mainly applied to roller bearings.	
		high running accuracy	Displaceable	JS 6	Mainly applied to ball bearings.	
		Requiring low-noise rotation	Easily displaceable	H 6	_	
		Light or normal load	Normally displaceable	JS 7	For applications requiring high	Electric motors,
One-piece	Indeterminate direction load	Normal or heavy load	Not displaceable in principle	К 7	accuracy, JS 6 and K 6 should be used in place of JS 7 and K 7.	pumps, crankshaft main bearings etc.
type		High impact load	Not displaceable	M 7	-	Traction motors etc.
		Light or fluctuating load		M 7	_	Conveyor rollers, ropeways, tension pulleys etc.
	Rotating	Normal or heavy load	Not	N 7	Mainly applied to ball bearings.	Wheel hubs with ball bearings etc.
	outer ring load	Thin section housing, heavy or high impact load	displaceable	Ρ7	Mainly applied to roller bearings.	Wheel hubs with roller bearings, bearings for large end of connecting rods etc.

[Notes] 1) Loads are classified as stated in Note 1) to Table 9-4 (1).

 Indicating distinction between applications of non-separable bearings permitting and not permitting axial displacement of the outer rings.

[Remarks] 1. This table is applicable to cast iron or steel housings.

2. If only central axial load is applied to the bearing, select such tolerance range class as to provide clearance in the radial direction for outer ring.

Table 9-5 (1)Recommended shaft fits for precision extra-small/miniature
ball bearings (d < 10 mm)

Unit : µm

Loa	d type	Bearing tolerance class	Single plane mean bore diameter deviation Δ_{dmp}		Shaft di dimens tolerand	ional	Fit $^{1)}$	Applications		
			upper	lower	upper	lower				
	Middle/high	ABMA 5P	0	- 5.1	+ 2.5	- 2.5	7.6T – 2.5L	Gyro rotors,		
	speed	JIS class 5	0	- 5	1 2.0	2.0	7.5T – 2.5L	air cleaners,		
- :	Light or	ABMA 7P	0	- 5.1	+ 2.5	- 2.5	7.6T – 2.5L	electric tools, encoders		
Rotating inner	normal load	JIS class 4	0	- 4	12.5	2.5	6.5T – 2.5L			
ring load		ABMA 5P	0	- 5.1	- 2.5	- 7.5	2.6T – 7.5L	Gyro gimbals,		
-	Low speed	JIS class 5	0	- 5	-2.5	7.5	2.5T – 7.5L	synchronizers,		
	Light load	ABMA 7P	0	- 5.1	-25	0.5 7.5	-25 -75	- 2.5 - 7.5	2.6T – 7.5L	servomotors,
		JIS class 4	0	- 4	-2.5	7.5	1.5T – 7.5L	floppy disc spindles		
Data		ABMA 5P	0	- 5.1	- 2.5	- 7.5	2.6T – 7.5L	D'auto auto		
Rotating outer	Low to high speed	JIS class 5	0	- 5	-2.5	7.5	2.5T – 7.5L	Pinch rolls, tape guide rollers,		
ring load	Light load	ABMA 7P	0	- 5.1	- 2.5	5 - 7.5	2.6T – 7.5L	linear actuators		
		JIS class 4	0	- 4	-2.5	7.5	1.5T – 7.5L			

[Note] 1) Symbols T and L means interference and clearance respectively.

Table 9-5 (2)Recommended housing fits for precision extra-small/miniature
ball bearings ($D \leq 30 \text{ mm}$)

Unit : µm

Load type		Bearing tolerance class	deviation Δ_{Dmp} tolerance		Fit ¹⁾	Applications			
			upper	lower	upper	lower			
	Middle/high	ABMA 5P ABMA 7P	0	- 5.1	+ 5	0	0 – 10.1L	Gyro rotors,	
	Speed Light or normal load inner	JIS class 5 ²⁾	0	- 5	+ 5	0	0-10 L	air cleaners,	
			0	- 6		0-11 L	electric tools,		
D		JIS class 4 ²⁾	0	- 4	+ 5	+ 5 0	0-9 L	encoders	
		010 Class 4	0	- 5	10		0-10 L		
ring load		ABMA 5P ABMA 7P	0	- 5.1	+ 2.5	- 2.5	2.5T – 7.6L	Gyro gimbals,	
	Low speed	JIS class 5 ²⁾	0	- 5	+ 2.5 - 2.5	-25	2.5T – 7.5L	synchronizers,	
	Light load	JIS class 5	0	- 6		2.5T – 8.5L	servomotors,		
		JIS class 42)	0	- 4	+ 2.5	-25	2.5T – 6.5L	floppy disc spindles	
		010 Class 4	0	- 5	1 2.0	2.0	2.5T – 7.5L		
Datation	Low to	ABMA 5P ABMA 7P	0	- 5.1	+ 2.5	- 2.5	2.5T – 7.6L		
Rotating outer	high speed	JIS class 5 ²⁾	0	- 5	+ 2.5	- 2.5	2.5T – 7.5L	Pinch rolls,	
ring load	Lightlood	010 01055 0	0	- 6	1 2.0	2.0	2.5T – 8.5L	tape guide rollers	
-	Light load	JIS class 4 ²⁾	₍₂₎ 0 –		+ 2.5	- 2.5	2.5T – 6.5L		
		010 01035 4	0	- 5	. 2.0	2.0	2.5T – 7.5L		

[Notes] 1) Symbols T and L means interference and clearance respectively.

2) In the columns "single plane mean outside diameter deviation" and "fit" upper row values are applied in the case of $D \le 18$ mm, lower row values in the case of $18 < D \le 30$ mm.

Table 9-6 (1)Recommended shaft fits for metric J series tapered roller bearingsBearing tolerance : class PK, class PN

L	Load type		al bore ter d m	Class of shaft tolerance range	Remarks	
		over	up to			
	Normal load	10	120	m 6		
Deteting	Normanoau	120	500	n 6		
Rotating inner ring	Heavy load Impact load High speed rotation	10	120	n 6		
load		120	180	p 6	Generally, bearing internal clearance	
load		180	250	r 6	should be larger than standard.	
		250	500	r 7		
Rotating	Normal load without impact	80	315	h 6 or g 6		
outer ring	Heavy load	10	120	n 6		
load	Impact load	120	180	p 6	Generally, bearing internal clearance	
1000		180	250	r 6	should be larger than standard.	
	High speed rotation	250	500	r 7		

Bearing tolerance : class PC, class PB

Lo	Load type		al bore ter d m	Class of toleranc (bearing tole		Remarks
			up to	PC	PB	
	Spindles of precision	10	315	k 5	k 5	
	machine tools	315	500	k 5	-	
		10	18	m 6	m 5	
Rotating	Heavy load	18	50	m 5	m 5	
inner ring		50	80	n 5	n 5	Concredut bearing internal
load		80	120	n 5	n 4	Generally, bearing internal
	Impact load	120	180	p 4	p 4	clearance should be larger than standard.
	High speed rotation	180	250	r 4	r 4	inan standard.
		250	315	r 5	r 4	
		315	500	r 5	-	
Rotating	Spindles of precision	10	315	k 5	k 5	
outer ring load	machine tools	315	500	k 5	-	

Table 9-6 (2)Recommended housing fits for metric J series tapered roller bearingsBearing tolerance : class PK, class PN

L	Load type		outside r m up to	Class of housing bore diameter tolerance range	Remarks
	Used for free or fixed side	18 315	315 400	G 7 F 6	Outer ring is easily displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjustable (in axial direction)	18	400	J 7	Outer ring is displaceable in axial direction.
	Position of outer ring is not adjustable (in axial direction)	18	400	Ρ7	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction)	18 120 180	120 180 400	R 7	Outer ring is fixed in axial direction.

Bearing tolerance : class PC, class PB

Lo	Load type		outside r D m		sing bore erance range erance class)	Remarks
		over	up to	PC	PB	
	Used for free side	18 315	315 500	G 5 G 5	G 5 –	Outer ring is easily displace- able in axial direction.
	Used for fixed side	18 315	315 500	H 5 H 5	H 4 _	Outer ring is displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjustable (in axial direction) Position of outer ring is not adjustable (in axial direction)	18 120 180 250 315 18 315	120 180 250 315 500 315 500	K 5 JS 6 JS 6 K 5 K 5 N 5 N 5	K 5 JS 6 JS 5 JS 5 - M 5 -	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction)	18 250 315	250 315 500	N 6 N 5 N 5	N 5 N 5 –	Outer ring is fixed in axial direction.

 Table 9-7 (1)
 Recommended shaft fits for inch series tapered roller bearings

 ■ Bearing tolerance : class 4, class 2

Loa	Load type		Nominal bore diameter d mm (1/25.4)			Dimensional tolerance of shaft diameter µm		Remarks
			up to	upper	lower	upper lower		
		-	76.2 (3.0)	+ 13	0	+ 38	+ 25	
	Normal load	76.2 (3.0)	304.8 (12.0)	+ 25	0	+ 64	+ 38	
	Normai load	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 127	+ 76	
Rotating inner ring		609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 190	+ 114	
load	Heavy load	-	76.2 (3.0)	+ 13	0	Should b	o such	Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 25	0	that avera		internal clearance should be larger
	High speed	304.8 (12.0)	609.6 (24.0)	+ 51	0	ference s	tands at	
	rotation	609.6 (24.0)	914.4 (36.0)	+ 76	0	0.000 5 ×	$d \pmod{m}$	than standard.
		-	76.2 (3.0)	+ 13	0	+ 13	0	
	Normal load without	76.2 (3.0)	304.8 (12.0)	+ 25	0	+ 25	0	
	impact	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	
		609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 76	0	
		-	76.2 (3.0)	+ 13	0	0	- 13	
Rotating outer ring	Normal load without	76.2 (3.0)	304.8 (12.0)	+ 25	0	0	- 25	Inner ring is
load	impact	304.8 (12.0)	609.6 (24.0)	+ 51	0	0	- 51	displaceable in axial direction.
		609.6 (24.0)	914.4 (36.0)	+ 76	0	0	- 76	
	Heavy load	-	76.2 (3.0)	+ 13	0	Should b	e such	Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 25	0			internal clearance
	High speed	304.8 (12.0)	609.6 (24.0)	+ 51	0		ference stands at should be	
	rotation	609.6 (24.0)	914.4 (36.0)	+ 76	0	0.000 5 ×	<i>d</i> (mm)	than standard.

Bearing tolerance : class 3, class 0¹⁾

Load type		Nomir diame mm (1 over	$\begin{array}{c} \mbox{Deviation of} \\ \mbox{a single bore} \\ \mbox{diameter} \\ \mbox{\varDelta_{ds}, μm} \\ \\ \mbox{upper} & \mbox{lower} \end{array}$		Dimensional tolerance of shaft diameter µm upper lower		Remarks	
Rotating inner ring	Spindles of precision machine tools	- 76.2 (3.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 30 + 30 + 64 + 102	+ 18 + 18 + 38 + 64	
load	Heavy load Impact load High speed rotation	- 76.2 (3.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	Should b that avera ference s 0.000 5 ×	age inter- tands at	Generally, bearing internal clearance should be larger than standard.
Rotating outer ring load	Spindles of precision machine tools	- 76.2 (3.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 30 + 30 + 64 + 102	+ 18 + 18 + 38 + 64	

[Note] 1) Class 0 bearing : $d \leq$ 304.8 mm

Table 9-7 (2)	Recommended housing fits for inch series tapered roller bearings

Koyo

Bearing tolerance : class 4, class 2

Loa	Load type		Nominal outside diameter D mm (1/25.4)			Dimensional tolerance of housing bore diameter µm		Remarks
		over	up to	upper	lower	upper	lower	
	Used for free or fixed side.	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	+ 76 + 76 + 76 +152 +229	+ 51 + 51 + 51 +102 +152	Outer ring is easily displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjust- able (in axial direction).	- 76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	+ 25 + 25 + 51 + 76 +127	0 0 + 25 + 51	Outer ring is displaceable in axial direction.
	Position of outer ring is not adjustable (in axial direction).	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	- 13 - 25 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction).	- 76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	- 13 - 25 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	Outer ring is fixed in axial direction.

Bearing tolerance : class 3, class 0¹⁾

Load type		Nomina diamete <i>1</i> mm (1	Deviation of a single outside diameter \varDelta_{Ds} , μm		Dimensional tolerance of housing bore diameter μm		Remarks		
		over	up to	upper	lower	upper	lower		
	Used for free side.	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0	+ 38 + 38 + 64 + 89	+ 25 + 25 + 38 + 51	Outer ring is easily displaceable in axial direction.	
	Used for fixed side.	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 25 + 25 + 51 + 76	+ 13 + 13 + 25 + 38	Outer ring is displaceable in axial direction.	
Rotating inner ring load	Position of outer ring is adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0	+ 13 + 25 + 25 + 38	0 0 0 0		
	Position of outer ring is not adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0	0 0 0 0	- 13 - 25 - 25 - 38	 Outer ring is fixed in axial direction. 	
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	- 13 - 13 - 13 - 13	- 25 - 38 - 38 - 51	Outer ring is fixed in axial direction.	

[Note] 1) Class 0 bearing : $D \leq 304.8 \text{ mm}$

Table 9-8 (1) Recommended shaft fits for thrust bearings (classes 0, 6)

1.00	Load type		neter, mm	Class of shaft tolerance	Remarks	
Loa			up to	range		
	Central axial load (generally for thrust bearings)		diameters	js 6	h 6 may also be used.	
Combined load	Stationary shaft race load	All shaft of	diameters	js 6	-	
(spherical thrust roller bearing	Rotating shaft race load or indeterminate direction load	_ 200 400	200 400 -	k 6 m 6 n 6	js 6, k 6 and m 6 may be used in place of k 6, m 6 and n 6, respectively.	

Table 9-8 (2) Recommended housing fits for thrust bearings (classes 0, 6)

Loa	ad type	Class of housing bore diameter tolerance range	Remarks			
Central axial lo	ad hrust bearings)	_	Select such tolerance range class as provides clearance in the radial direction for housing race.			
(generally for th	indst bearings)	H 8	In case of thrust ball bearings requiring high accuracy.			
Combined load	Stationary housing race load	H 7	-			
spherical thrust roller	Indeterminate direction load or	K 7	In case of application under normal operating conditions.			
bearing	rotating housing race load	M 7	In case of comparably large radial load.			

[Remark] This table is applicable to cast iron or steel housings.

10. Bearing internal clearance

Bearing internal clearance is defined as the total distance either inner or outer ring can be moved when the other ring is fixed.

If movement is in the radial direction, it is called radial internal clearance; if in the axial direction, axial internal clearance. (Fig. 10-1)

Bearing performance depends greatly upon internal clearance during operation (also referred to as operating clearance); inappropriate clearance results in short rolling fatigue life and generation of heat, noise or vibration.

Radial internal clearance Axial internal clearance

Fig. 10-1 Bearing internal clearance

In measuring internal clearance, a specified load is generally applied in order to obtain stable measurement values.

Consequently, measured clearance values will be larger than the original clearance by the amount of elastic deformation due to the load applied for measurement.

As far as roller bearings are concerned, however, the amount of elastic deformation is negligible.

Clearance prior to mounting is generally defined as the original clearance.

10-1 Selection of internal clearance

Koyo

The term "residual clearance" is defined as the original clearance decreased owing to expansion or contraction of a raceway due to fitting, when the bearing is mounted in the shaft and housing.

The term "effective clearance" is defined as the residual clearance decreased owing to dimensional change arising from temperature differentials within the bearing.

The term "operating clearance" is defined as the internal clearance present while a bearing mounted in a machine is rotating under a certain load, or, the effective clearance increased due to elastic deformation arising from bearing loads.

As illustrated in Fig. 10-2, bearing fatigue life is longest when the operating clearance is slightly negative.

However, as the operating clearance becomes more negative, the fatigue life shortens remarkably.

Thus it is recommended that bearing internal clearance be selected such that the operating clearance is slightly positive.

Operating clearance (µm)

Fig. 10-2 Relationship between operating clearance and fatigue life

It is important to take specific operating conditions into consideration and select a clearance suitable for the conditions.

For example, when high rigidity is required, or when the noise must be minimized, the operating clearance must be reduced. On the other hand, when high operating temperature is expected, the operating clearance must be increased.

10-2 Operating clearance

Table 10-1 shows how to determine the operating clearance when the shaft and housing are made of steel. Tables 10-2 to 10-10 show standard values for bearing internal clearance before mounting. Table 10-11 shows examples of clearance selection excluding CN clearance.

Table 10-1 How to determine operating clearance

In Table 10-1,

,				、
S	: operating clearance	mm	\varDelta_{Deff} : effective interference of outer ring	mm
$S_{ m o}$: clearance before mounting	mm	$D_{ m h}$: outside diameter of housing	mm
$S_{ m f}$: decrease of clearance due to fitting	mm	$D_{ m e}$: outer ring raceway contact diameter	mm
$S_{ m fi}$: expansion of inner ring raceway contact diameter	mm	$\left(\begin{array}{c} ball \ bearing \cdots D_\mathrm{e} \ \doteq 0.2(4\ D+d) \\ roller \ bearing \cdots D_\mathrm{e} \ \doteq 0.25(3\ D+d) \end{array} \right)$	
$S_{ m fo}$: contraction of outer ring raceway contact diameter	mm	D : nominal outside diameter	mm
$S_{ m t1}$: decrease of clearance due to temperature differentials between inner and outer rings	mm	, , , , , , , , , , , , , , , , , , ,	I∕°C
$S_{ m t2}$: decrease of clearance due to temper- ature rise of the rolling elements	mm	$D_{ m w}$: average diameter of rolling elements (ball bearing $\cdots D_{ m w} \doteq 0.3(D-d)$)	mm
$S_{ m w}$: increase of clearance due to load	mm	roller bearing $\cdots D_{w} \doteq 0.25(D-d)$	
Δ_{deff}	: effective interference of inner ring	mm	$t_{ m i}$: temperature rise of the inner ring	$^{\circ}\mathrm{C}$
d	: nominal bore diameter (shaft diameter)	mm	$t_{\rm e}$: temperature rise of the outer ring $t_{\rm w}$: temperature rise of rolling elements	°C °C
d_0	: bore diameter of hollow shaft	mm		U
D_{i}	: inner ring raceway contact diameter (ball bearing $\cdots D_i \doteq 0.2(D + 4 d)$ roller bearing $\cdots D_i \doteq 0.25(D + 3 d)$)]		

Koyo

Bearings are sometimes used with a non-steel shaft or housing.

In the automotive industry, a statistical method is often incorporated for selection of clearance. In these cases, or when other special operating conditions are involved, JTEKT should be consulted.

NU	
	Ϊ

Unit : µm

0

 Table 10-2
 Radial internal clearance of deep groove ball bearings (cylindrical bore)

Unit :	μm
--------	----

Nominal bo	re diameter					Clea	rance				
<i>d</i> , r	nm	C	2	С	Ν	С	3	С	4	C	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
2.5	6	0	7	2	13	8	8 23		29	20	37
6	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	5 20		28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	12 36		58	53	84	75	120
100	120	2	20	15	41	36	66	61 71 81	97	90	140
120	140	2	23	18	48	41	81		114	105 120	160
140	160	2	23	18	53	46	91		130		180
160	180	2	25	20	61	53	102	91	147	135	200
180	200	2	30	25	71	63	117	107	163	150	230
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	55 145		240	225	340	315	460

[Remarks] 1. For measured clearance, the increase of radial internal clearance caused by the measurement load should be added to the values in the above table for correction. Amounts for correction are as shown below. Of the amounts for clearance correction in the C 2 column, the smaller is applied to the minimum clearance, the larger to the maximum clearance.

2. Values in Italics are prescribed in JTEKT standards.

Nominal	bore	Measurement load	Amou	nts of cl	earance	correctio	n, μm	
diameter	d, mm		C 2	CN	C 3	C 4	C 5	
over	up to	Ν	62	CN	03	64	0.5	
2.5	18	24.5	3 – 4	4	4	4	4	
18	50	49	4 – 5	5	6	6	6	
50 280		147	6 – 8	8	9	9	9	

Table 10-3 Radial internal clearance of extra-small/miniature ball bearings Unit : um

Clearance code	M	1	M 2		М	3	M	4	М	5	M 6		
Clearance code	min.	max.											
Clearance	0	5	3	8	5	10	8	13	13	20	20	28	

[Remark] For measured clearance, the following amounts should be added for correction.

Measu	rement load, N	Amo	unts of	cleara	nce co	rrectio	n , μm
Extra-small ball bearing	Miniature ball bearing	M1	M2	M3	M4	M5	M6
	2.3	1	1	1	1	1	1

 $\left(\begin{array}{c} {\sf Extra-small \ ball \ bearing} : 9\ {\rm mm \ or \ larger \ in \ outside \ diameter \ and \ under \ 10\ {\rm mm \ in \ bore \ diameter \ } \\ {\sf Miniature \ ball \ bearing} & : under \ 9\ {\rm mm \ in \ outside \ diameter \ } \end{array}\right)$

Table 10-4	Axial internal clearance of matched pair angular contact
	ball bearings (measurement clearance) ¹⁾

Nominal bore diameter d , mm Contact angle : 15° Contact d , mm C 2 C N C 2 C N over up to min. max. max. min. max. min. max. max.<		30° C 3 max.	min.	24
d, mm C 2 C N C 2 C N over up to min. max. min.	min.			\$ 4
		max.	min	
	30		111111.	max.
- 10 13 33 33 53 3 14 10 30	00	50	50	70
10 18 15 35 35 55 3 16 10 30	30	50	50	70
18 24 20 40 45 65 3 20 20 40	40	60	60	80
24 30 20 40 45 65 3 20 20 40	40	60	60	80
30 40 20 40 45 65 3 20 25 45	45	65	70	90
40 50 20 40 50 70 3 20 30 50	50	70	75	95
50 65 30 55 65 90 9 27 35 60	60	85	90	115
65 80 30 55 70 95 10 28 40 65	70	95	110	135
80 100 35 60 85 110 10 30 50 75	80	105	130	155
100 120 40 65 100 125 12 37 65 90	100	125	150	175
120 140 45 75 110 140 15 40 75 105	120	150	180	210
140 160 45 75 125 155 15 40 80 110	130	160	210	240
160 180 50 80 140 170 15 45 95 125	140	170	235	265
180 200 50 80 160 190 20 50 110 140	170	200	275	305

	al bore			C	ontact a	ingle : 4	0 °			
diame <i>d</i> , 1	nm	с	2	с	N	с	3	C 4		
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	
-	10	2	10	6	18	16	30	26	40	
10	18	2	12	7	21	18	32	28	44	
18	24	2	12	12	26	20	40	30	50	
24	30	2	14	12	26	20	40	40	60	
30	40	2	14	12	26	25	45	45	65	
40	50	2	14	12	30	30	50	50	70	
50	65	5	17	17	35	35	60	60	85	
65	80	6	18	18	40	40	65	70 85	95	
80	100	6	20	20	45	55	80		110	
100	120	6	25	25	50	60	85	100	125	
120	140	7 30		30	60	75	105	125	155	
140	160	7 30		35	35 65		85 115		170	
160	180	7	31	45	45 75		100 130		185	
180	200	7	37	60	90	110	140	170 200		

[Note] 1) Including increase of clearance caused by measurement load.

Table 10-5 Radial internal clearance of double-row angular contact ball bearings

Unit : µm

	re diameter			Clea	rance			
<i>d</i> , 1	nm	C	D2	C	DN	C	D3	
over	up to	min. max.		min.	max.	min.	max.	
2.5	10	0	7	2	10	8	18	
10	18	0	7	2	11	9	19	
18	24	0	8	2	11	10	21	
24	30	0	8	2	13	10	23	
30	40	0	9	3	14	11	24	
40	50	0	10	4	16	13	27	
50	65	0	11	6	20	15	30	
65	80	0	12	7	22	18	33	
80	100	0	12	8	24	22	38	
100	120	0	13	9	25	24	42	
120	140	0	15	10	26	25	44	
140	160	0 16		11	28	26	46	
160	180	0 17		12	30	27	47	
180	200	0	18	14	32	28	48	

mark] egarding deep groove ball arings and matched pair and uble-row angular contact ball rings, equations of the relaship between radial internal arance and axial internal arance are shown on page 11.

Table 10-6 Radial internal clearance of self-aligning ball bearings

Unit : µm

100

Koyo

											Tapered bore bearing clearance										
iomina liamet	al bore er		C	Cylind	rical I	bore l	bearin	ig clea	aranc	е				Таре	red b	ore be	earing	l clea	rance		
<i>d</i> , r		С	2	С	Ν	С	3	С	4	С	5	С	2	С	Ν	С	3	С	4	С	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
2.5	6	1	8	5	15	10	20	15	25	21	33	-	-	-	-	-	-	-	-	-	-
6	10	2	9	6	17	12	25	19	33	27	42	-	-	-	-	-	-	-	-	-	-
10	14	2	10	6	19	13	26	21	35	30	48	-	-	-	-	-	-	-	-	-	-
14	18	3	12	8	21	15	28	23	37	32	50	-	-	-	-	-	-	-	-	-	-
18	24	4	14	10	23	17	30	25	39	34	52	7	17	13	26	20	33	28	42	37	55
24	30	5	16	11	24	19	35	29	46	40	58	9	20	15	28	23	39	33	50	44	62
30	40	6	18	13	29	23	40	34	53	46	66	12	24	19	35	29	46	40	59	52	72
40	50	6	19	14	31	25	44	37	57	50	71	14	27	22	39	33	52	45	65	58	79
50	65	7	21	16	36	30	50	45	69	62	88	18	32	27	47	41	61	56	80	73	99
65	80	8	24	18	40	35	60	54	83	76	108	23	39	35	57	50	75	69	98	91	123
80	100	9	27	22	48	42	70	64	96	89	124	29	47	42	68	62	90	84	116	109	144
100	120	10	31	25	56	50	83	75	114	105	145	35	56	50	81	75	108	100	139	130	170
120	140	10	38	30	68	60	100	90	135	125	175	40	68	60	98	90	130	120	165	155	205
140	160	15	44	35	80	70	120	110	161	150	210	45	74	65	110	100	150	140	191	180	240

Table 10-7 Radial internal clearance of electric motor bearings

1) Deep groove ball bearing Unit : μm

Unit : μm 2) Cylindrical roller bearing

	-/ F a		8										
			Clear	rance			Clearance						
	Nominal bore diameter <i>d</i> , mm				Nominal bore diameter d, mm		Interchangeability CT		Non-interchangeability CM				
			СМ										
	over	up to	min.	max.	over	up to	min.	max.	min.	max.			
	10 ¹⁾	18	4	11	24	40	15	35	15	30			
	18	30	5	12	40	50	20	40	20	35			
	30	50	9	17	50	65	25	45	25	40			
	50	80	12	22	65	80	30	50	30	45			
	80	120	18	30	80	100	35	60	35	55			
	120	160	24	38	100	120	35	65	35	60			
	[Note] 1) 1	0 mm is inclu	Ided		120	140	40	70	40	65			
				earance due	140	160	50	85	50	80			
	1	o measuring	load, use c	orrection	160	180	60	95	60	90			

180

200

to measuring load, use correction values shown in Table 10-2.

> [Note] "Interchangeability" means interchangeable only among products (sub-units) of the same manufacturer ; not with others.

105

65

65

 Table 10-8
 Radial internal clearance of cylindrical roller bearings and machined ring needle roller bearings

				(1) Cy	lindrica	l bore b	earing				$\text{Unit}:\mu m$
Nomin						Clea	rance				
	iameter mm	С	2	С	Ν	C	3	С	4	C	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
	10	0	25	20	45	35	60	50	75		
- 10	24	0	25 25	20	45 45	35	60	50	75	65	_ 90
24	30	0	25	20	45 45	35	60	50	75	70	90 95
24	00	Ŭ	20	20	40		00		10	/0	55
30	40	5	30	25	50	45	70	60	85	80	105
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
140	160	20	70	70	120	115	145	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
			-		-		-		-		
180	200	35	90	90	145	140	195	195	250	275	330
200	200	45	105	105	145	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
							200	200	000		
0.50	000		405	465	407	100	000	000	000	070	
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535
355	400	100	190	190	280	280	370	370	460	510	600
400	450	110	210	210	310	310	410	410	510	565	665
450	500	110	220	220	330	330	440	440	550	625	735

Nomina diamete															
						No	on-inter	chang	eable c	learan	се				
$d_{d, m}$		C 9	NA ¹⁾	C 1	NA	C 2	NA	C N	NA	C 3	NA	C 4	NA	C 5	NA
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
12	14	5	10	-	-	-	-	-	-	-	-	-	-	-	-
14	24	5	10	10	20	20	30	35	45	45	55	55	65	75	85
24	30	5	10	10	25	25	35	40	50	50	60	60	70	80	95
30	40	5	12	12	25	25	40	45	55	55	70	70	80	95	110
40	50	5	15	15	30	30	45	50	65	65	80	80	95	110	125
50	65	5	15	15	35	35	50	55	75	75	90	90	110	130	150
05		10	00	20	40	40	00	70	90	00	110	110	100	150	170
65 80	80 100	10	20 25	20 25	40 45	40 45	60 70	70 80	90 105	90 105	125	110 125	130 150	150 180	170 205
00 100	120	10	25 25	25 25	45 50	45 50	70 80	95	105	105	125	125	150	205	205 230
100	120	10	20	20	50	50	80	95	120	120	145	145	170	205	230
120	140	15	30	30	60	60	90	105	135	135	160	160	190	230	260
140	160	15	35	35	65	65	100	115	150	150	180	180	215	260	295
160	180	15	35	35	75	75	110	125	165	165	200	200	240	285	320
180	200	20	40	40	80	80	120	140	180	180	220	220	260	315	355
200	225	20	45	45	90	90	135	155	200	200	240	240	285	350	395
225	250	25	50	50	100	100	150	170	215	215	265	265	315	380	430
250	280	25	55	55	110	110	165	185	240	240	295	295	350	420	475
280	315	30	60	60	120	120	180	205	265	265	325	325	385	470	530
315	355	30	65	65	135	135	200	225	295	295	360	360	430	520	585
355	400	35	75	75	150	150	225	255	330	330	405	405	480	585	660
355 400	400 450	35 45	75 85	75 85	150	170	225 255	255 285	330 370	330	405 455	405	480 540	650	735
400 450	450 500	45 50	85 95	95	190	190	255 285	285 315	370 410	410	455 505	455 505	540 600	720	735 815
450	500	50	90	90	190	190	200	315	410	410	505	505	000	/ 20	010

Koyo

[Note] 1) Clearance C 9 NA is applied to tapered bore cylindrical roller bearings of JIS tolerance classes 5 and 4.

Table 10-9 Radial internal clearance of spherical roller bearings

				(1) Cy	ylindrica	l bore b	earing				Unit : μm
Nomina diamet						Clear	rance				
diamet d, r		C 2		CN		C 3		C	4	С	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
14	18	10	20	20	35	35	45	45	60	60	75
18	24	10	20	20	35	35	45	45	60	60	75
24	30	15	25	25	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	35	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	180
80	100	35	60	60	100	100	135	135	180	180	225
100	120	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	750
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1 000
560	630	170	310	310	480	480	650	650	850	850	1 100
630	710	190	350	350	530	530	700	700	920	920	1 190
710	800	210	390	390	580	580	770	770	1 010	1 010	1 300
800	900	230	430	430	650	650	860	860	1 120	1 120	1 440
900	1 000	260	480	480	710	710	930	930	1 220	1 220	1 570

				(2)	Fapered	bore bea	aring				Unit : μm		
Nomin diamet	al bore		Clearance										
	nm	C 2		CN		C 3		C 4		C 5			
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.		
18	24	15	25	25	35	35	45	45	60	60	75		
24	30	20	30	30	40	40	55	55	75	75	95		
30	40	25	35	35	50	50	65	65	85	85	105		
40	50	30	45	45	60	60	80	80	100	100	130		
50	65	40	55	55	75	75	95	95	120	120	160		
65	80	50	70	70	95	95	120	120	150	150	200		
80	100	55	80	80	110	110	140	140	180	180	230		
100	120	65	100	100	135	135	170	170	220	220	280		
120	140	80	120	120	160	160	200	200	260	260	330		
140	160	90	130	130	180	180	230	230	300	300	380		
160	180	100	140	140	200	200	260	260	340	340	430		
180	200	110	160	160	220	220	290	290	370	370	470		
200	225	120	180	180	250	250	320	320	410	410	520		
225	250	140	200	200	270	270	350	350	450	450	570		
250	280	150	220	220	300	300	390	390	490	490	620		
280	315	170	240	240	330	330	430	430	540	540	680		
315	355	190	270	270	360	360	470	470	590	590	740		
355	400	210	300	300	400	400	520	520	650	650	820		
400	450	230	330	330	440	440	570	570	720	720	910		
450	500	260	370	370	490	490	630	630	790	790	1 000		
500	560	290	410	410	540	540	680	680	870	870	1 100		
560	630	320	460	460	600	600	760	760	980	980	1 230		
630	710	350	510	510	670	670	850	850	1 090	1 090	1 360		
710	800	390	570	570	750	750	960	960	1 220	1 220	1 500		
800	900	440	640	640	840	840	1 070	1 070	1 370	1 370	1 690		
900	1 000	490	710	710	930	930	1 190	1 190	1 520	1 520	1 860		

Koyo

Table 10-10Radial internal clearance of double/four-row and
matched pair tapered roller bearings (cylindrical bore)

Unit : μm

Nominal bore diameter d, mm						Clear	rance				
		С	1	С	2	С	N	С	3	C	4
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
14	18	0	10	10	20	20	30	30	40	40	50
18	24	0	10	10	20	20	30	30	40	40	55
24	30	0	10	10	20	20	30	30	45	45	60
30	40	0	12	12	25	25	40	40	55	55	75
40	50	0	15	15	30	30	45	45	60	60	80
50	65	0	15	15	30	30	50	50	70	70	90
65	80	0	20	20	40	40	60	60	80	80	110
80	100	0	20	20	45	45	70	70	100	100	130
100	120	0	25	25	50	50	80	80	110	110	150
120	140	0	30	30	60	60	90	90	120	120	170
140	160	0	30	30	65	65	100	100	140	140	190
160	180	0	35	35	70	70	110	110	150	150	210
180	200	0	40	40	80	80	120	120	170	170	230
200	225	0	40	40	90	90	140	140	190	190	260
225	250	0	50	50	100	100	150	150	210	210	290
250	280	0	50	50	110	110	170	170	230	230	320
280	315	0	60	60	120	120	180	180	250	250	350
315	355	0	70	70	140	140	210	210	280	280	390
355	400	0	70	70	150	150	230	230	310	310	440
400	450	0	80	80	170	170	260	260	350	350	490
450	500	0	90	90	190	190	290	290	390	390	540
500	560	0	100	100	210	210	320	320	430	430	590
560	630	0	110	110	230	230	350	350	480	480	660
630	710	0	130	130	260	260	400	400	540	540	740
710	800	0	140	140	290	290	450	450	610	610	830
800	900	0	160	160	330	330	500	500	670	670	920

Table 10-11 Examples of non-standard clearance selection

Koyo

Service conditions	Applications	Examples of clearance selection		
In the case of heavy/impact load,	Railway rolling stock axle jour-	С 3		
large interference	nals			
In the case of vibration/impact load,	Shaker screens,	C 3, C 4		
interference fit both for inner/outer rings	railway rolling stock traction motors,	C 4		
interference in bour for inner/outer fings	tractor final reduction gears	C 4		
When shaft deflection is large	Automobile rear wheels	C 5		
When shaft and inner ring are heated	Dryers of paper making machines,	C 3, C 4		
when shall and inner hing are nealed	table rollers of rolling mills	C 3		
When clearance fit both for inner/outer rings	Roll necks of rolling mills	C 2		
When noise/vibration during rotation is	Micro-motors	C 1, C 2, CM		
to be lowered				
When clearance after mounting is to be	Lathe spindles	C 9 NA, C 1 NA		
adjusted in order to reduce shaft runout				

[Reference] Relationship between radial internal clearance and axial internal clearance

[Deep groove ball bearing]	$\Delta_{\rm a} = \sqrt{\Delta_{\rm r} \left(4m_{\rm o} - \Delta_{\rm r}\right)} \dots $
[Double-row angular contact ball bearing]	$\Delta_{\rm a} = 2\sqrt{m_{\rm o}^2 - (m_{\rm o} \cos \alpha - \frac{\Delta_{\rm r}}{2})^2} - 2m_{\rm o} \sin \alpha $ (10-2)
[Matched pair angular contact ball bearing]	$\Delta_{\rm a} = 2m_{\rm o} \sin \alpha - 2\sqrt{m_{\rm o}^2 - (m_{\rm o} \cos \alpha + \frac{\Delta_{\rm r}}{2})^2}$ (10-3)
[Double/four-row and matched pair tapered roller bearing]	

where :

Δ_{a} : axial internal clearance mm	lpha : nominal contact angle
$\Delta_{ m r}$: radial internal clearance $~{ m mm}$	e : limit value of $F_{ m a}/F_{ m r}$
$m_{\mathrm{o}} = r_{\mathrm{e}} + r_{\mathrm{i}} - D_{\mathrm{w}}$	(shown in
$ m (\it r_e~:$ outer ring raceway groove radius	mm (the bearing specification table.)
$r_{ m i}$: inner ring raceway groove radius	mm
$D_{ m w}$: ball diameter	mm J

11. Preload

Generally, bearings are operated with a certain amount of proper clearance allowed. For some applications, however, bearings are mounted with axial load of such magnitude that the clearance will be negative.

The axial load, referred to as "preload," is often applied to angular contact ball bearings and tapered roller bearings.

11-1 Purpose of preload

- To improve running accuracy by reducing runout of shaft, as well as to heighten position accuracy in radial and axial directions.
 (Bearings for machine tool spindles and measuring instruments)
- To improve gear engagement accuracy by increasing bearing rigidity.
- (Bearings for automobile final reduction gears)
 To reduce smearing by eliminating sliding in irregular rotation, self-rotation, and aroundthe-raceway revolution of rolling elements.
 (For high rotation-speed angular contact ball
- bearings)
 To minimize abnormal noise due to vibration or resonance.
- (For small electric motor bearings)
 To keep rolling elements in the right position relative to the raceway.
- (For thrust ball bearings and spherical thrust roller bearings used on horizontal shafts)

11-2 Method of preloading

The preload can be done either by the position preloading or the constant pressure preloading; typical examples are given in Table 11-1.

Comparison between position and constant pressure preloadings

- With the same amount of preloading, the position preloading produces smaller displacement in the axial direction, and thus is liable to bring about higher rigidity.
- The constant pressure preloading produces stable preloading, or little fluctuation in the amount of preload, since the spring can absorb the load fluctuation and shaft expansion/contraction caused by temperature difference between the shaft and housing during operation.
- The position preloading can apply a larger preload.

Consequently, the position preloading is more suitable for applications requiring high rigidity, while the constant pressure preloading is more suitable for high rotational speed, vibration prevention in the axial direction, and thrust bearings used on horizontal shafts.

11-3 Preload and rigidity

For angular contact ball bearings and tapered roller bearings, the "back-to-back" arrangement is generally used to apply preload for higher rigidity.

This is because shaft rigidity is improved by the longer distance between load centers in the back-to-back arrangement.

Fig. 11-1 shows the relationship between preload given via position preloading and rigidity expressed by displacement in the axial direction of the back-to-back bearing.

- P : amount of preload (load)
- T : axial load from outside
- $T_{\rm A}$: axial load applied to Bearing A
- $T_{\rm B}$: axial load applied to Bearing B
- $\delta_{\mathrm{a}}\,$: displacement of matched pair bearing
- δ_{aA} : displacement of Bearing A
- $\delta_{
 m aB}~$: displacement of Bearing B
- 2 $\delta_{\rm ao}$: clearance between inner rings before preloading

Displacement in axial direction

In Fig. 11-1, when preload *P* is applied (inner ring is tightened toward the axial direction), bearings A and B are displaced by δ_{ao} respectively, and the clearance between inner rings diminishes from $2\delta_{ao}$ to zero.

Koyo

The displacement when axial load T is applied to these matched pair bearings from the outside can be determined as $\delta_{\rm a}$.

[For reference]

How to determine δ_a in Fig. 11-1

- ①Determine the displacement curve of bearing A.
- ②Determine the displacement curve of bearing B. ...Symmetrical curve in relation to horizontal axis intersecting vertical line of preload Pat point x.
- With the load from outside defined as *T*, determine line segment *x y* on the horizontal line passing through point *x*.
 Displace segment *x y* in parallel along the displacement curve of bearing B.
 Determine point *y*' at which to intersect displacement curve of bearing A.

(4) δ_a can be determined as the distance between line segments x'-y' and x-y.

Fig. 11-2 shows the relationship between preload and rigidity in the constant pressure preloading using the same matched pair bearings as in Fig. 11-1.

In this case, since the spring rigidity can be ignored, the matched pair bearing shows almost the same rigidity as a separate bearing with preload P applied in advance.

Table 11-1 Method of preloading

11. Preload

The amount of preload should be determined, to avoid an adverse effect on bearing life, temperature rise, friction torque, or other performance characteristic, in view of the bearing application.

Decrease of preload due to wear-in, accuracy of the shaft and housing, mounting conditions, and lubrication should also be fully considered in determining preload.

11-4-1 Preload amount of matched pair angular contact ball bearings

Table 11-2 shows recommended preload for matched pair angular contact ball bearings of JIS class 5 or higher used for machine tool spindles or other higher precision applications.

JTEKT offers four types of standard preload: slight preload (S), light preload (L), medium preload (M), and heavy preload (H), so that preload can be selected properly and easily for various applications.

Generally, light or medium preload is recommended for grinder spindles, and medium or heavy preload for spindles of lathes and milling machines.

Table 11-3 shows recommended fits of highprecision matched pair angular contact ball bearings used with light or medium preload applied.

Table 11-3 Recommended fits for high-precision matched pair angular contact ball bearings with preload applied

(1) Dimensional tolerance of shaft Unit : μm (2) Dimensional tolerance of housing bore Unit : µm

Koyo

Sh	aft	Inner ring	Outer ring rotation		
	meter	Tolerance of shaft diameter	Interference between shaft and inner ring (matching) ¹⁾	Tolerance of shaft diameter	
over	up to		adjustment		
6	10	- 2 - 6	0 - 2	- 4	
10	18	- 2 - 7	0 - 2	0 - 5	
18	30	- 2 - 8	0 – 2.5	- 0	
30	50	- 2 - 9	0 – 2.5	- 7	
50	80	- 2 - 10	0 – 3	- 8	
80 120		- 2 - 12	0 - 4	0 - 10	
120 180		- 2 -14	0 – 5	0 - 12	

		sing	Inn	ner ring rotati	ion	Outer ring rotation
	dian	ore neter	Tolerance of housing bo		Clearance ¹⁾ between	Tolerance of housing
	over up to		Fixed-side	Free-side	housing and outer	bore diameter
			bearing	bearing	ring	ulameter
	18	30	± 4.5	+ 9 0	2- 6	- 6 - 12
	30	50	± 5.5	+ 11 0	2-6	- 6 -13
	50	80	± 6.5	+ 13 0	3 - 8	- 8 - 16
	80	120	± 7.5	+ 15 0	3 - 9	- 9 - 19
	120	180	± 9	+ 18 0	4 – 12	- 11 - 23
	180	250	± 10	+ 20 0	5 – 15	- 13 - 27
	250	315	± 11.5	+ 23 0	6 – 18	- 16 - 32

[Note] 1) Matching adjustment means to measure of bore diameter the bearing and match it to the measured shaft diameter.

[Note] 1) Lower value is desirable for fixed side; higher value for free side

Table 11-2 Standard preload of high-precision matched pair angular contact ball bearings

[S : slight preload, L : light preload, M : medium preload, H : heavy preload] Unit : N Bore 7000 C 7200 C ACT 000 ACT 000 B Bore 7900 C diameter diameter s Μ L Μ н s L М н Μ н s L М н М L L L Μ No. No. _ _ 1 270 1 570 1 080 1 770 540 1 180 1 0 3 0 1 180 2 0 6 0 1 180 1 370 635 1 370 2 4 5 0 735 1 470 685 1 270 1 570 785 1 470 2 940 1 670 735 1 420 1 770 540 1 090 835 1 670 3 3 3 0 930 1 860 785 1 520 1 080 2 060 1 270 1 860 3 720 2 060 1 1 3 0 1 0 30 2 0 10 1 180 2 1 5 0 1 370 2 150 3 920 1 180 2 350 1 1 3 0 1 080 2 110 1 270 2 500 635 1 370 2 350 735 1 470 1 080 2 450 4 3 1 0 1 370 2 750 1 370 735 1 570 2 550 880 1770 1 270 2 940 4 900 785 1 570 2 940 1 420 1 320 2 600 5 390 1 770 3 380 1 670 2 840 1 960 1 470 3 2 3 0 1 770 3 4 3 0 1 860 1 770 3 1 4 0 1 080 2 060 1 670 3 4 3 0 5 880 1 960 3 920 1 960 1860 3530 540 1 180 2 150 <u>6</u>370 1 960 3 530 1 860 3 920 2 150 1 0 3 0 2 010 1 910 3 680 4 410 2 150 3 920 1 270 2 350 2 060 4 310 7 060 1 080 2 350 4 900 1 180 2 250 2 150 3 770 1 080 2 380 4 4 1 0 1 470 2 550 2 250 4 900 7 840 1 180 2 450 5 290 1 320 2 600 2 450 4 760 1 180 2 650 4 900 685 1 670 2 840 2 450 5 390 8 820 1 270 2 840 5 490 1 420 2 800 2 550 5 100 1 180 1 370 3 1 4 0 5 390 735 1 770 3 140 2 750 5 880 9 310 1 470 3 140 5 880 1 770 3 380 3 2 3 0 6 2 3 0 1 270 1 470 3 430 5 880 785 1 960 3 920 2 940 6 370 9 800 1 570 3 430 6 370 2 010 3 920 3 720 7 210 735 1 470 1 770 3 920 6 860 835 2150 4410 3 330 6 860 10 300 1 770 3 720 6 860 2 500 4 850 4 660 8 920 1 570 2 150 4 410 7 840 2 500 4 850 4 660 8 920 880 2 350 4 900 3 630 7 350 10 800 1 960 4 120 7 840 880 1 810 2 450 4 900 8 820 5 730 11 100 980 2 450 5 390 3 920 7 840 11 800 645 2 150 4 410 8 330 3 090 6 030

11-4-2 Amount of preload for thrust ball bearings

When a thrust ball bearing is rotated at high speed, balls slide on raceway due to centrifugal force and the gyro moment, which often causes the raceway to suffer from smearing or other defects.

11. Preload

To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load determined by the following equation.

When an axial load from the outside is lower than 0.001 3 C_{0a} , there is no adverse effect on the bearing, as long as lubrication is satisfactory.

Generally, deep groove and angular contact ball bearings are recommended for applications when a portion of rotation under axial load is present at high speed.

11-4-3 Amount of preload for spherical thrust roller bearings

Spherical thrust roller bearings sometimes suffer from scuffing, smearing, or other defects due to sliding which occurs between the roller and raceway surface in operation.

To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load.

Of the two values determined by the two equations below, the higher should be defined as the minimum necessary axial load.

• Spherical thrust roller bearing (the higher value determined by the two equations should be taken.)

 $F_{a\min} = \frac{C_{0a}}{2\,000}$ (11-2) $F_{\rm a\,min} = 1.8F_{\rm r} + 1.33 \left(\frac{n}{1\,000}\right)^2 \cdot \left(\frac{C_{0a}}{1\,000}\right)^2 \times 10^{-4}$ (11-3)

where :

Ν
\min^{-1}
Ν
Ν

12. Bearing lubrication

12-1 Purpose and method of lubrication

Lubrication is one of the most important factors determining bearing performance. The suitability of the lubricant and lubrication method have a dominant influence on bearing life.

Functions of lubrication :

- To lubricate each part of the bearing, and to reduce friction and wear
- To carry away heat generated inside bearing due to friction and other causes
- To cover rolling contact surface with the proper oil film in order to prolong bearing fatique life
- To prevent corrosion and contamination by dirt

Bearing lubrication is classified broadly into two categories: grease lubrication and oil lubrication. Table 12-1 makes a general comparison between the two.

Table 12-1 Comparison between grease and oil lubrication

Item	Grease	Oil
 Sealing device 	Easy	Slightly complicated and special care required for mainte- nance
 Lubricating ability 	Good	Excellent
 Rotation speed 	Low/medium speed	Applicable at high speed as well
 Replacement of lubricant 	Slightly troublesome	Easy
 Life of lubricant 	Relatively short	Long
· Cooling effect	No cooling effect	Good (circulation is necessary)
 Filtration of dirt 	Difficult	Easy

12-1-1 Grease lubrication

Grease lubrication is widely applied since there is no need for replenishment over a long period once grease is filled, and a relatively simple structure can suffice for the lubricant sealing device.

There are two methods of grease lubrication. One is the closed lubrication method, in which grease is filled in advance into shielded/sealed bearing; the other is the feeding method, in which the bearing and housing are filled with grease in proper quantities at first, and refilled at a regular interval via replenishment or replacement.

Devices with numerous grease inlets sometimes employ the centralized lubricating method, in which the inlets are connected via piping and supplied with grease collectively.

Koyo

1) Amount of grease

In general, grease should fill approximately one-third to one-half the inside space, though this varies according to structure and inside space of housing.

It must be borne in mind that excessive grease will generate heat when churned, and will consequently alter, deteriorate, or soften.

When the bearing is operated at low speed, however, the inside space is sometimes filled with grease to two-thirds to full. in order to preclude infiltration of contaminants.

2) Replenishment/replacement of grease

The method of replenishing/replacing grease depends largely on the lubrication method. Whichever method may be utilized, care should be taken to use clean grease and to keep dirt or other foreign matter out of the housing.

In addition, it is desirable to refill with grease of the same brand as that filled at the start.

When grease is refilled, new grease must be injected inside bearing.

Fig. 12-1 gives one example of a feeding method.

Fig. 12-1 Example of grease feeding method (using grease sector)

In the example, the inside of the housing is divided by grease sectors. Grease fills one sector, then flows into the bearing.

On the other hand, grease flowing back from the inside is forced out of the bearing by the centrifugal force of the grease valve. When the grease valve is not used, it is necessary to enlarge the housing space on the discharge side to store old grease. The housing is uncovered and the stored old

3) Grease feeding interval

out accordingly.

In normal operation, grease life should be

regarded roughly as shown in Fig. 12-2, and

replenishment/replacement should be carried

Bearing operating temperature T °C Fig. 12-2 Grease feeding interval

4) Grease life in shielded/sealed ball bearing

Grease life can be estimated by the following equation when a single-row deep groove ball bearing is filled with grease and sealed with shields or seals.

The conditions for applying equation (12-1) are as follows :

a) Operating temperature of bearing : $T \circ C$ Applicable when $T \le 120$ (when T < 50, T = 50) When T > 120, please contact with JTEKT.

b) Value of $d_{\mathrm{m}}n$

Applicable when $d_{\rm m}n \leq 500 \times 10^3$

) when $d_{
m m}n\!<\!\!$ 125imes10 3 ,

c) Load condition : $\frac{P_r}{C_r}$ Applicable when $\frac{P_r}{C_r} \le 0.16$ $\begin{pmatrix} \text{when } \frac{P_r}{C_r} < 0.04 \text{,} \\ \frac{P_r}{C_r} = 0.04 \end{pmatrix}$ When $\frac{P_r}{C} > 0.16$, please contact with JTEKT.

Koyo

 $n < 125 \times 10^3$)

 $d_{\rm m}n = 125 \times 10^3$

When $d_{\rm m}n > 500 \times 10^3$, please contact with JTEKT.

12-1-2 Oil lubrication Oil lubrication is usable even at high speed rotation and somewhat high temperature, and is effective in reducing bearing vibration and noise. Thus oil lubrication is used in many cases where grease lubrication does not work. Table 12-2 shows major types and methods of oil lubrication.

Table 12-2 Type and method of oil lubrication

	Table 12-2 Type and method of on fubrication	011
① Oil bath	 Simplest method of bearing immersion in oil for operation. Suitable for low/medium speed. Oil level gauge should be furnished to adjust the amount of oil. (In the case of horizontal shaft) About 50 % of the lowest rolling element should be immersed. (In the case of vertical shaft) About 70 to 80 % of the bearing should be immersed. It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. 	a magnetic plug
② Oil drip	 Oil is dripped with an oiling device, and the inside of the housing is filled with oil mist by the action of rotating parts. This method has a cooling effect. Applicable at relatively high speed and up to medium load. In general, 5 to 6 drops of oil are utilized per minute. (It is difficult to adjust the dripping in 1mL/h or smaller amounts.) It is necessary to prevent too much oil from being accumulated at the bottom of housing. 	
3 Oil splash	 This type of lubrication method makes use of a gear or simple flinger attached to shaft in order to splash oil. This method can supply oil for bearings located away from the oil tank. Usable up to relatively high speed. It is necessary to keep oil level within a certain range. It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. It is also advisable to set up a shield or baffle board to prevent contaminants from entering the bearing. 	

④ Forced oil circulation	 This method employs a circulation-type oil supply system. Supplied oil lubricates inside of the bearing, is cooled and sent back to the tank through an oil escape pipe. The oil, after filtering and cooling, is pumped back. Widely used at high speeds and high temperature conditions. It is better to use an oil escape pipe approximately twice as thick as the oil supply pipe in order to prevent too much lubricant from gathering in housing. Required amount of oil : see Remark 1.
5 Oil jet lubrication	 This method uses a nozzle to jet oil at a constant pressure (0.1 to 0.5MPa), and is highly effective in cooling. Suitable for high speed and heavy load. Generally, the nozzle (diameter 0.5 to 2 mm) is located 5 to 10 mm from the side of a bearing. When a large amount of heat is generated, 2 to 4 nozzles should be used. Since a large amount of oil is supplied in the jet lubrication method, old should be discharged with an oil pump to prevent excessive residual oil. Required amount of oil : see Remark 1.
َنَ Oil mist Iubrication (spray Iubrication)	 This method employs an oil mist generator to produce dry mist (air containing oil in the form of mist). The dry mist is continuously sent to the oil supplier, where the mist is turned into a wet mist (sticky oil drops) by a nozzle set up on the housing or bearing, and is then sprayed onto bearing. This method provides and sustains the smallest amount of oil film necessary for lubrication, and has the advantages of preventing oil contamination, simplifying bearing maintenance, prolonging bearing fatigue life, reducing oil consumption etc. Required amount of mist : see Remark 2.
	(Example of grinding machine) (Example of rolling mill)
	Supply of oil Supply

Remark 1

Required oil supply in forced oil circulation ; oil jet lubrication methods

```
G = \frac{1.88 \times 10^{-4} \mu \cdot d \cdot n \cdot P}{60 \ c \cdot r \cdot \Delta T}
```

where :

ere.			
G	: required oil supply		L/min
μ	: friction coefficient (see	table at right)	
d	: nominal bore diameter		mm
n	: rotational speed		\min^{-1}
P	: dynamic equivalent loa	d of bearing	Ν
с	: specific heat of oil	1.88-2.09k	J/kg∙K
r	: density of oil		g/cm ³
\mathcal{A}_T	: temperature rise of oil		Κ

The values obtained by the above equation show quantities of oil required to carry away all the generated heat, with heat release not taken into consideration.

In reality, the oil supplied is generally half to two-thirds of the calculated value.

Heat release varies widely according to the application and operating conditions.

Values of friction coefficient μ

Bearing type	μ
Deep groove ball bearing	0.001 0 - 0.001 5
Angular contact ball bearing	0.001 2 - 0.002 0
Cylindrical roller bearing	0.000 8 - 0.001 2
Tapered roller bearing	0.001 7 - 0.002 5
Spherical roller bearing	0.002 0 - 0.002 5

To determine the optimum oil supply, it is advised to start operating with two-thirds of the calculated value, and then reduce the oil gradually while measuring the operating temperature of bearing, as well as the supplied and discharged oil.

Remark 2 Notes on oil mist lubrication

1) Required amount of mist (mist pressure : 5 kPa)

(In the case of a bearing)	Q = 0.11 dR
$\begin{pmatrix} \text{In the case of two oil} \\ \text{seals combined} \end{pmatrix}$	$Q = 0.028d_1$

where :

- Q : required amount of mist L/min
- d : nominal bore diameter mm
- *R* : number of rolling element rows

mm

 d_1 : inside diameter of oil seal

In the case of high speed $(d_m n \ge 400 \times 10^3)$, it is necessary to increase the amount of oil and heighten the mist pressure.

2) Piping diameter and design of lubrication hole/groove

When the flow rate of mist in piping exceeds 5 m/s, oil mist suddenly condenses into an oil liquid.

Consequently, the piping diameter and dimensions of the lubrication hole/groove in the housing should be designed to keep the flow rate of mist, obtained by the following equation, from exceeding 5 m/s.

$$V = \frac{0.167Q}{A} \le 5$$

where :

V	: flow rate of mist	m/s
Q	: amount of mist	L/min
A	: sectional area of piping or	
	lubrication groove	cm^2

3) Mist oil

Oil used in oil mist lubrication should meet the following requirements.

- ability to turn into mist
- has high extreme pressure resistance
- good heat/oxidation stability
- rust-resistant
- unlikely to generate sludge
- superior demulsifier

Oil mist lubrication has a number of advantages for high speed rotation bearings. Its performance, however, is largely affected by surrounding structures and bearing operating conditions.

If contemplating the use of this method, please contact with JTEKT for advice based on JTEKT long experience with oil mist lubrication.

12-2 Lubricant

12-2-1 Grease

Grease is made by mixing and dispersing a solid of high oil-affinity (called a thickener) with lubricant oil (as a base), and transforming it into a semi-solid state.

As well, a variety of additives can be added to improve specific performance.

(1) Base oil

Mineral oil is usually used as the base oil for grease. When low temperature fluidity, high temperature stability, or other special performance is required, diester oil, silicon oil, polyglycolic oil, fluorinated oil, or other synthetic oil is often used.

Generally, grease with a low viscosity base oil is suitable for applications at low temperature or high rotation speed; grease with high viscosity base oils are suitable for applications at high temperature or under heavy load.

(2) Thickener

Most greases use a metallic soap base such as lithium, sodium, or calcium as thickeners. For some applications, however, non-soap base thickeners (inorganic substances such as bentone, silica gel, and organic substances such as urea compounds, fluorine compounds) are also used.

In general, the mechanical stability, bearing operating temperature range, water resistance, and other characteristics of grease are determined by the thickener.

- (Lithium soap base grease)
- Superior in heat resistance, water resistance and mechanical stability.
- (Calcium soap base grease) Superior in water resistance: inferior in heat

resistance. (Sodium soap base grease)

- (Sodium soap base greas
- Superior in heat resistance; inferior in water resistance.
- (Non-soap base grease)
- Superior in heat resistance.

(3) Additives

Various additives are selectively used to serve the respective purposes of grease applications.

• Extreme pressure agents

When bearings must tolerate heavy or impact loads.

- Oxidation inhibitors
 When grease is not refilled for a long period.
 Structure stabilizers, rust preventives, and corrosion inhibitors are also used.
- (4) Consistency

Consistency, which indicates grease hardness, is expressed as a figure obtained, in accordance with ASTM (JIS), by multiplication by 10 the depth (in mm) to which the coneshaped metallic plunger penetrates into the grease at 25°C by deadweight in 5 seconds. The softer the grease, the higher the figure.

Table 12-4 shows the relationships between the NLGI scales and ASTM (JIS) penetration indexes, service conditions of grease. (NLGI : National Lubricating Grease Institute)

Table 12-4 Grease consistency

Koyo

NLGI scale	ASTM (JIS) penetration index (25°C, 60 mixing operations)	Service conditions/ applications
0	355 – 385	For centralized lubricating
1	310 - 340	For centralized lubricating, at low temperature
2	265 – 295	For general use
3	220 - 250	For general use, at high temperature
4	175 – 205	For special applications

(5) Mixing of different greases

Since mixing of different greases changes their properties, greases of different brands should not be mixed.

If mixing cannot be avoided, greases containing the same thickener should be used. Even if the mixed greases contain the same thickener, however, mixing may still produce adverse effects, due to difference in additives or other factors.

Thus it is necessary to check the effects of a mixture in advance, through testing or other methods.

	Lithium grease			Calcium grease (cup grease)	Sodium grease (fiber grease)	Complex base grease		N			
Thickener		Lithium soap		Calcium soap	Sodium soap	Lithium complex soap	Calcium complex soap	Bentone	Urea compounds	Fluorine compounds	Thickener
Base oil	Mineral oil	Synthetic oil (diester oil)	Synthetic oil (silicon oil)	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral/ synthetic oil	Synthetic oil	Base oil
Dropping point (°C)	170 to 190	170 to 230	220 to 260	80 to 100	160 to 180	250 or higher	200 to 280	-	240 or higher	250 or higher	Dropping point (°C)
Operating tempera- ture range (°C)	- 30 to + 120	- 50 to + 130	- 50 to + 180	- 10 to + 70	0 to + 110	- 30 to + 150	- 10 to + 130	- 10 to + 150	- 30 to + 150	- 40 to + 250	Operating tempera- ture range (°C)
Rotation speed range	Medium to high	High	Low to medium	Low to medium	Low to high	Low to high	Low to medium	Medium to high	Low to high	Low to medium	Rotation speed range
Mechanical stability	Excellent	Good to excellent	Good	Fair to good	Good to excellent	Good to excellent	Good	Good	Good to excellent	Good	Mechanical stability
Water resistance	Good	Good	Good	Good	Bad	Good to excellent	Good	Good	Good to excellent	Good	Water resistance
Pressure resistance	Good	Fair	Bad to fair	Fair	Good to excellent	Good	Good	Good to excellent	Good to excellent	Good	Pressure resistance
Remarks	Most widely usable for various rolling bearings.	Superior low tem- perature and fric- tion characteristics. Suitable for bear- ings for measuring instruments and extra-small ball bearings for small electric motors.	Superior high and low temperature characteristics.	Suitable for appli- cations at low rotation speed and under light load. Not applicable at high temperature.	Liable to emulsify in the presence of water. Used at relatively high temperature.	Superior mechanical stability and heat resistance. Used at relatively high temperature.	Superior pressure resistance when extreme pressure agent is added. Used in bearings for rolling mills.	Suitable for applications at high temperature and under relatively heavy load.	Superior water resistance, oxidation stability, and heat stability. Suitable for applications at high temperature and high speed.	Superior chemical resistance and solvent resistance. Usable at up to 250 °C.	Remarks

Table 12-3 Characteristics of respective greases

Table 12-5 Typical examples of standard grease for JTEKT bearings

Grease name	Thickener	Base oil	Beeg sile Approximate 60W NLGI temperature	temperature					
Grease name	Thickener	Dase on	Appearance	Unworked	Worked	scale	range (°C)	`	
Alvania 2	Lithium	Mineral oil	Grayish brown	276	275	2	-10 - 100		Steering column
Raremax AF-I	Urea	Mineral oil	Pale yellow, viscous	-	300	$1 - 2^{2)}$	0 – 150		Wheel (hub unit)
FS841	Fluororesin	Fluorosilicone oil	White	-	290	2	-40 - 220	Automobile	Fan coupling
Sunlight 2	Lithium	Mineral oil	Yellowish brown	_	280	 2	-10 - 100	Automobile	Universal joint (shell type), steering joint
Unirex N3	Lithium complex	Mineral oil	Green	-	235	3	-10 - 130		Clutch release
W191	Urea	PAO ¹⁾ , mineral oil	Pale yellow	247	275	2	-30 - 130		Water pump bearing
Darina 2	Microgel	Mineral oil	Amber	-	280	2	0 – 150		Conveyor
Emalube L	Urea	Mineral oil	Light brown, viscous	-	350	$0 - 1^{2)}$	-10 - 200	Steel production	Continuous casting machine
Palmax RBG	Special lithium complex	Mineral oil	Yellow, viscous	-	300	$1 - 2^{2)}$	-10 - 150		Rolling mill roll neck
4B grease	Carbon black	Ethyl oil	Black	-	260	$2 - 3^{2)}$	-30 - 250		Photocopier (high temperature/conductive), printer (high temperature/conductive)
KRYTOX GPL 226	Fluororesin	Fluorinated oil		-	280	2	0 – 250	Extra-small/miniature ball	Photocopier (high temperature), printer (high temperature)
Multemp PSNo.2	Lithium	Mineral oil, ester oil	Pinkish white, viscous	-	275	2	-40 - 100	bearings	Motor (for low temperatures)
KVC grease	Urea	PAO ¹⁾ , ester oil	Milkish pink	-	244	 3	-30 - 150		Motor (for high temperatures), rotary encoder, fan motor (for high temperatures)
SR grease	Lithium	Ester oil	Light brown, viscous	-	250	3	-40 - 130	Extra-small/miniature ball bearings, automobile	Motor, stepping motor, fan motor Center bearing (for propeller shafts), steering column
KDL grease	Fluororesin (PTFE)	Fluorinated oil	White	-	260	$2 - 3^{2)}$	-30 - 200	Semiconductor manufacturing	For high temperatures, for clean environment, for vacuum environment
KHD	Lithium	PAO ¹⁾	White	-	199	4	-30 - 120	equipment	For room temperature, for atmosphere
Nerita 2858	Lithium	Mineral oil (XHVI)	Yellowish brown	-	279	2	-30 - 100	Deilussy vellige steels	Axle journal (ABU)
Arapen RB 320	Lithium, calcium	Mineral oil	Yellowish brown	_	315	 1	-30 - 90	- Railway rolling stock	Axle journal (general)
Isoflex NBU 15	Barium complex	Ester oil	Beige	270	280	2	-40 - 100	Machine tool spindle	
Shell Cassida grease RLS2	Aluminum complex	PAO ¹⁾	Transparent	-	280	2	-20 - 100	For food machinery	
Alvania EP2	Lithium	Mineral oil	Brown	282	276	2	-10 - 80	Slewing rim, automobile	Universal joint, king pin thrust bearing
Alvania 3	Lithium	Mineral oil	Brown	240	225	 3	-10 - 100	Agricultural machinery	

[Notes] 1) PAO: Polyalphaolefin oil

2) The value is within the range specified by the consistency numbers.

Koyo

Bearing oil

Gear oil

12-2-2 Lubricating oil

For lubrication, bearings usually employ highly refined mineral oils, which have superior oxidation stability, rust-preventive effect, and high film strength.

With bearing diversification, however, various synthetic oils have been put into use.

Type of lubricating oil	Highly	Major synthetic oils								
	refined mineral oil	Diester oil	Silicon oil	Polyglycolic oil	Polyphenyl ether oil	Fluorinated oil				
Operating temperature range (°C)	- 40 to + 220	- 55 to + 150	- 70 to + 350	- 30 to + 150	0 to + 330	- 20 to + 300				
Lubricity	Excellent	Excellent	Fair	Good	Good	Excellent				
Oxidation stability	Good	Good	Fair	Fair	Excellent	Excellent				
Radioactivity resistance	Bad	Bad	Bad to fair	Bad	Excellent	-				

[Selection of lubricating oil]

The most important criterion in selecting a lubricating oil is whether the oil provides proper viscosity at the bearing operating temperature.

Standard values of proper kinematic viscosity can be obtained through selection by bearing type according to Table 12-7 first, then through selection by bearing operating conditions according to Table 12-8.

When lubricating oil viscosity is too low, the oil film will be insufficient. On the other hand, when the viscosity is too high, heat will be generated due to viscous resistance.

In general, the heavier the load and the higher the operating temperature, the higher the lubricating oil viscosity should be ; whereas, the higher the rotation speed, the lower the viscosity should be.

Fig. 12-3 illustrates the relationship between lubricating oil viscosity and temperature.

Table 12-7 Proper kinematic viscosity by bearing type Proper kinematic viscosity

These synthetic oils contain various additives

(oxidation inhibitors, rust preventives, antifoam-

ing agents, etc.) to improve specific properties.

Table 12-6 shows the characteristics of

applications in JIS and MIL.

Mineral lubricating oils are classified by

lubricating oils.

Bearing type	Proper kinematic viscosity at operating temperature
Ball bearing Cylindrical roller bearing	$13 \mathrm{mm}^{2}$ / s or higher
Tapered roller bearing Spherical roller bearing	$20 \mathrm{mm}^2$ / s or higher
Spherical thrust roller bearing	$32mm^{2/}\ s$ or higher

Operating	$d_{m}n$ value	Proper kinematic viscosity (expressed in the ISO viscosity grade or the SAE No.)						
temperature amn value		Light/nor	mal load	Heavy/impact load				
-30 to $0^{\circ}\mathrm{C}$	All rotation speeds	ISO VG 15, 22, 46	(Refrigerating machine oil					
	300 000 or lower	ISO VG 46	(Bearing oil Turbine oil	ISO VG 68 SAE 30	(Bearing oil Turbine oil			
0 to 60°C	300 000 to 600 000	ISO VG 32	(Bearing oil Turbine oil	ISO VG 68	Bearing oil Turbine oil			
	600 000 or higher	ISO VG 7, 10, 22	(Bearing oil)					
	300 000 or lower	ISO VG 68	(Bearing oil)	ISO VG 68, 100 SAE 30	(Bearing oil)			
60 to 100°C	300 000 to 600 000	ISO VG 32, 46	(Bearing oil Turbine oil	ISO VG 68	Bearing oil Turbine oil			
	600 000 or higher	ISO VG 22, 32, 46	(Bearing oil Turbine oil					

Table 12-8 Proper kinematic viscosities by bearing operating conditions

 $[\text{Remarks}] 1. d_{\text{m}}n = \frac{D+d}{2} \times n \cdots \{D: \text{nominal outside diameter (nm)}, d: \text{nominal bore diameter (nm)}, n: \text{rotational speed (min⁻¹)}\}$

ISO VG 68, 100

SAE 30, 40

300 000 or lower

 Refer to refrigerating machine oil (JIS K 2211), turbine oil (JIS K 2213), gear oil (JIS K 2219), machine oil (JIS K 2238) and bearing oil (JIS K 2239).

3. Please contact with JTEKT if the bearing operating temperature is under $-30^\circ\mathrm{C}$ or over $150^\circ\mathrm{C}$.

Machine oil

(Bearing oil)

ISO VG 100 to 460

Fig. 12-3 Relationship between lubricating oil viscosity and temperature (viscosity index :100)

13. Bearing materials

Bearing materials include steel for bearing rings and rolling elements, as well as steel sheet, steel, copper alloy and synthetic resins for cages.

These bearing materials should possess the following characteristics :

1) High elasticity, durable under Bearing high partial contact stress. rings

2) High strength against rolling contact fatigue due to large Rolling repetitive contact load. elements 3) Strong hardness

4) High abrasion resistance Bearing 5) High toughness against rings Rolling impact load elements

6) Excellent dimensional stability Cages

13-1 Bearing rings and rolling elements materials

1) High carbon chromium bearing steel

High carbon chromium bearing steel specified in JIS is used as a general material in bearing rings (inner rings, outer rings) and rolling elements (balls, rollers).

Their chemical composition classified by steel type is given in Table 13-1.

Among these steel types, SUJ 2 is generally used. SUJ 3, which contains additional Mn and Si, possesses high hardenability and is commonly used for thick section bearings.

SUJ 5 has increased hardenability, because it was developed by adding Mo to SUJ 3.

For small and medium size bearings, SUJ 2 and SUJ 3 are used, and for large size and extra-large size bearings with thick sections, SUJ 5 is widely used.

Generally, these materials are processed into the specified shape and then undergo hardening and annealing treatment until they attain a hardness of 57 to 64 HRC.

2) Case carburizing bearing steel (case hardened steel)

When a bearing receives heavy impact loads, the surface of the bearing should be hard and the inside soft.

Such materials should possess a proper amount of carbon. dense structure. and carburizing case depth on their surface, while having proper hardness and fine structure internally.

For this purpose, chromium steel and nickel-chromium-molybdenum steel are used as materials.

Typical steel materials are shown in Table 13-2

3) Steel for Standard JTEKT **Specification Bearings**

In general terms, it is known that the nonmetallic inclusions contained in materials are harmful to the rolling contact fatigue life.

At JTEKT, to reduce the amount of nonmetallic inclusions, which are harmful to the fatigue life, we set the chemical compounds of the bearing steel in a proprietary manner. As a result, JTEKT standard bearings have a life that is approximately twice as long as the general bearings that are targeted by JIS B 1518 (and ISO 281).

Therefore, the basic dynamic load ratings of JTEKT standard bearings are 1.25 times the dynamic load ratings established in JIS B 1518 (and ISO 281).

This steel for standard JTEKT specification bearings is not applied to the special application bearings in this general catalog. If you require special application bearings with long lives, contact JTEKT.

4) Other

For special applications, the special heat treatment shown below can be used according to various usage conditions.

[Extremely high reliability]

· SH bearings 1)

..... By using the heat treatment technology developed by JTEKT to perform special heat treatment on high carbon chromium bearing steel, we have improved the surface hardness of these products and provided them with compressive residual stress, which has led to high reliability especially in terms of resistance to foreign matter.

 \cdot KE bearings $^{2)}$

- By using the heat treatment technology developed by JTEKT to perform special heat treatment on carburized bearing steel, we have improved the surface hardness of these products and adjusted their amount of residual austenite, which has led to high reliability especially in terms of resistance to foreign matter.
- 1) Acronym of Special Heat treatment 2) Acronym of Kovo EXTRA-LIFE Bearing

Table 13-2 Chemical composition of case carburizing bearing steel

Ctondord	Cada	Chemical composition (%)								
Standard	Code	С	Si	Mn	Р	S	Ni	Cr	Мо	
	SCr 415	0.13 – 0.18	0.15 – 0.35	0.60 – 0.85	Not more	Not more	-	0.90 – 1.20	-	
	SCr 420	0.18 – 0.23	0.15 – 0.35	0.60 – 0.85	than 0.030	than 0.030	-	0.90 – 1.20	-	
JIS G 4053	SCM 420	0.18 – 0.23	0.15 – 0.35	0.60 – 0.85	Not more than 0.030	Not more than 0.030	-	0.90 – 1.20	0.15 – 0.30	
JIS G 4055	SNCM 220	0.17 – 0.23	0.15 – 0.35	0.60 – 0.90	Not more than 0.030	Not more	0.40 – 0.70	0.40 – 0.65	0.15 – 0.30	
	SNCM 420	0.17 – 0.23	0.15 – 0.35	0.40 – 0.70		than 0.030	1.60 – 2.00	0.40 – 0.65	0.15 – 0.30	
	SNCM 815	0.12 – 0.18	0.15 – 0.35	0.30 – 0.60	Not more than 0.030	Not more than 0.030	4.00 – 4.50	0.70 – 1.00	0.15 – 0.30	
	5120	0.17 – 0.22	0.15 – 0.35	0.70 – 0.90	Not more than 0.035	Not more than 0.040	_	0.70 – 0.90	-	
SAE J 404	8620	0.18 – 0.23	0.15 – 0.35	0.70 – 0.90	Not more than 0.035	Not more than 0.040	0.40 – 0.70	0.40 - 0.60	0.15 – 0.25	
	4320	0.17 – 0.22	0.15 – 0.30	0.45 – 0.65	Not more than 0.025	Not more than 0.025	1.65 – 2.00	0.40 - 0.60	0.20 – 0.30	

 Table 13-1
 Chemical composition of high carbon chromium bearing steel

Standard	Code	Chemical composition (%)							
		С	Si	Mn	Р	S	Cr	Мо	
JIS G 4805	SUJ 2	0.95 – 1.10	0.15 – 0.35	Not more than 0.50	Not more than 0.025		Nut	1.30 – 1.60	Not more than 0.08
	SUJ 3	0.95 – 1.10	0.40 - 0.70	0.90 - 1.15		Not more than 0.025	0.90 - 1.20	Not more than 0.08	
	SUJ 5	0.95 – 1.10	0.40 - 0.70	0.90 – 1.15			0.90 - 1.20	0.10 – 0.25	
SAE J 404	52100	0.98 – 1.10	0.15 - 0.35	0.25 - 0.45	Not more than 0.025	Not more than 0.025	1.30 - 1.60	Not more than 0.06	

[Remark] As for bearings which are induction hardened, carbon steel with a high carbon content of 0.55 to 0.65 % is used in addition to those listed in this table.

13-2 Materials used for cages

Since the characteristics of materials used for cages greatly influence the performance and reliability of rolling bearings, the choice of materials is of great importance.

It is necessary to select cage materials in accordance with required shape, ease of lubrication, strength, and abrasion resistance. Typical materials used for metallic cages are shown in Tables 13-3 and 13-4.

In addition, phenolic resin machined cages and other synthetic resin molded cages are often used.

Materials typically used for molded cages are polyacetal, polyamide (Nylon 6.6, Nylon 4.6), and polymer containing fluorine, which are strengthened with glass and carbon fibers.

Table 13-3Chemical compositions of
pressed cage steel sheet (A) and machined cage carbon steel (B)

	Standard	Code	Chemical composition (%)							
			С	Si	Mn	Р	S	Ni	Cr	
(A)	JIS G 3141	SPCC	Not more than 0.12	-	Not more than 0.50	Not more than 0.040	Not more than 0.045	-	-	
	JIS G 3131	SPHC	Not more than 0.15	-	Not more than 0.60	Not more than 0.050	Not more than 0.050	-	-	
	BAS 361	SPB 2	0.13 – 0.20	Not more than 0.04	0.25 – 0.60	Not more than 0.030	Not more than 0.030	-	-	
	JIS G 4305	SUS 304	Not more than 0.08	Not more than 1.00	Not more than 2.00	Not more than 0.045	Not more than 0.030	8.00 - 10.50	18.00 - 20.00	
(B)	JIS G 4051	S 25 C	0.22 – 0.28	0.15 – 0.35	0.30 - 0.60	Not more than 0.030	Not more than 0.035	_	-	

Table 13-4 Chemical composition of high-tensile brass casting of machined cages (%)

Standard	Code	Cu	Zn	Mn	Fe	AI	Sn	Ni	Imp	urity
	Code	- Cu	211		10	~	on		Pb	Si
JIS H 5120	CAC 301 (HBsC*)	55 – 60	33 - 42	0.1 – 1.5	0.5 – 1.5	0.5 – 1.5	Not more than 1.0	Not more than 1.0	Not more than 0.4	Not more than 0.1

* : Material with HBsC is used.

14. Shaft and housing design

In designing the shaft and housing, the following should be taken into consideration.

- Shafts should be thick and short. (in order to reduce distortion including bending)
- Housings should possess sufficient rigidity. (in order to reduce distortion caused by load)
- [Note] · For light alloy housings, rigidity may be provided by inserting a steel bushing.

Fig. 14-1 Example of light alloy housing

- The fitting surface of the shaft and housing should be finished in order to acquire the required accuracy and roughness. The shoulder end-face should be finished in order to be perpendicular to the shaft center or housing bore surface. (refer to Table 14-1)
- The fillet radius (r_a) should be smaller than chamfer dimension of the bearing.
 - (refer to Tables 14-2, 14-3) [Notes] · Generally it should be finished so
 - as to form a simple circular arc. (refer to Fig. 14-2)
 - When the shaft is given a ground finish, a recess may be provided.

(Fig. 14-3)

Fig. 14-2 Fillet Fig. 14-3 Grinding radius undercut

5) The shoulder height (*h*) should be smaller than the outside diameter of inner ring and larger than bore diameter of outer ring so that the bearing is easily dismounted. (refer to Fig. 14-2 and Table 14-2)

Koyo

6) If the fillet radius must be larger than the bearing chamfer, or if the shaft/housing shoulder must be low/high, insert a spacer between the inner ring and shaft shoulder as shown in Fig. 14-4, or between the outer ring and the housing shoulder.

Fig. 14-4 Example of shaft with spacer

- Screw threads and lock nuts should be completely perpendicular to shaft axis. It is desirable that the tightening direction of threads and lock nuts be opposite to the shaft rotating direction.
- 8) When split housings are used, the surfaces where the housings meet should be finished smoothly and provided with a recess at the inner ends of the surfaces that meet.

Fig. 14-5 Recesses on meeting surfaces

14-1 Accuracy and roughness of shafts and housings

The fitting surface of the shaft and housing may be finished by turning or fine boring when the bearing is used under general operating conditions. However, if the conditions require minimum vibration and noise, or if the bearing is used under severe operating conditions, a ground finish is required.

Recommended accuracy and roughness of shafts and housings under general conditions are given in Table 14-1.
Table 14-1 Recommended accuracy and roughness of shafts and housings

Item	Bearing class	Shaft	Housing bore	
Roundness	classes 0, 6	IT 3 – IT 4	IT 4 – IT 5	
tolerance	classes 5, 4	IT 2 – IT 3	IT 2 – IT 3	
Cylindrical	classes 0, 6	IT 3 – IT 4	IT 4 – IT 5	
form tolerance	classes 5, 4	IT 2 – IT 3	IT 2 – IT 3	
Shoulder	classes 0, 6	IT 3	IT 3 – IT 4	
runout tolerance	classes 5, 4	IT 3	IT 3	
Roughness of fitting surfaces Ra	Small size bearings Large size bearings	0.8 a 1.6 a	1.6 a 3.2 a	

[Remark] Refer to the figures listed in the attached table when the basic tolerance IT is required.

14-2 Mounting dimensions

Mounting dimensions mean the necessary dimensions to mount bearings on shafts or housings, which include the fillet radius or shoulder diameters.

Standard values are shown in Table 14-2. (The mounting related dimensions of each bearing are given in the bearing specification table.) The grinding undercut dimensions for ground shafts are given in Table 14-3.

For thrust bearings, the mounting dimensions should be carefully determined such that bearing race will be perpendicular to the support and the supporting area will be wide enough.

For thrust ball bearings, the shaft shoulder diameter d_a should be larger than pitch diameter of ball set, while the shoulder diameter of housing $D_{\rm a}$ should be smaller than the pitch diameter of ball set. (Fig. 14-6)

For thrust roller bearings, the housing/shaft diameter D_a/d_a should cover the lengths of both rollers. (Fig. 14-7)

Fig. 14-6 Thrust ball bearings

Fig. 14-7 Spherical thrust roller bearings

Table 14-2 Shaft/housing fillet radius and shoulder height of radial bearings

[Notes]

- 1) Shoulder heights greater than those specified in the Table are required to accommodate heavy axial loads.
- 2) Used when an axial load is small. These values are not recommended for tapered roller bearings, angular contact ball bearings, or spherical roller bearings.

[Remark]

Fillet radius can be applied to thrust bearings.

Shaft and housing Chamfer dimension of Shoulder height Fillet inner ring or h_{\min} radius outer ring Special ²⁾ General ¹⁾ $r_{\rm min}$ $r_{\rm a max}$ cases cases 0.3 0.05 0.05 0.3 0.08 0.08 0.3 0.3 0.1 0.1 0.4 0.4 0.15 0.15 0.6 0.6 0.2 0.2 0.8 0.8 0.3 0.3 1.25 1 0.5 0.5 1.75 1.5 2.25 0.6 0.6 2 0.8 0.8 2.75 2.5 2.5 2.75 1 1 3.5 3.25 1.1 1 1.5 1.5 4.25 4 2 2 5 4.5 2.1 2 6 5.5 2.5 2 5.5 6 2.5 3 7 6.5 9 4 3 8 5 4 10 11 6 5 14 12 6 18 7.5 16 9.5 8 22 20 12 10 27 24

Unit : mm

Grinding undercut dimensions Table 14-3 for ground shafts

Chamfer dimen- sion of inner ring	Grinding undercut dimensions				
$r_{\rm min}$	t	$r_{ m g}$	b		
1	0.2	1.3	2		
1.1	0.3	1.5	2.4		
1.5	0.4	2	3.2		
2	0.5	2.5	4		
2.1	0.5	2.5	4		
3	0.5	3	4.7		
4	0.5	4	5.9		
5	0.6	5	7.4		
6	0.6	6	8.6		
7.5	0.6	7	10		

15

19

12

15

32

42

29

38

14-3 Shaft design

When bearings are mounted on shafts, locating method should be carefully determined. Shaft design examples for cylindrical bore bearings are given in Table 14-4, and those for bearings with a tapered bore in Table 14-5.

Table 14-4 Mounting designs for cylindrical bore bearings

Table 14-5 Mounting designs for bearings with tapered bore

(d) Adapter assembly	(e) Withdrawal sleeve	(f) Shaft locknut	(g) Split ring
The simplest method for axial positioning is just to attach an adapter sleeve to the shaft and tighten the locknuts. To prevent locknut loosening, lock-washer (not more than 180 mm in shaft diameter) or lock plate (not less than 200 mm in shaft diameter) are used.	The locknut (above) or end plate (below) fixes the bearing with a withdrawal sleeve, which makes it easy to dismount the bear- ing.	The shaft is threaded in the same way as shown in Fig. (a). The bearing is located by tightening locknut.	A split ring with threaded outside diameter is inserted into groove on the tapered shaft. A key is often used to prevent the locknut and split ring from loosening.

14-4 Sealing devices

Sealing devices not only prevent foreign matter (dirt, water, metal powder) from entering, but prevent lubricant inside from leaking. If the sealing device fails to function satisfactorily, foreign matter or leakage will cause bearing damage as a result of malfunction or seizure.

Therefore, it is necessary to design or choose the most suitable sealing devices as well as to choose the proper lubricating measures according to operating conditions.

Sealing devices may be divided into non-contact and contact types according to their structure.

They should satisfy the following conditions :

Free from excessive friction

(heat generation)

 Easy maintenance (especially ease of mounting and dismounting)

As low cost as possible

14-4-1 Non-contact type sealing devices

Koyo

A non-contact type sealing device, which includes oil groove, flinger (slinger), and labyrinth, eliminates friction because it does not have a contact point with the shaft.

These devices utilize narrow clearance and centrifugal force and are especially suitable for operation at high rotation speed and high temperature.

Table 14-6 (1)Non-contact type
sealing devices

- This kind of seal having more than three grooves at the narrow clearance between the shaft and housing cover, is usually accompanied by other sealing devices except when it is used with grease lubrication at low rotation speed.
- Preventing entrance of contaminants can be improved by filling the groove with calcium grease (cup grease) having a consistency of 150 to 200.
- The clearance between the shaft and housing cover should be as narrow as possible.
 Recommended clearances are as follows.
 Shaft diameter of less than 50mm

· Shaft diameter of over 50mm

······ 0.5 - 1 mm

- Recommended dimensions for the oil groove are as follows.
 Width 2 – 5mm
- \cdot Depth 4 5mm

14-4-2 Contact type sealing devices

This type provides a sealing effect by means of the contact of its end with the shaft and are manufactured from synthetic rubber, synthetic resin, or felt.

The synthetic rubber oil seal is most popular.

1) Oil seals

Many types and sizes of oil seals, as a finished part, have been standardized.

JTEKT produces various oil seals. The names and functions of each oil seal part are shown in Fig. 14-8 and Table 14-7. Table 14-8 provides a representative example.

Fig. 14-8 Names of oil seal parts

Table 14-7Complete list of
oil seal part functions

Names	Functions
Sealing edge	Prevents fluid leakage by making contact with rotating shaft. The contact surface of the sealing edge with the shaft should always filled with lubricant, so as to maintain an oil film therein.
Sealing lip and spring	Provides proper pressure on the sealing edge to maintain stable contact. Spring pro- vides proper pressure on the lip and maintains such pres- sure for a long time.
Outside sur- face	Fixes the oil seal to the hous- ing and prevents fluid leak- age through the fitting surface. (Comes encased in metal cased type or rubber covered type.
Case	Strengthens seal.
Minor lip (auxiliary lip)	Prevents entry of contami- nants. (In many cases, the space between the seal- ing lip and minor lip is filled with grease.

Table 14-8 Typical oil seal types

		Without case			
Without	t spring		With s	With spring	
ſ		ŗ			C
HM (JIS GM)	MH (JIS G)	HMS (JIS SM)	MHS (JIS S) CRS	HMSH (JIS SA)	MS
ŗ		ŗ			-
HMA	MHA	HMSA (JIS DM)	MHSA (JIS D) CRS/	HMSAH (JIS DA)	
 Special seal and 	eals showr types of sea d outer seal g condition	• By providing a slit on the oil seals, it is possible to attach them from other points than the shaft ends.			

Oil seals without minor lips are mounted in different directions according to their operating conditions (shown in Fig. 14-9).

Fig. 14-9 Direction of sealing lips and their purpose

When the seal is used in a dirty operating environment, or penetration of water is expected, it is advisable to have two oil seals combined or to have the space between the two sealing lips be filled with grease.

(shown in Fig. 14-10)

Fig. 14-10 Seals used in a dirty operating environment

Respective seal materials possess different properties. Accordingly, as shown in Table 14-9. allowable lip speed and operating temperature differ depending on the materials. Therefore, by selecting proper materials, oil seals can be used for sealing not only lubricants but also chemicals including alcohol, acids, alkali, etc.

Table 14-9 Allowable lip speed and operating temperature range of oil seals

Seal material	Allowable lip speed (m/s)	Operating tempera- ture range (°C)
NBR	15	- 40 to + 120
Acrylic rubber	25	- 30 to + 150
Silicone rubber	32	- 50 to + 170
Fluoro rubber	32	- 20 to + 180

To ensure the maximum sealing effect of the oil seal, the shaft materials, surface roughness and hardness should be carefully chosen.

Table 14-10 shows the recommended shaft conditions.

Table 14-10 Recommended shaft conditions

Material	Machine structure steel, low alloy steel and stainless steel				
Surface hardness	For low speed : harder than 30 HRC For high speed : harder than 50 HRC				
Surface roughness (Ra)	0.2 – 0.6a A surface which is exces- sively rough may cause oil leakage or abrasion ; whereas an excessively fine surface may cause sealing lip seizure, preventing the oil film from forming. Sur- face must also be free of spiral grinding marks.				

2) Felt seals and others

Although felt seals have been used conventionally, it is recommended to replace them with rubber oil seals because the use of felt seals are limited to the following conditions.

- Light dust protection
- Allowable lip speed : not higher than 5m/s

Contact type sealing devices include mechanical seals, O-rings and packings other than those described herein.

JTEKT manufactures various oil seals ranging from those illustrated in Table14-8 to special seals for automobiles, large seals for rolling mills. mud resistance seals. pressure resistance seals, outer seals for rotating housings and O-rings. For details, refer to JTEKT separate catalog "Oil seals & O-rings" (CAT. NO. R2001E).

15. Handling of bearings

15-1 General instructions

Since rolling bearings are more precisely made than other machine parts, careful handling is absolutely necessary.

- 1) Keep bearings and the operating environment clean.
- 2) Handle carefully.

Bearings can be cracked and brinelled easily by strong impact if handled roughly.

- 3) Handle using the proper tools.
- Keep bearings well protected from rust. Do not handle bearings in high humidity. Operators should wear gloves in order not to soil bearings with perspiration from their
- hands. 5) Bearings should be handled by experienced
- or well trained operators.
- 6) Set bearing operation standards and follow them.
 - · Storage of bearings
 - · Cleaning of bearings and their adjoining
 - · Inspection of dimensions of adjoining parts and finish conditions
 - Mounting

parts.

- · Inspection after mounting
- Dismounting
- Maintenance and inspection (periodical inspection)
- · Replenishment of lubricants

15-2 Storage of bearings

In shipping bearings, since they are covered with proper anti-corrosion oil and are wrapped in antitarnish paper, the quality of the bearings is guaranteed as long as the wrapping paper is not damaged.

If bearings are to be stored for a long time, it is advisable that the bearings be stored on shelves set higher than 30 cm from the floor, at a humidity less than 65 %, and at a temperature around 20°C.

Avoid storage in places exposed directly to the sun's rays or placing boxes of bearings against cold walls.

15-3 Bearing mounting

15-3-1 Recommended preparation prior to mounting

1) Preparation of bearings

Wait until just before mounting before removing the bearings from their packaging to prevent contamination and rust.

Since the anti-corrosion oil covering bearings is a highly capable lubricant, the oil should not be cleaned off if the bearings are pre-lubricated, or when the bearings are used for normal operation. However, if the bearings are used in measuring instruments or at high rotation speed, the anti-corrosion oil should be removed using a clean detergent oil. After removal of the anti-corrosion oil, bearings should not be left for a long time because they rust easily.

Kovo

2) Inspection of shafts and housings Clean up the shaft and housing to check whether it has flaws or burrs as a result of machining.

Be very careful to completely remove lapping agents (SiC, Al₂O₃, etc.), casting sands, and chips from inside the housing.

Next, check that the dimensions, forms, and finish conditions of the shaft and the housing are accurate to those specified on the drawing.

The shaft diameter and housing bore diameter should be measured at the several points as shown in Figs. 15-1 and 15-2.

Fig. 15-1 Measuring points on shaft diameter

Fig. 15-2 Measuring points on housing bore diameter

Furthermore, fillet radius of shaft and housing, and the squareness of shoulders should be checked.

When using shaft and housing which have passed inspection, it is advisable to apply machine oil to each fitting surface just before mounting.

 \mathbb{X}

Mounting

fixture

, fixture

Mounting

15-3-2 Bearing mounting

Mounting procedures depend on the type and fitting conditions of bearings.

For general bearings in which the shaft rotates, an interference fit is applied to inner rings, while a clearance fit is applied to outer rings.

For bearings in which the outer rings rotate. an interference fit is applied to the outer rings. Interference fitting is roughly classified as

shown here. The detailed mounting processes are described in Tables 15-1 to 15-3.

Reference Force is necessary to press fit or remove bearings.

The force necessary to press fit or remove inner rings of bearings differs depending on the finish of shafts and how much interference the bearings allow. The standard values can be obtained by using the following equations.

 $K_{\rm a} = 9.8 f_{\rm k} \cdot \varDelta_{\rm deff} \cdot B \left(1 - \frac{d^2}{D_{\rm i}^2} \right) \times 10^3$ (15-1) (Solid shafts) (Hollow shafts) $K_{\rm a} = 9.8 f_{\rm k} \cdot \varDelta_{\rm deff} \cdot B = \frac{\left(1 - \frac{d^2}{D_{\rm i}^2}\right) \left(1 - \frac{d_0^2}{d^2}\right)}{\left(1 - \frac{d_0^2}{D_{\rm i}^2}\right)} \times 10^3 \quad \dots \dots \quad (15-2)$ In equations (15-1) and (15-2),

 $K_{\rm a}$: force necessary for press fit or removal Ν Δ_{deff} : effective interference mm

- $f_{\mathbf{k}}$: resistance coefficient
 - Coefficient taking into consideration friction between shafts and inner rings ... refer to the table on the right
- B : nominal inner ring width
- d : nominal inner ring bore diameter mm
- $D_{\rm i}$: average outside diameter of inner ring mm
- d_0 : hollow shaft bore diameter

Value of resistance coefficient f_k

Conditions	fk
Press fitting bearings on to cylindri- cal shafts	4
 Removing bearings from cylindrical shafts 	6
 Press fitting bearings on to tapered shafts or tapered sleeves 	5.5
 Removing bearings from tapered shafts or tapered sleeves 	4.5
 Press fitting tapered sleeves between shafts and bearings 	10
 Removing tapered sleeves from the space between shafts and bearings 	11

mm

mm

Fig. 15-3 Heating temperature and expansion of inner rings

- Thick solid lines show the maximum interference value between bearings (class 0) and shafts (r 6, p 6, n 6, m 5, k 5, j 5) at normal temperature.
- Therefore, the heating temperature should be selected to gain a larger "expansion of the bore diameter" than the maximum interference values.
 - When fitting class 0 bearings having a 90 $_{\rm mm}$ bore diameter to m 5 shafts, this figure shows that heating temperature should be 40 °C higher than room temperature to produce expansion larger than the maximum interference value of 48 μ m.

However, taking cooling during mounting into consideration, the temperature should be set 20 to 30 $^{\circ}$ C higher than the temperature initially required.

(a) Mounting on tapered shafts

(b) Mounting by use of an adapter sleeve

(c) Mounting by use of a withdrawal sleeve

(d) Measuring clearances

- Descriptions

 When mounting bearings directly on tapered shafts, provide oil holes and grooves on the shaft and inject high pressure oil into the space between the fitting surfaces (oil injection). Such oil injection can reduce tightening torque of locknut by lessening friction between the fitting surfaces.
- When exact positioning is required in mounting a bearing on a shaft with no shoulder, use a clamp to help determine the position of the bearing.

Locating bearing by use of a clamp

When mounting bearings on shafts, locknuts are generally used. Special spanners are used to tighten them.

Bearings can also be mounted using hydraulic nuts.

When mounting tapered bore spherical roller bearings, the reduction in the radial internal clearance which gradually occurs during operation should be taken into consideration as well as the push-in depth described in Table 15-4.

Clearance reduction can be measured by a thickness gage. First, stabilize the roller in the proper position and then insert the gage into the space between the rollers and the outer ring. Be careful that the clearance between both roller rows and the outer rings is roughly the same ($e = e^{2}$). Since the clearance may differ at different measuring points, take measurements at several positions.

When mounting self-aligning ball bearings, leave enough clearance to allow easy aligning of the outer ring.

diame		radial	radial Internal		Axial displacement, mm			Minimum req	uired residual c	earance, μm
	d im	cleara μ	nce .m	1/121	taper	1/30 1	taper	CN	C 3 clearance	C 4 clearance
over	up to	min.	max.	min.	max.	min.	max.	clearance		clearance
24	30	15	20	0.27	0.35	-	-	10	20	35
30	40	20	25	0.32	0.4	-	-	15	25	40
40	50	25	35	0.4	0.5	-	-	20	30	45
50	65	30	40	0.45	0.6	-	-	25	35	55
65	80	35	50	0.55	0.75	-	-	35	40	70
80	100	40	55	0.65	0.85	-	-	40	50	85
100	120	55	70	0.85	1.05	2.15	2.65	45	65	100
120	140	65	90	1.0	1.2	2.5	3.0	55	80	110
140	160	75	100	1.1	1.35	2.75	3.4	55	90	130
160	180	80	110	1.2	1.5	3.0	3.8	60	100	150
180	200	90	120	1.4	1.7	3.5	4.3	70	110	170
200	225	100	130	1.55	1.85	3.85	4.6	80	120	190
225	250	110	140	1.7	2.05	4.25	5.1	90	130	210
250	280	120	160	1.8	2.3	4.5	5.75	100	140	230
280	315	130	180	2.0	2.5	5.0	6.25	110	150	250
315	355	150	200	2.3	2.8	5.75	7.0	120	170	270
355	400	170	220	2.5	3.1	6.25	7.75	130	190	300
400	450	190	240	2.8	3.4	7.0	8.5	140	210	330
450	500	210	270	3.1	3.8	7.75	9.5	160	230	360
500	560	240	310	3.5	4.3	8.75	10.8	170	260	370
560	630	260	350	3.9	4.8	9.75	12.0	200	300	410
630	710	300	390	4.3	5.3	10.8	13.3	210	320	460
710	800	340	430	4.8	6.0	12.0	15.0	230	370	530
800	900	370	500	5.3	6.7	13.3	16.8	270	410	570
900	1000	410	550	5.9	7.4	14.8	18.5	300	450	640

Table 15-4 Mounting tapered bore spherical roller bearings

[Remark] The values for reduction of radial internal clearance listed above are values obtained when mounting bearings with CN clearance on solid shafts. In mounting bearings with C 3 clearance, the maximum value listed above should be taken as the standard

15-4 Test run

A trial operation is conducted to insure that the bearings are properly mounted.

In the case of compact machines, rotation may be checked by manual operation at first.

If no abnormalities, such as those described below, are observed, then further trial operation proceeds using a power source.

Knocking …

due to flaws or insertion of foreign matter on rolling contact surfaces.

• Excessive torque (heavy) ... due to friction on sealing devices, too small clearances, and mounting errors.

• Uneven running torque ···· due to improper mounting and mounting errors.

For machines too large to allow manual operation, idle running is performed by turning off the power source immediately after turning it on. Before starting power operation, it must be confirmed that bearings rotate smoothly without any abnormal vibration and noise.

Power operation should be started under no load and at low speed, then the speed is gradually increased until the designed speed is reached.

During power operation, check the noise. increase in temperature and vibration. If any of the abnormalities listed in Tables 15-

5 and 15-6 are found, operation must be

stopped, and inspection for defects immediately conducted.

Koyo

The bearings should be dismounted if necessary.

Table 15-5			countermeasures

				1
	No	oise types	Causes	Countermeasures
Cyclic	Flaw noise Rust noise Brinelling n	punching a rivet	Flaw on raceway Rust on raceway Brinelling on raceway	Improve mounting procedure, cleaning method and rust preventive method. Replace bearing.
	Flaking noi	ise (similar to a large hammering noise)	Flaking on raceway	Replace bearing.
	Dirt noise (an irregular sandy noise.)	Insertion of foreign matter	Improve cleaning method, sealing device. Use clean lubricant. Replace bearing.
	Fitting noise (drumming or hammering noise)		Improper fitting or excessive bearing clearance	Review fitting and clearance conditions. Provide preload. Improve mounting accuracy.
Not cyclic	Flaw noise	, rust noise, flaking noise	Flaws, rust and flaking on rolling elements	Replace bearing.
	Squeak noise often heard in cylindrical roller bearings with grease lubrication, espe- cially in winter or at low temperatures		should be selected.	nproper lubrication, a proper lubricant prious damage will not be caused by an ed continuously.
Others	Abnormally	/ large metallic sound	Abnormal load Incorrect mounting Insufficient amount of or improper lubricant	Review fitting, clearance. Adjust preload. Improve accuracy in processing and mounting shafts and housings. Improve sealing device. Refill lubricant. Select proper lubricant.

Table 15-6 Causes and countermeasures

for abnormal temperature rise

Causes	Countermeasures
Too much lubricant	Reduce lubricant amount. Use grease of lower consistency.
Insufficient lubricant	Refill lubricant.
Improper lubricant	Select proper lubricant.
Abnormal load	Review fitting and clearance con- ditions and adjust preload.
Improper mounting (excessive friction	Improve accuracy in processing and mounting shaft and housing. Review fitting. Improve sealing device.

Normally, listening rods are employed for bearing noise inspections.

The instrument detecting abnormalities through sound vibration and the Diagnosis System utilizing acoustic emission for abnormality detection are also applicable.

In general, bearing temperature can be estimated from housing temperature, but the most accurate method is to measure the temperature of outer rings directly via lubrication holes.

Normally, bearing temperature begins to rise gradually when operation is just starting; and, unless the bearing has some abnormality, the temperature stabilizes within one or two hours.

Therefore, a rapid rise in temperature or unusually high temperature indicates some abnormality.

15. Handling of bearings

15-5 Bearing dismounting

After dismounting bearings, handling of the bearings and the various methods available for this should be considered.

If the bearing is to be disposed of, any simple method such as torch cutting can be employed. If the bearing is to be reused or checked for the causes of its failure, the same amount of care as in mounting should be taken in dismounting so as not to damage the bearing and other parts.

Since bearings with interference fits are easily damaged during dismounting, measures to prevent damage during dismounting must be incorporated into the design.

It is recommended that dismounting devices be designed and manufactured, if necessary. It is useful for discovering the causes of failures when the conditions of bearings, including mounting direction and location, are recorded prior to dismounting.

Dismounting method

Tables 15-7 to 15-9 describe dismounting methods for interference fit bearings intended for reuse or for failure analysis.

The force necessary to remove bearings can be calculated using the equations given on page A 142.

Table 15-7 Dismounting of cylindrical bore bearings

- Non-separable bearings should be treated carefully during dismounting so as to minimize external force. which affects their rolling elements.
- The easiest way to remove bearings is by using a press as shown in Fig. (a). It is recommended that the fixture be prepared so that the inner ring can receive the removal force.
- · Figs. (b) and (c) show a dismounting method in which special tools are employed. In both cases, the jaws of the tool should firmly hold the side of
- Fig. (d) shows an example of removal by use of an induction heater : this method can be adapted to both mounting and dismounting of the inner rings of NU and NJ type cylindrical roller bearings. The heater can be used for heating and expanding inner rings in a short

Table 15-9 Dismounting of outer rings

Outer ring dismounting methods		Description	
		 To dismount outer rings with interfer- ence fits, it is recommended that notches or bolt holes be provided on the shoulder of the housings. 	
(a) Notchs for dismounting	(b) Bolt holes and bolts for dismounting		

Table 15-8 Dismounting tapered bore bearings

Kovo

Koyo

15-6 Maintenance and inspection of bearings

Periodic and thorough maintenance and inspection are indispensable to drawing full performance from bearings and lengthening their useful life.

Besides, prevention of accidents and down time by early detection of failures through maintenance and inspection greatly contributes to the enhancement of productivity and profitability.

15-6-1 Cleaning

Before dismounting a bearing for inspection, record the physical condition of the bearing, including taking photographs.

Cleaning should be done after checking the amount of remaining lubricant and collecting lubricant as a sample for examination.

- A dirty bearing should be cleaned using two cleaning processes, such as rough cleaning and finish cleaning.
 It is recommended that a net be set on the bottom of cleaning containers.
- In rough cleaning, use brushes to remove grease and dirt. Bearings should be handled carefully. Note that raceway surfaces may be damaged by foreign matter, if bearings are rotated in cleaning oil.
- During finish cleaning, clean bearings carefully by rotating them slowly in cleaning oil.

In general, neutral water-free light oil or kerosene is used to clean bearings, a warm alkali solution can also be used if necessary. In any case, it is essential to keep oil clean by filtering it prior to cleaning.

Apply anti-corrosion oil or rust preventive grease on bearings immediately after cleaning.

15-6-2 Inspection and analysis

Before determining that dismounted bearings will be reused, the accuracy of their dimensions and running, internal clearance, fitting surfaces, raceways, rolling contact surfaces, cages and seals must be carefully examined, so as to confirm that no abnormality is present.

It is desirable for skilled persons who have sufficient knowledge of bearings to make decisions on the reuse of bearings.

Criteria for reuse differs according to the performance and importance of machines and inspection frequency.

If the following defects are found, replace the bearing with a new one.

- Cracks and chips in bearing components
 Flaking on the raceway surfaces and the
- rolling contact surfacesOther failures of a serious degree
- Other failures of a serious degree described in the following section "16. Examples of bearing failures."

15-7 Methods of analyzing bearing failures

It is important for enhancing productivity and profitability, as well as for accident prevention that abnormalities in bearings are detected during operation.

Representative detection methods are described in the following section.

1) Noise checking

Since the detection of abnormalities in bearings from noises requires ample experience, sufficient training must be given to inspectors. Given this, it is recommended that specific persons be assigned to this work in order to gain this experience.

Attaching hearing aids or listening rods on housings is effective for detecting bearing noise.

2) Checking of operating temperature

Since this method utilizes change in operating temperature, its application is limited to relatively stable operations.

For detection, operating temperatures must be continuously recorded.

If abnormalities occur in bearings, operating temperature not only increase but also change irregularly.

It is recommended that this method be employed together with noise checking.

3) Lubricant checking

This method detects abnormalities from the foreign matter, including dirt and metallic powder, in lubricants collected as samples.

This method is recommended for inspection of bearings which cannot be checked by close visual inspection, and large size bearings.

Koyo

16. Examples of bearing failures

 Table 16-1 (1)
 Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures
remo beari rolling	Flaking Flaking is a phenomenon when material is removed in flakes from a surface layer of the bearing raceways or rolling elements due to rolling fatigue. This phenomenon is generally attributed to the approaching end of bearing service life. However, if flaking occurs at early stages of bearing service life, it is necessary to determine causes and adopt countermeasures.	Flaking occurring at an incipient stage	Too small internal clearance Improper or insufficient lubricant Too much load · Rust	Provide proper internal clearance. Select proper lubricating method or lubricant.
		Flaking on one side of radial bearing raceway	· Extraordinarily large axial load	Fitting between outer ring on the free side and housing should be changed to clearance fit.
		Symmetrical flaking along circum- ference of raceway	Inaccurate housing roundness	Correct processing accuracy of housing bore. Especially for split housings, care should be taken to ensure processing accuracy.
		Slanted flaking on the radial ball bearing raceway	 Improper mounting Shaft deflection Inaccuracy of the shaft and housing 	· Correct centering. · Widen bearing internal clearance. · Correct squareness of shaft or
		Flaking occurring near the edge of the raceway or rolling contact surface of roller bearings		housing shoulder.
		the same interval as rolling element spacing	Heavy impact load during mount- ing A flaw of cylindrical roller bear- ings or tapered roller bearings caused when they are mounted. Rust gathered while out of operation	Improve mounting procedure. Provide rust prevention treatment before long cessation of operation.
2 Cracking, chipping		Cracking in outer ring or inner ring	Excessive interference Excessive fillet on shaft or housing Heavy impact load Advanced flaking or seizure	 Select proper fit. Adjust fillet on the shaft or in the housing to smaller than that of the bearing chamfer dimension. Re-examine load conditions.
	(GES9-Y)	Cracking on rolling elements	· Heavy impact load · Advanced flaking	Improve mounting and handling procedure. Re-examine load conditions.
		Cracking on the rib	Impact on rib during mounting Excessive axial impact load	Improve mounting procedure. Re-examine load conditions.
3 Brinelling, nicks	 Brinelling is a small surface indentation generated either on the raceway through plastic deformation at the contact point between the raceway and rolling elements, or on the rolling surfaces from insertion of foreign matter, when heavy load is applied while the bearing is stationary or rotating at a low rotation speed. Nicks are those indentations produced directly by rough handling such as hammering. 		Entry of foreign matter	Clean bearing and its peripheral parts. Improve sealing devices.
		Brinelling on the raceway surface at the same interval as the rolling element spacing	Impact load during mounting Excessive load applied while bearing is stationary	 Improve mounting procedure. Improve machine handling.
		Nicks on the raceway or rolling contact surface	Careless handling	Improve mounting and handling procedure.

Table 16-1 (2) Bearing failures, causes and countermeasures

Failures	Characteristics		Damages	Causes	Countermeasures
4 Pear skin, discoloration	 Pear skin is a phenomenon in which minute brinell marks cover the entire rolling surface, caused by the insertion of foreign matter. This is character- ized by loss of luster and a rolling surface that is 		Indentation similar to pear skin on the raceway and rolling contact surface.	· Entry of minute foreign matter	Clean the bearing and its peripheral parts. Improve sealing device.
	(Discoloration) (Discoloration	discoloration due to heat generation. Discoloration is a phenomenon in which the sur- face color changes because of staining or heat generation during rotation. Color change caused by rust and corrosion is	Discoloration of the raceway, surface rolling contact surface, rib face, and cage riding land.	 Too small bearing internal clear- ance Improper or insufficient lubricant Quality deterioration of lubricant due to aging, etc. 	Provide proper internal clearance. Select proper lubricating method or lubricant.
5 Scratches, scuffing	Scratches are relatively shallow marks generated by sliding contact, in the same direction as the sliding. This is not accompanied by apparent melting of material.	3	Scratches on raceway or rolling contact surface	 Insufficient lubricant at initial operation Careless handling 	 Apply lubricant to the raceway and rolling contact surface when mounting. Improve mounting procedure.
	(Scuffing) (Scuffing)		Scuffing on rib face and roller end face	Improper or insufficient lubricant Improper mounting Excessive axial load	 Select proper lubricating method or lubricant. Correct centering of axial direc- tion.
6 Smearing	Smearing is a phenomenon in which a cluster of minute seizures cover the rolling contact surface. Since smearing is caused by high temperature due to friction, the surface of the material usually melts partially ; and, the smeared surfaces appear very rough in many cases.		Smearing on raceway or rolling contact surface	Improper or insufficient lubricant Slipping of the rolling elements This occurs due to the break down of lubricant film when an abnormal self rotation causes slip of the rolling elements on the raceway.	 Select proper lubricating method or lubricant. Provide proper preload.
7 Rust, corrosion	 Rust is a film of oxides, or hydroxides, or carbonates formed on a metal surface due to chemical reaction. Corrosion is a phenomenon in which a metal surface is eroded by acid or alkali solutions through chemical reaction (electrochemical reaction such as chemical combination and battery formation); resulting in oxidation or dissolution. 		Rust partially or completely cover- ing the bearing surface.	Improper storage condition Dew formation in atmosphere	 Improve bearing storage conditions. Improve sealing devices. Provide rust preventive treatment before long cessation of operation.
	Lt often occurs when sulfur or chloride con- tained in the lubricant additives is dissolved at high temperature.		Rust and corrosion at the same interval as rolling element spacing	Contamination by water or corro- sive matter	Improve sealing devices.
8 Electric pitting	When an electric current passes through a bearing while in operation, it can generate sparks between the raceway and rolling elements through a very thin oil film, resulting in melting of the surface metal in this area. This phenomenon appears to be pitting at first sight. (The resultant flaw is referred to as a pit.) When the pit is magnified, it appears as a hole like a crater, indicating that the material melted when it was sparking. In some cases, the rolling surface becomes corrugated by pitting.		Pitting or a corrugated surface failure on raceway and rolling contact surface The bearings must be replaced, if the corrugated texture is found by scratch- ing the surface with a finger- nail or if pitting can be observed by visual inspection.	Sparks generated when electric current passes through bearings	 Providing a bypass which prevents current from passing through bearings. Insulation of bearings.

Koyo

Table 16-1 (3)	Bearing failures, causes and countermeasure	s
I GOIC IC I (C)	bouring futful co, cuuses and counter mousure	

Failures	Characteristics		Damages	Causes	Countermeasures
9 Wear	Normally, wear of bearing is observed on sliding contact surfaces such as roller end faces and rib faces, cage pockets, the guide surface of cages and cage riding lands. Wear is not directly related to material fatigue.		Wear on the contact surfaces (roller end faces, rib faces, cage pockets)	Improper or insufficient lubricant	 Select proper lubricating method or lubricant. Improve sealing device. Clean the bearing and its periph- eral parts.
	Wear caused by foreign matter and corrosion can affect not only sliding surfaces but rolling surfaces.	Wear caused by foreign matter and corrosion can Wear on raceways and rolling		Entry of foreign matter Improper or insufficient lubricant	
10 Fretting	Fretting occurs to bearings which are subject to vibration while in stationary condition or which are exposed to minute vibration. It is characterized by rust-colored wear particles. Since fretting on the raceways often appears		Rust-colored wear particles generated on the fitting surface (fretting corrosion)	Insufficient interference	Provide greater interference Apply lubricant to the fitting surface
	similar to brinelling, it is sometimes called "falsebrinelling".	to brinelling, it is sometimes called rinelling".	Brinelling on the raceway surface at the same interval as rolling element spacing (false brinelling)	 Vibration and oscillation when bearings are stationary. 	 Improve fixing method of the shaft and housing. Provide preload to bearing.
1 Creeping	Creeping is a phenomenon in which bearing rings move relative to the shaft or housing during operation.		Wear, discoloration and scuffing, caused by slipping on the fitting surfaces	Insufficient interference Insufficient tightening of sleeve	 Provide greater interference. Proper tightening of sleeve.
12 Damage to cages	Since cages are made of low hardness materials, external pressure and contact with other parts can easily produce flaws and distortion. In some cases, these are aggravated and become chipping and cracks. Large chipping and cracks are often accompanied by deformation, which may reduce the accuracy of the cage itself and may hinder the smooth move- ment of rolling elements.		Flaws, distortion, chipping, crack- ing and excessive wear in cages. Loose or damaged rivets.	 Extraordinary vibration, impact, moment Improper or insufficient lubricant Improper mounting (misalign- ment) Dents made during mounting 	 Re-examine load conditions. Select proper lubricating method or lubricant. Minimize mounting deviation. Re-examine cage types. Improve mounting.
13 Seizure	A phenomenon caused by abnormal heating in bearings.		Discoloration, distortion and melting together	 Too small internal clearance Improper or insufficient lubricant Excessive load Aggravated by other bearing flaws 	 Provide proper internal clearance. Select proper lubricating method or lubricant. Re-examine bearing type. Earlier discovery of bearing flaws.