

KBC Rolling Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

FAG HANWHA Bearings Corp. Catalogue GB 41 500 EA

Bearing Standards

		page
160	Deep Groove Ball Bearing	148
28TAG	One-Way Thrust Ball Bearing for Automobile King-Pins	210
302 · 303	Tapered Roller Bearing	
320 · 322 · 323	Tapered Roller Bearing	
330 · 332	Tapered Roller Bearing	
38KW	Inch Series Tapered Roller Bearing	
511	One-Way Thrust Ball Bearing	210
60 · 62 · 63	Deep Groove Ball Bearing	140
69	Deep Groove Ball Bearing	142
72 • 73 • 74	Single-Row Angular Contact Ball Bearing	164
99	Deep Groove Ball Bearing	
AT	Deep Groove Ball Bearing for Automobile Generators	142
B25	Deep Groove Ball Bearing, Special Sizes	
BR	Deep Groove Ball Bearing, Special Sizes	140
BS	Single-Row Angular Contact Ball Bearing, with seal type for high speed	
BW	Water Pump Bearing, Ball-Ball Type	216
CLT	One-Way Clutch Combined Bearing	220
DT	Double-Row Tapered Roller Bearing	196
EC	Deep Groove Ball Bearing for Creep Elimination	140
F2	Flanged Housing	206
Н	Inch Series Tapered Roller Bearing	
HC	Deep Groove Ball Bearing for High Load Carrying Capacity	142
HM	Inch Series Tapered Roller Bearing	188
JL • JLM	Inch Series Tapered Roller Bearing	
K	Needle Roller Bearing	200
L • LM	Inch Series Tapered Roller Bearing	188
Μ	Inch Series Tapered Roller Bearing	188
P2	Plummer Block Housing	206
RW	Water Pump Bearing, Ball-Roller Type	216
S	Inch Series Tapered Roller Bearing	190
S	One-Way Thrust Ball Bearing for Automobile King-Pins	210
SA	Single-Row Angular Contact Ball Bearing, Special Sizes	166
SDA0	Double-Row Angular Contact Ball Bearing, Special Sizes, Split Inner	174
SDA9	Double-Row Angular Contact Ball Bearing, Special Sizes, Combined Inner/Outer Ring Type	172
SM	Single-Row Angular Contact Ball Bearing for High Rotating Speed	
TR	Tapered Roller Bearing, Special Sizes	
UB2	Unitized(Insert) Ball Bearing	206
UC2	Unitized(Insert) Ball Bearing	206
UCF2 · UCFC2 · UCFL2	Flanged Bearing Unit	
UCP2	Plummer Block Unit	206

Web: https://www.rstbearing.com.cn

Rolling Bearings

Ball Bearing - Roller Bearing - Special Bearing

Catalogue GB 41 500 EA

FAG HANWHA Bearings Corp.

www.faghanwha.co.kr

Web: https://www.rstbearing.com.cn

Some of the contents in this Catalogue could become outdated by some newest technical advancement or the changes in our production items. Although we have been putting our very best effort to avoid any errors or omissions, there still might be some left to be corrected. However, FAG Hanwha Bearings Corp. shall not be responsible for any errors or omissions in this Catalogue, if there is any. Please be kind enough to contact us if you find any errors or omissions.

The copy right for this Catalogue belongs to FAG Hanwha Bearings Corp. Copying of all or a part of this Catalogue without a prior written consent from FAG Hanwha Bearings Corp. is strictly prohibited

Web: https://www.rstbearing.com.cn

KBC Greetings from the President of FAG HANWHA Bearings Corp.

We thank all our customers for their continuous support, and for using KBC Bearings.

FAG HANWHA Bearings Corp. is a joint venture between FAG group of Germany, the world-renown bearing specialist, and Hanwha, which has been a leader in bearings production in Korea for the past fifty years. We have continuously concentrated on meeting our customers' needs for greater versatility, higher quality, and more modularization in these days of fast advancing engineering technology. As part of our continuing efforts to provide convenience and to promote proper use of bearings for our customers, we present this new catalogue.

The figures in this catalogue are based on the International System of Units, and also the Engineering Unit System is included for your convenience. The catalogue is the result of the latest experiments and research performed in accordance with recent revisions in KIS (Korean Industrial Standards) and ISO qualifications. Also, all bearings, including the special bearings developed and produced as KBC brands in addition to the existing standard bearings, have been included in the Dimension Table for your easy perusal.

We hope that this catalogue could be a big help to you. If you have any further inquiries, please do not hesitate to contact us at any time. We are always at your service.

Furthermore, we are proud to announce that KBC Bearings has received the ISO9001, QS9000, and ISO14001 certifications, so we have been widely recognized for the quality of our products and for our emphasis on environmental protection. We promise our customers that we will not be just content with our position as the leader in our field. We will keep on trying to better ourselves by putting continuous emphasis on R&D to raise the quality of our products even more, and also on trying to provide better services to our customers. Thank you again for your support. We hope to be your dependable supplier of best quality products as always.

June 2001

FAG HANWHA Bearings Corp.

Contents

	Page
1.Bearing types 1-1 Sliding Bearing and Rolling Bearing	10
1-2 Classification of bearings	
r z olassinsation of bearings	
2.Selection of Bearings	
2-1 Description	
2-2 Selection of Bearing Type	
2-2-1 Comparisons of Different Bearings	
2-2-2 Permissible Mounting Space	
2-2-3 Magnitude and Direction of Load	
2-2-4 Precision	
2-2-5 Rotating Speed	
2-2-6 Misalignment of inner and outer rings 2-2-7 Noise and Torque	
2-2-8 Rigidity	
2-2-9 Mounting and Dismounting	
2-3 Bearing Arrangements	20
2-3-1 Locating Bearing and Floating Bearing	
2-3-2 Examples of Bearing Arrangement	
3. Rated Load and Bearing Life	23
3. Rated Load and Bearing Life 3-1 Bearing Life	
3-2 Basic Rating Life and Dynamic Load Rating	23
3-3 Adjusted Rating Life	27
3-3-1 Reliability Factor a ₁	
3-3-2 Material Factor a ₂	
3-3-3 Operating Condition Factor a ₃ 3-4 Operating Machine and Required Life	20
3-5 Basic Static Load Rating	
3-6 Permissible Static Equivalent Load	29
	20
4. Calculation of Bearing Load	30
4-1 Load Applied to Shaft	30
4-1-1 Load Factor	
4-1-2 Load Applied to Spur Gear 4-1-3 Loads Applied to Chain and Belt	
4-2 Average Load	32
4-2-1 Fluctuation by Stages	02
4-2-2 Rotating and Static Loads	
4-2-3 Continuous Fluctuation	
4-3 Equivalent Load	
4-3-1 Dynamic Equivalent Load	
4-3-2 Static Equivalent Load	
4-3-3 Load Calculation for Angular Contact Ball Bearing and Tap	ered Roller Bearing

Contents

 5. Permissible Bearing Speed 5-1 Correction of Permissible Speed 5-2 Permissible Speed for Bearings with Rubber Contact Seal 	36
 6. Boundary Dimensions and Designated Numbering System 6-1 Selection of Dimensions 6-2 Boundary Dimensions 6-3 Designated Numbering System 6-3-1 Purpose 6-3-2 Composition 6-3-3 Designated Numbering System for Inch Series Tapered Roller Bearings 	39 39
 7. Dimensional and Running Accuracy of Bearings 7-1 Specification of Tolerance Classes 7-2 Definition of Dimensional and Running Accuracy 	64
 7-2-1 Dimensional Accuracy 7-2-2 Running Accuracy 8. Fits 8-1 Importance of Correct Fits 	
 8-2 Selection of Fits 8-3 Calculation of Fitting Tolerances 8-3-1 Minimum Required Interference 8-3-2 Maximum Interference 	84 86
8-4 Recommended Fits	
9. Bearing Clearance	94
9-1 Selection of Bearing Internal Clearance 9-2 Bearing Clearance Variations	94 95
9-2-1 Reduction of the Radial Clearance by Means of Temperature Differences 9-2-2 Reduction of Radial Clearance by Means of Tight Fits	90
10. Bearing Preload	00
10-1 Purpose of Preload	
10-2 Methods and Characteristics of Preload	
10-3 Preload and Rigidity of Bearing 10-4 Evaluation of Preload	98
10-5 Controlling of Preload	
11. Design of Surrounding Structure	100
11-1 Precision of Shaft and Housing	
11-2 Sealing 11-2-1 Non-Contact Seals 11-2-2 Contact Seals	101
12. Lubrication	104

12-1 Purpose of Lubrication	
12-2 Lubrication Methods 12-3 Grease Lubrication	
12-3-1 Lubrication Grease	104
12-3-2 Polymer Grease	
12-3-3 Injection of Grease	
12-3-4 Properties of Grease	
12-3-4 Flopenies of Grease	
12-4-1 Lubrications	110
12-4-2 Oil Lubrication Methods	
12-4-2 On Eublication Methods	111
13. Bearing Material	110
13-1 Material of Ring and Rolling Element	113
13-2 Cage Material	
14. Handling of Bearings	119
14-1 Storage Precautions	
14-2 Mounting of Bearings	120
14-2-1 Mounting of Cylindrical Bore Bearings	
14-2-2 Mounting of Tapered Bore Bearings	
14-3 Bearing Performance Test	122
14-3-1 Manual Operation Test	
14-3-2 Operation Test with Power On 14-4 Dismounting of Bearings	400
	123
14-4-1 Dismounting of Cylindrical Bore Bearings	
14-4-2 Dismounting of Tapered Bore Bearings	
14-4-3 Dismounting of Outer Rings 14-5 Compression or extraction Forces	126
14-5 Compression of extraction Forces	120
15. Damage to Bearings and Preventive Measures	127
16. Packages	132
-	
Deep Groove Ball Bearings	
Single-Row Angular Contact Ball Bearings	
Double-Row Angular Contact Ball Bearings	168
Single-Row Tapered Roller Bearings	176
Double-Row Tapered Roller Bearings	
Needle Roller Bearings	
Unit Bearings	202
Thrust Ball Bearings	
Water Pump Bearings	
Single Direction Solid Clutch Bearings	
Ceramic Bearings Vacuum Bearings	
vacuun Deannys	224
Appendix	227

1. Bearing types


1. Bearing types

1-1 Sliding Bearing and Rolling Bearing

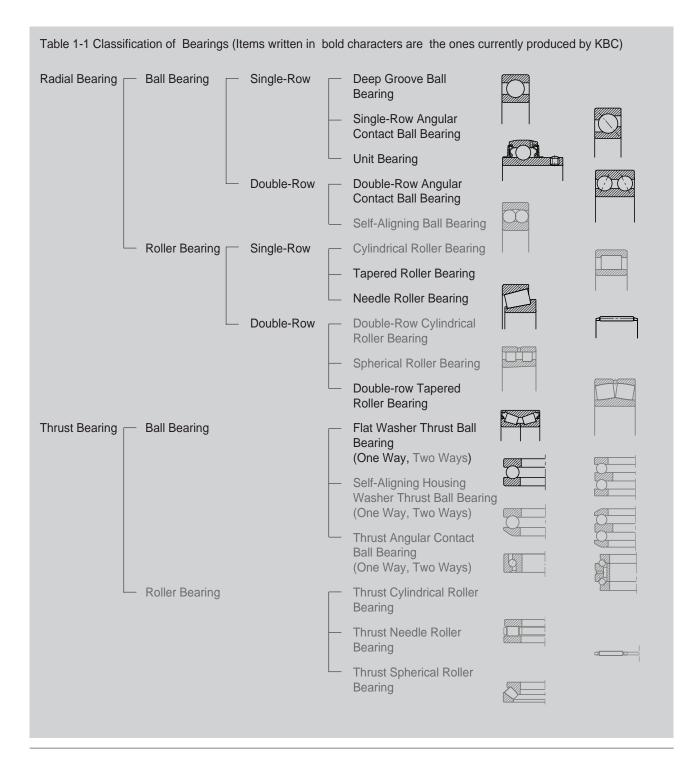
Bearings are used as a mechanical component to transfer the power and to move a certain part, and this is done by utilizing the small frictional force of the bearings, which makes them rotate easily(or move in one direction easily), all the while withstanding the force and weight load acting against them.

Bearings can be classified into two major groups, namely, sliding bearings and rolling bearings, depending on their friction type.

Three types of bearings are shown in Fig. 1-1, and (a) Sliding Bearings represent both the selflubricating bearings made of special material that requires no lubricants between Shaft A and Bearing B and the ones made of porous material to be soaked with lubricants, and (b) Sliding Bearing represents both the hydrodynamic lubrication bearings requiring lubricants that automatically form the oil film in the space between Shaft A and Bearing B by way of rotating the shaft and the hydrostatic lubrication bearings requiring lubricants that elevates the rotating shaft by providing the pressurized lubricant from outside. Recently, magnetic bearings that elevate the rotating shaft by using both attraction and repulsion forces of the magnet have been introduced, and the air bearings that use the air as lubricant instead of oil are also the newest development.

There are two types of Rolling Bearings. (c) Ball Bearing has balls between Inner Ring A and Outer Ring B, and Roller Bearing has rollers instead of balls. Either balls or rollers of rolling bearings serve the same purpose as the lubricating oil in the sliding bearings. However rolling bearings still require some help from lubricating oil. Although the movement of rolling bearing consists mainly of rolling action, it still involves some sliding action in reality. That is why some lubricant is needed for reduction of friction, and also for withstanding the high speed rotation.

Rolling bearings have some advantages as listed below, compared with the sliding bearings.


- Because bearing specifications are standardized internationally, most rolling bearings are interchangeable, and could be replaced easily with the ones made by different manufacturers.
- Surrounding structures of a bearing could be simplified.
- Easy to diagnose and maintain
- Has small starting torque, and the difference between starting torque and operating torque is very small.
- Generally, both radial and axial loads can be applied to the rolling bearings at the same time.
- Comparatively easy to be used even under the high or low temperatures.
- The rigidity of bearings could be increased by applying preload.

Because this Catalogue contains description only on the rolling bearings, the words, "rolling bearings", in the rest of this Catalogue have been simply written down as the "bearings", unless it is necessary to compare them with sliding bearings.

Web: https://www.rstbearing.com.cn

1-2 Classification of Bearings

Bearings can be classified into Ball Bearings and Roller Bearings depending on the types of rolling elements, or into Radial Bearings and Thrust Bearings depending on the directions of the loads that could be mainly supported by them. Radial and Thrust Bearings are generally classified depending on the ring shapes, contact angles, or shape of rolling elements, as shown in the Table 1-1 below, and they can be also classified depending on their various specific purpose and usage.

2. Selection of Bearings

2. Selection of Bearings

2-1. Description

The main points to consider when selecting bearings are longevity, reliability, and price. Furthermore, customers' demands for more versatile and functional bearings are increasing more than ever before. Therefore, when selecting bearings, various aspects have to be considered to select the most appropriate ones for the specific purposes.

The followings are the general procedures that are taken in selecting the most appropriate bearings. First of all, all the operating and surrounding conditions need to be analyzed. These have to be taken into considerations in each of the following stages of bearing selection procedures.

- Examination of bearing type
- Examination of bearing arrangement
- Examination of bearing dimension
- Examination of detailed specifications of bearing (precision, clearance & preload, cage type, lubricant, etc.)

When selecting the proper bearings for new machines or ones used under special settings and conditions, more complex calculations and designing(not shown in this catalogue) may be necessary. It is recommended to contact us when you are in these kinds of situations.

An example of general procedures in selecting the bearings is shown in Table 2-1 below.

Table 2-1 An example of generation	ral procedures in selecting the bearings	
Analyzing of Operating and Surrounding Conditions	Functions & structure of machine Operating conditions(Load, speed, mounting space, temperature, surrounding conditions, shaft arrangement, rigidity of mounting seats) Required conditions(Longevity, precision, noise, friction & operating temperature, lubrication & maintenance, mounting & dismounting)	
	Economical Viability(Price, quantity, delivery)	
Selection of Bearing Type	Permissible mounting space Magnitude and direction of load Existence of vibration and impact Rotating speed Tilting of inner/outer ring Bearing arrangement Noise, torque Rigidity Mounting & dismounting Marketability, economical viability	Refer to pages, 18, 39~53 Refer to pages, 14~17, 18, 29~35 Refer to pages, 14~17, 19, 36~38 Refer to pages, 14~17, 19 Refer to pages, 14~17, 20~22 Refer to pages, 14~17, 19 Refer to pages, 14~17, 19 Refer to pages, 14~17, 19

Web: https://www.rstbearing.com.cn

Selection of Bearing	Required design life	Refer to pages, 23~29
Dimension	Dynamic/Static Equivalent Loads	Refer to pages, 34~35
	Rotating Speed	Refer to pages, 14~17, 36~38
	Index of static stressing	Refer to pages, 29
	Permissible axial load	
	Permissible mounting Space	Refer to pages, 18, 39~53
Selection of Bearing	Running accuracy of Rotating Shaft	Refer to pages, 64~83
Precision	Rotating Speed	Refer to pages, 19
	Torque variation	Refer to pages, 19
Selection of Bearing	Fitting	Refer to pages, 84~93
Clearance	Temperature Differences between	Refer to pages, 94
	Inner and Outer Rings	
	Tilting of inner/outer Rings	Refer to pages, 96~99
	Preload	
Selection of Cage Type and	Rotating Speed	Refer to pages, 19, 86
Materials	Noise	
	Operating Temperatures	
	Lubricating Method	Refer to pages, 86
	Vibration/Impact	Refer to pages, 86
Selection of Lubricating	Operating Temperatures	Refer to pages, 102
Method/Lubricant/Sealing	Rotating Speed	Refer to pages, 102~112
Method	Lubricating Method	Refer to pages, 104~112
	Sealing Method	Refer to pages, 101~103
	Maintenance/inspection	Refer to pages, 104, 107~108
Review of mounting and	Dimensions of mating components	Refer to pages, 100
dismounting	Mounting/dismounting Methods	Refer to pages, 119~126
	Equipments and Tools	Refer to pages, 119~126
	Equipments and Tools	Refer to pages, 119~120

2. Selection of Bearings

2-2 Selection of Bearing Type

2-2-1 Comparisons of Different Bearings

Table 2-2 is the comparative table showing all main characteristics of bearings.

able 2-2 Comparative Table of Bearings Compatibility Characteristics								
Excellent	Limited			_	_			
Good	Not compatible / Not allo	pame Rad a Load Carry ng Capac ty	Ax a Load Carry ng Capac ty (both d rect ons)	Length compensat on w th n the bear ng	Length compensat on by oose ftt ng			
Fair / Applicable		d a Load	a Load (oac ty th d rect	Length compensa w th n the bear ng	Length comper by oose f tt ng			
Bearing Types		Cap	(bod Cap	Ler w th	Ler by			
Deep Groove Ball Bearing		\bigcirc	\bigcirc	\times	\bigcirc			
Angular Contact Ball Bearing		\bigcirc		\times	a			
Double-Row Angular Contact Ball Bearing	ØQ	\bigcirc	\bigcirc	\times	\bigcirc			
Self-Aligning Ball Bearing		\bigcirc	\bigtriangleup	\times	\bigcirc			
Cylindrical Roller Bearing NU,N			\times	\sum	\times			
NJ, NU + HJ				\bigtriangleup	\times			
NUP, NJ + HJ			\bigcirc	\times	\bigcirc			
NN			\times	\sum	\times			
NCF, NJ23VH				\bigtriangleup	\bigcirc			
NNC, NNF			\bigcirc	\times	\bigcirc			
Single bearing or tar	 Single bearing or tandem arranged bearings a) Assembled in couples b) Small axial load 							

Web: https://www.rstbearing.com.cn

Separab e Bear ng	Compensat on for M sa gnment	Prec s on	H gh Speed Su tab ty	Low No se Leve	Tapered Bore	Sea ng n One S de/Both S des	Rgdty	Low Fr ct on	Locat ng Bear ng	F oat ng Bear ng
\times	\bigtriangleup	\bigcirc	\overleftrightarrow	\overleftrightarrow	\times	\swarrow	\bigcirc	\overleftrightarrow	\bigcirc	\bigcirc
\times	\times		☆c	\bigcirc	\times	\times	Oa	\bigcirc	\mathcal{N}_{a}	a
\bigcirc	\times	\bigcirc	\bigcirc	\bigtriangleup	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\times	$\widehat{\Sigma}$	\times	\bigcirc	\bigtriangleup	√ d		\triangle	\bigcirc	\bigcirc	\bigcirc
	\bigtriangleup	\bigcirc		\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\times	$\widehat{\Box}$
\swarrow	\bigtriangleup	\bigcirc	D	\bigtriangleup	\times	\times	\bigcirc	Ø	\bigcirc	\bigcirc
\swarrow	\bigtriangleup	\bigcirc	D	\bigtriangleup	\times	\times	\bigcirc	Ob	\bigcirc	\triangle
\overleftrightarrow	\times		\sum	\bigcirc	$\sum_{i=1}^{n}$	\times	\sum	\bigcirc	\times	
\bigcirc	\bigtriangleup	\times	\times	\times	\times	\times	\swarrow	\times	\bigcirc	\bigcirc
\times	\times	\times	\times	\times	\times	\bigcirc	\bigtriangleup	\times	\bigcirc	\bigcirc
		c) Applicati	ions limited	when asser	mbled in cou	ples	d) Using a	dapter slee	ve or withdra	awal sleeve

2. Selection of Bearings

Compatibility Characteristics										
Excellent	Limited									
Good	Not compatible / Not allowed	Carry ng	Carry ng ons)	Length compensat on w th n the bear ng	Length compensat on by oose f tt ng					
Fair / Applicable		Rad a Load Carry ng Capac ty	Ax a Load Carry ng Capac ty (both d rect ons)	ngth com th n the be	ngth com oose f tt i					
Bearing Types		CaRa	(bc Ca Ca	Le w	Le by					
Tapered Roller Bearing				\times	Ca					
Spherical Roller Bearing			\bigcirc	\times	\bigcirc					
Needle Roller Bearing			\times	\bigtriangleup	\times					
Unit Bearing		\bigcirc	\bigcirc	\bigtriangleup	\bigtriangleup					
Thrust Ball Bearing		\times		\times	\times					
		\times	\bigcirc	\times	\times					
Thrust Angular Contact Ball Bearing	Image: Second se	\bigtriangleup		\times	\times					
		\times	\bigcirc	\times	\times					
Thrust Cylindrical Roller Bearing		\times		\times	\times					
Thrust Spherical Roller Bearing		\bigtriangleup		\times	\times					
Single bearing or for tandem arranged	a) Assembled in couples bearings		Applications assembled Using adap withdrawal	in couples ter sleeve c						

Web: https://www.rstbearing.com.cn

Separab e Bear ng	Compensat on for M sa gnment	Prec s on	H gh Speed Su tab ty	Low No se Leve	Tapered Bore	Sea ng n One S de/Both S des	Rgdty	Low Fr ct on	Locat ng Bear ng	F oat ng Bear ng
☆ _f	\triangle	\bigcirc	Cc	\bigtriangleup	\times	$ imes_{g}$	Aa	\bigcirc	\mathcal{M}_{a}	Aa
\times		\times	\bigcirc	\bigtriangleup	d N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\times	\times	\times	\times	\times	\times	$\sum_{i=1}^{n}$	\times	\times	$\widehat{\mathbf{A}}$
\times	e	\times	\triangle	\times	\times	$\widehat{\nabla}$	\bigcirc	\times	\bigcirc	X
$\widehat{\nabla}$	e	\bigcirc	\bigcirc	\bigtriangleup	\times	\times	\bigcirc	\bigcirc	\bigcirc	X
	e	\times	\bigtriangleup	\times	\times	\times	\bigcirc	\bigtriangleup	\bigcirc	X
\times	\triangle	$\widehat{\Delta}$	C	\bigtriangleup	\times	\times	Oa	\bigcirc	☆a	X
	\times			\bigtriangleup	\times	\times	\sum	\bigcirc		×
$\widehat{\Sigma}$	\times	\bigcirc	\bigtriangleup	\times	\times	\times	\bigcirc	\times	\bigcirc	X
$\overrightarrow{\mathbf{x}}$	$\overrightarrow{\mathbf{x}}$	\times	\bigtriangleup	\times	\times	\times	\bigcirc	\bigtriangleup	\bigcirc	×

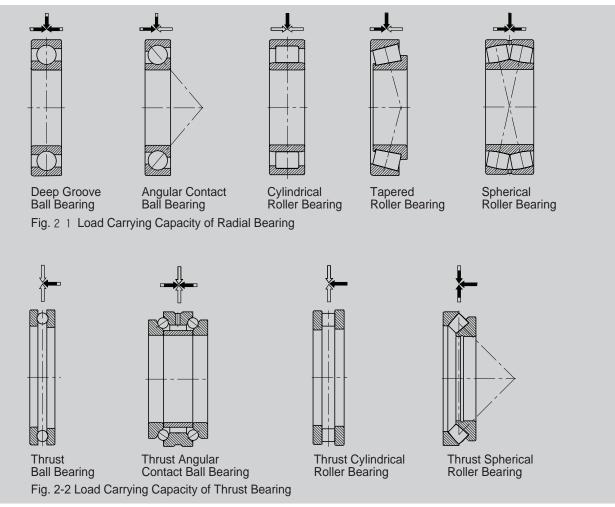
e) Thrust ball bearing with insert bearing and seating washer, installed on the spherical housing, can be corrected misalignment when assembling

f) Separation is limited in case of sealed types

g) Applicable in case of sealed types

2. Selection of Bearings

2-2-2 Permissible Mounting Space


Because the mounting space for bearing can be usually pre-determined, all of bore and outer diameters and widths of the bearing can be also easily decided at first. However, when designing a machine or an equipment, it is common to first decide the size of the shaft, and then the permissible space for the bearing in accordance with the diameter of the shaft, before selecting the appropriate bearing. Also, in most cases, the bore diameter of bearings is specifically designated, whereas the dimensions of outer diameter and width are usually proposed roughly. Therefore, bearings are usually chosen based on their inner diameters.

Bearings of various types and dimensions with same bore diameters are provided, therefore the most appropriate ones have to be carefully chosen after examining all the possibilities. Main dimensions for each dimension group are shown in Chapter 6. Main Dimensions and Nominal Symbols on page 39.

2-2-3 Magnitude and Direction of Load

Loads applied to a bearing vary greatly depending on their magnitude, directions, or characteristics. The capacity for bearing to carry loads is called a load carrying capacity, and this load carrying capacity can be divided into radial load carrying capacity and axial load carrying capacity.

The radial and axial load carrying capacities for some radial and thrust bearings are shown in Fig. 2-1 and Fig. 2-2. When bearings of same dimension are compared, roller bearings have bigger load carrying capacity than ball bearings, and they can also withstand greater impact load than ball bearings.

Web: https://www.rstbearing.com.cn

2-2-4 Precision

Precision and running accuracy of KBC bearings comply with ISO 1132 and KS B 2014. In most cases, Tolerance Class "0" is more than enough to satisfy all the general requirements for the bearings. However, the bearings of higher Tolerance Classes have to be used when the specific performance requirements have to be met or when they are used under the special operating conditions, as shown below.

- When higher degree of precision for rotating component is required

(Eg.: Main shaft of machine tool, VTR drum spindle, etc.)

- When bearing is rotating at a very high speed (Eg.: High frequency spindle, supercharger, etc.)
- When the friction variation of bearing is required to be very small
- (Eg.: Precision measuring instrument, etc.)

2-2-5 Rotating Speed

The permissible speed for bearing varies depending on the types and sizes of bearings, and it depends also on the cage types and materials, bearing loads, and lubricating methods, etc.

The permissible speeds for KBC bearings in both cases of grease and oil lubrication are listed in the Dimension Table.

The permissible speed could be increased by improving the dimensional accuracy of bearing and its mating components enhancing the running accuracy of bearing, and adapting cooling lubrication and cages of special types and materials.

In general, thrust bearings have lower permissible speeds than radial bearings.

2-2-6 Misalignment of inner and outer rings

Inner and outer rings could become tilted due to various reasons, such as deflection of shaft caused by excessive load on long shaft or improper mounting procedures caused by fabrication defects in the mounted section.

Misalignment can also easily happen when independent housings, such as flanged or plummer block housings, are used.

The permissible misalignment for bearings varies

depending on their types and operating conditions. If the misalignment of inner and outer rings is large, the bearings with self-aligning capability, including self-aligning ball bearing, spherical roller bearing, or unit bearing, have to be used.

2-2-7 Noise and Torque

Both low noise level and torque are required for small electric equipments, office equipments, or home appliances. Deep groove ball bearings could be operated at a considerably low noise level, and they also produce low torque to make them quite suitable for above mentioned products. Various kinds of deep groove ball bearings of different noise levels are produced by KBC to meet different requirements for various usages.

2-2-8 Rigidity

When a load is applied to bearings, they deform elastically to certain degrees. If it deforms elastically very little, then its rigidity is said to be high, and if it deforms largely, then its rigidity is said to be low. If roller bearing is compared with ball bearing, then it is easy to guess that roller bearing has a higher rigidity, because its contact area between rolling elements and raceway is larger than ball bearing.

In many cases for angular contact ball bearings or tapered roller bearings, load is applied in advance to slightly deform them elastically, which, in return, increase their rigidity. This is called preload.

2-2-9 Mounting and Dismounting

Because all of cylindrical roller bearings, tapered roller bearings, and needle roller bearings are separable, it is easy to mount and dismount these bearings.

Also, the bearings with tapered bore can be easily mounted or dismounted by using adapter sleeve or withdrawal sleeve.

For the machines required to be assembled or disassembled frequently for periodic inspections or repairs, it is necessary for them to have the bearings that provide easy mounting and dismounting like the ones mentioned above.

2. Selection of Bearings

2-3 Bearing Arrangements

Rotating shaft needs to be supported by two or more bearings. At this time, following items have to be considered to determine the optimum bearing arrangements.

- Measures to be taken against elongation or contraction of shaft caused by temperature changes.
- Convenience and Easiness in mounting or dismounting the bearings.
- Rigidity of rotating components including bearings and preload method
- Misalignment of inner and outer rings caused by deflection of shaft or mismounting
- Appropriate distribution of axial and radial loads.

2-3-1 Locating Bearing and Floating Bearing

It is common to find the center of shaft not aligned properly with the center of housing, due to mismounting. Also the temperature elevation during the operation makes the shaft become longer. These changes in length are corrected by floating bearing.

Cylindrical roller bearings of N and NU types are the ideal floating bearings. These bearings are structured, so that the assembled components of roller and cage can move in axial direction on the lipless ring.

For deep groove ball bearings or spherical roller bearings, either inner or outer ring has to be loosely fitted for them to serve the same role as floating bearings. When it is applied with static load, either ring could be loosely fitted, but, in general, outer rings more than inner rings are chosen for loose fitting.

On the other hand, the locating bearings have to be carefully selected considering how big the axial load is, and how precisely the shaft has to be guided.

When the distance between bearings is too short, or the temperature changes in shaft is negligible enough not to cause any significant expansion of shaft, they can be used regardless of locating or floating sides. For example, there is a bearing arrangement which uses the combination of two angular contact ball bearings or tapered roller bearings that can receive axial load in one direction.

In this case, axial clearance after mounting can be adjusted by using the shim or the nuts.

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

2-3-2 Examples of Bearing Arrangement

Examples of bearing arrangements considering preload, rigidity, shaft expansion and mismounting,

etc. are shown on the Table 2-3, 2-4, and 2-5 as follows.

Table 2-3 Examples of locating / floating Bearing Arrangement							
Bearing Arrangements Locating Floating	Contents g	Examples(Reference)					
	 Most common arrangement Not only radial load but also axial load to a certain degree could be applied. 	Small pumps Automobile transmission					
	 High rotating speeds can be obtained, if the degree of mismounting is small and the deflection of the shaft is minimal. Even if shaft is expanded and contracted repeatedly, it does not generate the abnormal axial load on the bearing. 	Medium sized electric motor Air blower					
	 Most appropriate to be used when comparatively larger axial loads are applied in both direction Double-row angular contact ball bearing could be used instead of combined angular contact ball bearing. 	-					
	 It is used when comparatively larger loads are applied. Rigidity could be increased by the back-to-back arrangement of locating bearings with preload It is necessary to reduce the mismounting by manufacturing both shaft and housing precisely. 	Main shaft of large lathe machine Table roller for steel mills					
	 Radial load as well as an axial load to certain degree can be applied. Both inner and outer rings could be tightly fitted. 	Calender roll for paper making machine Axle box for diesel train					
	 It is commonly used when comparatively larger loads and impact loads are applied. It is appropriate to use when mismounting or shaft deflection is expected. 	Axle box of overhead crane driving wheel Large size reducer					
	 It is commonly used when comparatively larger loads and impact loads are applied, and also axial loads to a certain degree can be applied. It is suitable when both inner and outer rings are tightly fitted. 	Traction motor for automotive vehicles					
	 It is used when the shaft rotates at a high speed and when comparatively larger radial and axial loads are applied. For deep-groove ball bearings, space between outer ring and housing should be provided to prevent radial load from being applied. 	Transmission for diesel train					

2. Selection of Bearings

Table 2-4 Examples of Bearing Arrangements that do not distinguish locating or floating bearings						
Bearing Arrangements	Contents	Examples(Reference)				
	 Most common arrangement for small machines. Preload could be applied by using the spring laterally to the side of outer ring of bearing. 	Small electric motor				
	 Both radial and axial load can be applied, and it is suitable for high speeds. It is suitable when rigidity of the shaft must be increased through preload If a moment is applied, back-to-back arrangement is preferable than face-to-face arrangement. 	Main shaft of machine tools				
	 It is commonly used when comparatively larger loads and impact loads are applied. It is suitable when both inner and outer rings are tightly fitted. Consideration has to be taken to prevent axial clearance from becoming too tight during operation. 	Final reduction gear for construction machine Sheave for mining machine				
	 It is commonly used when comparatively larger loads and impact loads are applied. When the distance between bearings is small, and when moment is applied, back-to-back arrangement is advantageous. On the other hand, when mismounting is considerably large enough, face-to- face arrangement is advantageous. Face-to-face arrangement is easier when inner and outer rings are tightly fitted. Care must be taken when applying the preload and when adjusting the clearance. 	Automobile wheels Worm gear reducer Pinion shaft				
Table 2-5 Examples of Bearing Arrangements of vertical shaft						

Bearing Arrangements	Contents	Examples(Reference)
	- Combined angular contact ball bearings are locating bearings, and cylindrical roller bearing is floating bearing.	Small electric motor Small reducer
	- It is suitable when axial load is comparatively large.	Central axle of crane
	- The center of thrust spherical roller bearing needs to be aligned with that of spherical roller bearing.	

3. Rated Load and Bearing Life

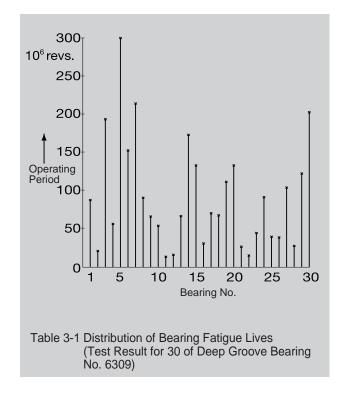
3. Rated Load and Bearing Life

3-1 Bearing Life

Required properties for bearings are;

- Large load capacity and rigidity
- Small friction loss
- Smooth rotation, etc.

And, these properties should last for a specified period.


Even if bearings are used under the normal conditions, it is inevitable for flaking to happen to them after some period, due to deterioration of grease, repeatedly applied stress to raceway or rolling element, and/or general wear and tear, which in return increase the noise/vibration level and lower their accuracy.

Progress of flaking eventually ends the bearing's life. The life of bearing can be measured either by total number of rotations or by a life period, and depending on measuring criteria, they are called as noise life, tear life, grease life, or rolling fatigue life. However, the rolling fatigue life is most commonly used when mentioning the life of bearing, and a lot of times, it is just called as the bearing life.

Also, bearings could stick to the raceway after burning or become cracked or rusted, but these incidences are regarded as the failures, and should be distinguished from the expected life span of bearings.

3-2 Basic Rating Life and Dynamic Load Rating

Lives of bearings of a kind vary widely, even if they have been operating under the same condition, as shown in the Table 3-1 below. This is because the fatigue level for each bearing is different. Therefore, it is meaningless to choose the average life of bearings as the life of a certain bearing, so, the statistically-obtained rating lives are used instead.

Basic rating life is the total number of rotations or total rotation time, that could be achieved by 90% of bearings of a kind, which have been rotated under the same condition.

Basic dynamic load rating, representing the bearing's dynamic load carrying capacity, is the load with constant direction and magnitude, which allows one million rotations of rated fatigue life when outer ring is fixed and inner ring is rotating. Radial bearing takes only the pure radial loads, and thrust bearing takes only the pure axial loads.

Basic rating lives of KBC bearings have been determined in accordance with ISO 281/I and KS B 2019, and Cr of radial bearing and Ca of thrust bearing are shown in the dimension tables.

The correlations among bearing's basic rating life, basic dynamic load rating, and dynamic equivalent load are shown in the Equation 3-1. Also, when basic rating life is represented as a rotating period, their relations are shown in the Equation 3-2.

3. Rated Load and Bearing Life

$$\begin{array}{cccc} L_{10} & L & \left(\begin{array}{c} C \\ P \end{array} \right)^p & \qquad & (\text{Equation 3-1}) \\ \\ L_{h10} & L_h & \frac{(C \slashed{P})^p & L_{10}}{60 \cdot n} & & (\text{Equation 3-2}) \end{array}$$

Whereas,

L_1	$_0, L$: Basic rating life	[10 ⁶ Rotations]
L	$_{10}$, L _h : Basic rating life	[Time]
С	: Basic dynamic load rating	[N], {kgf}
Р	: Dynamic equivalent load	[N], {kgf}
	(F	Refer to Pg. 34)
р	: Life exponent	
	Ball bearing	p 3

	Roller bearing	p 10/3
n	: Rotating speed	[rpm]

Above equation can be changed to;

$$L_{h} \quad \frac{L \cdot 500 \cdot 33^{1/3} \cdot 60}{n \cdot 60}$$

$$\frac{L_{h}}{500} \quad \left(\frac{C}{P}\right)^{P} \cdot \left(\frac{33^{1/3}}{n}\right)$$
or,
$$P_{\sqrt{\frac{L_{h}}{500}}} \quad P_{\sqrt{\frac{33^{1/3}}{n}}} \cdot \frac{C}{P}$$

From above equation, both dynamic load factor and speed factor can be calculated.

Dynamic load factor ${\rm f}_{\rm L}$ is defined as follows.

$$f_L = \sqrt[P]{\frac{L_h}{500}}$$
 (Equation 3-3)

Here, when $\rm f_L=1,$ the life can be calculated to be 500 hours.

Speed factor \boldsymbol{f}_n is obtained as follows.

$$f_n = \sqrt[p]{\frac{33^{1/3}}{n}}$$
 (Equation 3-4)

Hear the speed is $33^{1/3} \min 1$ when 1 is

for ball bearings the values of $L_{\rm h}\, \text{and}\, f_{\rm L}\, \text{rotational}$ speed n and $f_{\rm n}$ are shown in tables 3-1 and 3-2 where as for roller bearings the values are shown table 3-3 and 3-4.

Bearing life equation can be simplified as below vsing dymanic load factor and speed factor.

$$\begin{array}{ccc} f_L & C \\ P & \cdot f_n \end{array} \tag{Equation 3-5}$$

Web: https://www.rstbearing.com.cn

Table 3-1	Basic Rating	g Life and D)ynamic Loa	d Factor f_L (for	Ball Bearir	ngs)		$f_L = \sqrt[3]{\frac{1}{2}}$	L _h 500
L _h	fL	L _h	fL	L _h	fL	L _h	fL	L _h	f_L
h		h		h		h		h	
100 110 120 130 140 150 160 170 180 190	0.585 0.604 0.621 0.638 0.654 0.669 0.684 0.698 0.711 0.724	420 440 460 480 500 550 600 650 700 750	0.944 0.958 0.973 0.986 1 1.03 1.06 1.09 1.12 1.14	1700 1800 1900 2000 2200 2400 2600 2800 3000 3200	1.5 1.53 1.56 1.59 1.64 1.69 1.73 1.78 1.82 1.82	6500 7000 7500 8000 8500 9000 9500 10000 11000 12000	2.35 2.41 2.47 2.52 2.57 2.62 2.67 2.71 2.8 2.88	28000 30000 32000 34000 36000 38000 40000 42000 44000 46000	3.83 3.91 4 4.08 4.16 4.24 4.31 4.38 4.45 4.51
200 220 240 260 280 300 320 340 360 380	0.737 0.761 0.783 0.804 0.824 0.843 0.862 0.879 0.879 0.896 0.913	800 850 900 1000 1100 1200 1300 1400 1500	1.17 1.19 1.22 1.24 1.26 1.3 1.34 1.38 1.41 1.44	3400 3600 3800 4200 4200 4400 4600 4800 5000 5500	1.89 1.93 1.97 2 2.03 2.06 2.1 2.13 2.15 2.22	13000 14000 15000 16000 17000 18000 19000 20000 22000 24000	2.96 3.04 3.11 3.17 3.24 3.3 3.36 3.42 3.53 3.63	48000 50000 55000 60000 65000 70000 75000 80000 85000 90000	4.58 4.64 4.79 4.93 5.07 5.19 5.31 5.43 5.54 5.65
400	0.928	1600	1.47	6000	2.29	26000	3.73	100000	5.85

Table 3-2	Rotating Spe	ed and Sp	beed Factor fn	(for Ball Bear	rings)			$f_n = \sqrt[3]{-1}$	33 ½
n	f _n	n	f _n	n	f _n	n	f _n	n	f _n
min-1		min ⁻¹		min-1		min-1		min-1	
10	1.49	55	0.846	340	0.461	1800	0.265	9500	0.152
11	1.45	60	0.822	360	0.452	1900	0.26	10000	0.149
12	1.41	65	0.8	380	0.444	2000	0.255	11000	0.145
13	1.37	70	0.781	400	0.437	2200	0.247	12000	0.141
14	1.34	75	0.763	420	0.43	2400	0.24	13000	0.137
15	1.3	80	0.747	440	0.423	2600	0.234	14000	0.134
16	1.28	85	0.732	460	0.417	2800	0.228	15000	0.131
17	1.25	90	0.718	480	0.411	3000	0.223	16000	0.128
18	1.23	95	0.705	500	0.405	3200	0.218	17000	0.125
19	1.21	100	0.693	550	0.393	3400	0.214	18000	0.123
20	1.19	110	0.672	600	0.382	3600	0.21	19000	0.121
22	1.15	120	0.652	650	0.372	3800	0.206	20000	0.119
24	1.12	130	0.635	700	0.362	4000	0.203	22000	0.115
26	1.09	140	0.62	750	0.354	4200	0.199	24000	0.112
28	1.06	150	0.606	800	0.347	4400	0.196	26000	0.109
30	1.04	160	0.593	850	0.34	4600	0.194	28000	0.106
32	1.01	170	0.581	900	0.333	4800	0.191	30000	0.104
34	0.993	180	0.57	950	0.327	5000	0.188	32000	0.101
36	0.975	190	0.56	1000	0.322	5500	0.182	34000	0.0993
38	0.957	200	0.55	1100	0.312	6000	0.177	36000	0.0975
40	0.941	220	0.533	1200	0.303	6500	0.172	38000	0.0957
42	0.926	240	0.518	1300	0.295	7000	0.168	40000	0.0941
44	0.912	260	0.504	1400	0.288	7500	0.164	42000	0.0926
46	0.898	280	0.492	1500	0.281	8000	0.161	44000	0.0912
48	0.886	300	0.481	1600	0.275	8500	0.158	46000	0.0898
50	0.874	320	0.471	1700	0.27	9000	0.155	50000	0.0874

3. Rated Load and Bearing Life

Table 3-3	Basic Rating	g Life and D)ynamic Loa	d Factor f _L (for	Roller Bea	rings)		$f_L = \frac{\frac{10}{3}}{\sqrt{3}}$	L _h 500
L _h	fL	L _h	fL	L _h	fL	L _h	fL	L _h	f_L
h		h		h		h		h	
100	0.617	420	0.949	1700	1.44	6500	2.16	28000	3.35
110	0.635	440	0.962	1800	1.47	7000	2.21	30000	3.42
120	0.652	460	0.975	1900	1.49	7500	2.25	32000	3.48
130	0.668	480	0.988	2000	1.52	8000	2.3	34000	3.55
140	0.683	500	1	2200	1.56	8500	2.34	36000	3.61
150	0.697	550	1.03	2400	1.6	9000	2.38	38000	3.67
160	0.71	600	1.06	2600	1.64	9500	2.42	40000	3.72
170	0.724	650	1.08	2800	1.68	10000	2.46	42000	3.78
180	0.736	700	1.11	3000	1.71	11000	2.53	44000	3.83
190	0.748	750	1.13	3200	1.75	12000	2.59	46000	3.88
200	0.76	800	1.15	3400	1.78	13000	2.66	48000	3.93
220	0.782	850	1.17	3600	1.81	14000	2.72	50000	3.98
240	0.802	900	1.19	3800	1.84	15000	2.77	55000	4.1
260	0.822	950	1.21	4000	1.87	16000	2.83	60000	4.2
280	0.84	1000	1.23	4200	1.89	17000	2.88	65000	4.31
300	0.858	1100	1.27	4400	1.92	18000	2.93	70000	4.4
320	0.875	1200	1.3	4600	1.95	19000	2.98	80000	4.58
340	0.891	1300	1.33	4800	1.97	20000	3.02	90000	4.75
360	0.906	1400	1.36	5000	2	22000	3.11	100000	4.9
380	0.921	1500	1.39	5500	2.05	24000	3.19	150000	5.54
400	0.935	1600	1.42	6000	2.11	26000	3.27	200000	6.03

Table 3-4	Rotating Sp	eed and Sp	eed Factor f	n(for Roller Be	earings)			$f_n = \frac{10}{3}$	<u>33 ½</u> n
n	f _n	n	f _n	n	f _n	n	f _n	n	f _n
min ⁻¹		min ⁻¹		min-1		min ⁻¹		min ⁻¹	
10	1.44	55	0.861	340	0.498	1800	0.302	9500	0.183
11	1.39	60	0.838	360	0.49	1900	0.297	10000	0.181
12	1.36	65	0.818	380	0.482	2000	0.293	11000	0.176
13	1.33	70	0.8	400	0.475	2200	0.285	12000	0.171
14	1.3	75	0.784	420	0.468	2400	0.277	13000	0.167
15	1.27	80	0.769	440	0.461	2600	0.270	14000	0.163
16	1.25	85	0.755	460	0.455	2800	0.265	15000	0.16
17	1.22	90	0.742	480	0.449	3000	0.259	16000	0.157
18	1.2	95	0.73	500	0.444	3200	0.254	17000	0.154
19	1.18	100	0.719	550	0.431	3400	0.25	18000	0.151
20	1.17	110	0.699	600	0.42	3600	0.245	19000	0.149
22	1.13	120	0.681	650	0.41	3800	0.242	20000	0.147
24	1.1	130	0.665	700	0.401	4000	0.238	22000	0.143
26	1.08	140	0.65	750	0.393	4200	0.234	24000	0.139
28	1.05	150	0.637	800	0.385	4400	0.231	26000	0.136
30	1.03	160	0.625	850	0.378	4600	0.228	28000	0.133
32	1.01	170	0.613	900	0.372	4800	0.225	30000	0.13
34	0.994	180	0.603	950	0.366	5000	0.222	32000	0.127
36	0.977	190	0.593	1000	0.36	5500	0.216	34000	0.125
38	0.961	200	0.584	1100	0.35	6000	0.211	36000	0.123
40	0.947	220	0.568	1200	0.341	6500	0.206	38000	0.121
42	0.933	240	0.553	1300	0.333	7000	0.201	40000	0.119
44	0.92	260	0.54	1400	0.326	7500	0.197	42000	0.117
46	0.908	280	0.528	1500	0.319	8000	0.193	44000	0.116
48	0.896	300	0.517	1600	0.313	8500	0.19	46000	0.114
50	0.885	320	0.507	1700	0.307	9000	0.186	50000	0.111

3-3 Adjusted Rating Life

The basic rating life of a bearing, the generally chosen method of stating a bearing life, can be obtained by using the Equations 3-1 and 3-2, but when the reliability of other than 90%(100-n%)(Where, n is the failure percentage) of bearing of a kind is required, they can be calculated by using the reliability factor a_1 from the following equation.

 $L_n \quad a_1 \cdot L_{10}$ (Equation 3-6)

Also, basic rating life is calculated, assuming that usual bearing materials are used, and that normal conditions(good mounting, lubrication, and vibroisolation without extreme load or operating temperature) are provided, but, if an adjusting rating life, L_{10a} for the bearing made of special material or under special conditions, is needed, following equation using the life adjustment factors of both material factor, a_2 and operating condition factor a_3 can be applied.

$$L_{10a}$$
 $a_2 \cdot a_3 \cdot L_{10}$ (Equation 3-7)

The adjusted rating life, L_{na} for the bearing requiring all the adjustments mentioned above, can be obtained using the following equation.

 L_{na} $a_1 \cdot a_2 \cdot a_3 \cdot L_{10}$ (Equation 3-8)

However, if bearing dimensions are selected by using the adjusted rating lives, or L_{na} larger than L_{10} , the variables other than life, such as permissible deformation and hardness of shaft or hosing, etc., have to be taken into consideration.

Table 3-5 Reliability	Factor		
Reliability(%)	Ln	a1	
90 95 96 97 98 99	L ₁₀ L ₅ L ₄ L ₃ L ₂ L ₁	1 0.62 0.53 0.44 0.33 0.21	

3-3-1 Reliability Factor a_1

When an adjusted rating life of reliability of 100n% needs to be obtained, the values of reliability factor, a_1 shown in the following Table 3-5, have to be used.

3-3-2 Material Factor a₂

Reliability factor, a_2 , is used to adjust the bearing life, which lengthens due to better bearing materials, and for usual KBC bearings of standard materials and production, a_2 is 1.

For the bearings of special materials and production, a_2 is larger than 1, but, for the bearings treated for better stability of dimensions, a_2 can be smaller than 1, because their hardness could have been lowered. For detailed informations, please contact us.

3-3-3 Operating Condition Factor a3

The operating condition factor, a_3 is used to adjust the bearing life influenced by operating conditions of bearings, specially, fatigue life by lubricating condition.

Where there is no inclining of inner and outer ring, and where rolling element is sufficiently separated from raceway by lubricant, a_3 is generally regarded to be 1.

However, a_3 is smaller than 1 in following cases.

- When kinetic viscosity is too low.

For ball bearings, below 13mm²/s(1mm²/s 1cSt) For roller bearings, below 20mm²/s

- When rotating speed is too slow.

When rotating speed(rpm) times pitch circle diameter(mm) of rolling element is smaller than 10,000.

- When operating temperature of bearing is too high. (Refer to Table 3-6)
- When any foreign material or moisture is mixed with lubricant.
- When load distribution inside the bearing is abnormal.

However, for the bearing of specially improved material or production with $a_2 > 1$, $a_2 \cdot a_3 < 1$ if lubricating condition is poor.

3. Rated Load and Bearing Life

Table 3-6 Operating Condition Fact	or Based on Operating Temperatures
Operating Temperature	a ₃
150℃	1
200°C	0.73
250℃	0.42
300°C	0 22

3-4 Operating Machine and Required Life

When selecting a bearing, it is not economical to choose a bearing of fatigue life unnecessarily longer than required, because it usually means a bigger bearing. In other words, a bearing life should not be a sole factor in selecting a bearing, but all of strength, rigidity, and dimension of shaft to which bearing is to be mounted have also to be considered.

Table 3-7 shows the dynamic load factors $\rm f_L$ and typical machines of application for each of various application methods, safety factors, operating intervals and cycles.

Table 3-7 Dynamic L	oad Factor f_L and $$	Typical Machines of A	pplication		
Operating Condition	Values of ${\rm f}_{\rm L}$ and $$	Typical Applications			
	Below 2	23	34	46	6
Occasional short operation	Vacuum Washer Motored Tools	Farming machines Office machines			
Occasional short operation but requires high reliability	Medical instrument	Construction equipment Air-conditioner for homes Hot-water circulation pump	Elevator Crane		
Fairly long operation although not continuously	Small motor Passenger cars Bus Truck	Machine tools Crusher Vibration screen	Rotary press Compressor		
More than 8 hours of continuous operation per day		Escalator	Axle box for passenger coaches Air conditioner Large motor Knitting machine	Axle box for locomotive cars Traction motor Press machine	Paper making machine
Continuous operation requiring high reliability				Spinning machine	Power generating equipment Pumping equipment Mine draining equipment

3-5 Basic Static Load Rating

When an excessive load or sudden impact load is applied to a bearing, permanent plastic deformation, namely indentation, to the contact area between raceway and rolling element might occur. The larger the applied load is, the bigger the indentation, and the greater it hinders with smooth rotation of bearing.

Basic static load rating, C_0 , is the load that theoretically generates the contact stress as follows on the center of contact area between rolling element and raceway, where the most load is applied.

 Self-aligning ball bearing 	4600 N/mm ²
- All ball bearings	4200 N/mm ²
(Except self-aligning ball bearings)	
- All roller bearings	4000 N/mm ²

When this basic static load rating, C_0 , is applied to a bearing, the sum of permanent plastic deformation of rolling element and raceway at the contact point, where the most load is applied, gets to be approximately 1/10,000 of diameter of rolling element.

The values of basic static load rating, $\rm C_{O}$, are represented as $\rm C_{Or}$ for radial bearings, and $\rm C_{Oa}$ for thrust bearings, but in the dimension tables, they are simply shown as $\rm C_{O}$

3-6 Permissible Static Equivalent Load

A static load factor, ${\rm f}_{\rm S},$ is calculated to check whether a bearing with appropriate load rating has been selected.

|--|

Whereas,

f _s : Static load factor	
Co : Static load rating	[N], {kgf}
Po: Static equivalent load	[N], {kgf}
	(Refer to Page 34.)

Static load factor, f_s , is the safety factor against the permanent plastic deformation of contact area of rolling element. The value of f_s has to be large enough to insure the smooth and especially quiet operation, however, if it is not required to be too quiet, then small value of f_s should be sufficient. Generally, the values shown in the following Table 3-8 are recommended.

Table 3-8 Static Load Factor ${\rm f}_{\rm S}$			
Operating Conditions of Bearings	Lower Limit of ${\rm f}_{\rm S}$ Ball Bearing	Roller Bearing	
Specially quiet operation	2	3	
Existence of vibration/impact	1.5	2	
Normal operation	1	1.5	
Not too quiet operation	0.5	1	

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

4. Calculation of Bearing Load

4. Calculation of Bearing Load

In order to obtain the values of loads applied to a bearing, all of weight of rotating element, transmitting force by gear or belt, and load generated by the machine have to be calculated first. Some of these loads are theoretically calculable, but the others are difficult to obtain. So, various empirically obtained coefficients have to be utilized.

4-1 Load Applied to Shaft

4-1-1 Load Factor

The actual load applied to the bearing mounted on the shaft could be bigger than theoretically calculated value. In this case, following equation is used to calculate the load applied to the shaft.

$F f_w \cdot F_c$ (Equation 4-1)

Where,

- F: Actual load applied to the shaft
- f_{w} : Load factor(Refer to Table 4-1)
- F_c: Theoretically calculated load

Table 4-1 Load Factor f_w		
Operating Conditions	Typical Applications	f_w
Smooth Operation withoutSudden Impact	Motor, machine tools, air-conditioner	11.2
Normal Operation	automotive vehicle paper-making machine, elevator, crane	1.21.5
Operation with vibration and sudden impact	Crusher, construction equipment, farming equipment	1.53

4-1-2 Load Applied to Spur Gear

Calculation methods for loads applied to gears vary depending on gear types of different rolling methods, but for the simplest spur gear, it is done as follows.

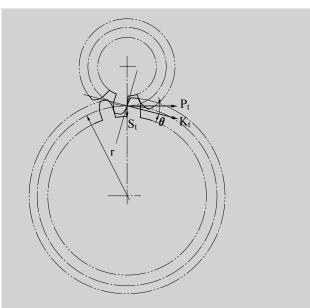


Fig. 4-1 Combined Forces Applied to Spur Gear

М	9,550,000 · H / n	(Equation 4-2)
Pt	M / r	(Equation 4-3)
St	$P_t \cdot tan$	(Equation 4-4)
K	$\sqrt{\mathbf{P}_t^2 + \mathbf{S}_t^2}$ $\mathbf{P}_t \cdot \mathbf{sec}$	(Equation 4-5)

Where,

- M : Torque applied to gear $[N \cdot mm]$
- P_t: Tangential force of gear [N]
- S_t : Radial force of gear [N]
- K_t : Combined force applied to gear [N]
- H : Rolling force [kW]
- n : Rotating speed [rpm]
- r : Pitch circle diameter of driven gear [mm]
- θ : Pressure angle

Other than the theoretical loads obtained above, vibration and/or impact are also applied to the gear depending on its tolerances. Therefore, the actually applied loads are obtained by multiplying theoretical loads by gear factor, $\rm f_g(Refer$ to the

Table 4-2).

Here, when accompanied by vibration, following equation can be used to obtain the load by multiplying gear factor, $\rm f_g$, by load factor, $\rm f_w.$

F	$f_g \cdot f_w \cdot K_t$	(Equation 4-6)
	-g -wi	

Table 4-2 Gear Factor f_g	
Gear Types	fg
Precision Ground Gear (Below 0.02mm of pitch error and form error)	1 1.1
Normal Cutting Gear (Below 0.01mm of pitch error and form error)	1.11.3

The actually applied loads are obtained, as shown in the following equation, by multiplying factor, $\rm f_b$, (For chain transmission, vibration/impact loads have to be considered, and for belt transmission, initial tension.) by effective transmitting force.

$F f_b \cdot K_t$	(Equation 4-9)
Table 4-3 Chain/Belt Factor, f_b	
Chain/Belt Types	f _b
Chain	1.5
V Belt	22.5
Fabric Belt	23
Leather Belt	2.53.5
Steel Belt	34
Timing Belt	1.52

4-1-3 Loads Applied to Chain and Belt

Loads applied to sprocket or pulley, when power is transmitted through chain or belt, are as follows.

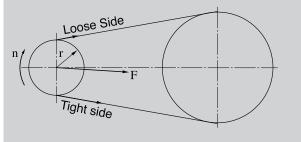


Fig. 4-2 Loads Applied to Chain and Belt

М	9,550,000 · H / n	(Equation 4-7)
K	M / r	(Equation 4-8)

Where,

M : Torque applied to sprocket or pulley	[N·mm]
K_t : Effective transmitting force of chain or belt	[N]
H : Transmitting power	[kW]
n : Rotating speed	[rpm]
r : Effective radius of sprocket or pulley	[mm]

4. Calculation of Bearing Load

4-2 Average Load

Loads applied to a bearing usually fluctuate in various ways. At this time, loads applied to the bearing are transformed to mean load, which yields same life, to calculate the fatigue life.

4-2-1 Fluctuation by Stages

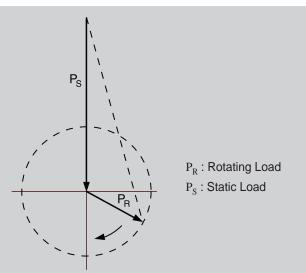
When fluctuating by stages like in the Fig. 4-3, the below equation is used to get the mean load, P_m .

$$P_m \quad \sqrt[p]{\frac{t_1n_1P_1{}^p + t_2n_2P_2{}^p + \ldots + t_nn_nP_n{}^p}{t_1n_1 + t_2n_2 + \ldots + t_nn_n}} \quad (\text{Equation 4-10})$$

Where,

p : 3 for ball bearing 10/ 3 for roller bearing

Average speed, ${\rm n}_{\rm m}$, can be obtained from the Equation 4-11.


$$n_m \qquad \frac{t_1n_1+t_2n_2+\ldots+t_nn_n}{t_1+t_2+\ldots+t_n} \qquad \qquad \text{(Equation 4-11)}$$

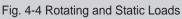
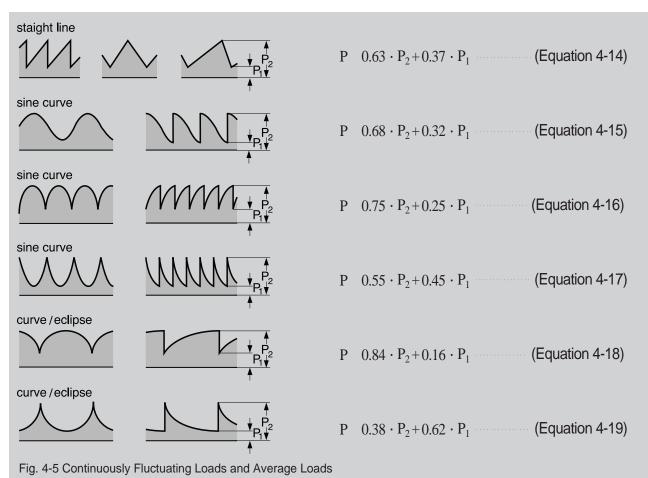

P P Load [kN n_4 n_m n_2 speed r [min⁻¹] Operating t_2 t₁ t_3 t₄ Time Ratio t -100%

Fig. 4-3 Load and Speed Fluctuating by Stages

4-2-2 Rotating and Static Loads

When both rotating and static loads are applied at the same time, the mean load, P_m , can be obtained by using both Equation 4-12 and 4-13.

- When
$$P_R \ge P_S$$


$$P_m P_R + 0.3 \cdot P_S + 0.2 \frac{P_S^2}{P_R}$$
 (Equation 4-12)

- When $P_R < P_S$

$$P_{m} P_{S} + 0.3 \cdot P_{R} + 0.2 \frac{P_{R}^{2}}{P_{S}}$$
 (Equation 4-13)

4-2-3 Continuous Fluctuation

When load is fluctuating continuously like in the Fig. 4-5, the below equations are used to get the mean loads.

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

4-3 Equivalent Load

4-3 Equivalent Load

4-3-1 Dynamic Equivalent Load

A load applied to a bearing usually is a combined load of radial and axial loads.

If this is the case, then the load applied to a bearing itself can not be directly applied to the life calculating equation.

Therefore, a virtual load, obtained assuming that it has same life as when the combined load actually applies, applied to the center of bearing has to be obtained first to calculate the bearing life. This kind of load is called as the dynamic equivalent load.

The Equation to obtain the dynamic equivalent load of radial bearing is shown below.

$P X \cdot F_r + Y \cdot F_a$	(Equation 4-20)
Where,	
P : Dynamic equivalent load	[N], {kgf}
F_r : Radial load	[N], {kgf}
F _a : Axial load	[N], {kgf}
X : Radial load factor	
V Avial load factor	

Y : Axial load factor

The values of X and Y are listed in the dimension tables.

For thrust spherical roller bearings, dynamic equivalent load can be obtained using following Equation.

P
$$F_a + 1.2 \cdot F_r$$
 (Equation 4-21)

```
Provided, F_r \leq 0.55~\cdot~F_a
```

4-3-2 Static Equivalent Load

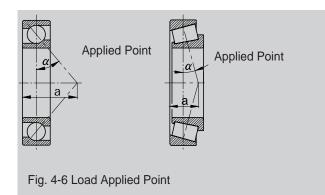
Static equivalent load is a virtual load that generates the same magnitude of deformation as the permanent plastic deformation occurred at the center of contact area between rolling element and raceway, to which the maximum load is applied.

For the static equivalent load of radial bearing,

the bigger value between the ones obtained by using both Equation 4-22 and 4-23, needs to be chosen.

P_0	$X_0 \cdot F_r + Y_0 \cdot F_a$	(Equation 4-22)
P_0	F _r	(Equation 4-23)

Where,


P_0 : Static equivalent load	[N], {kgf}
F_r : Radial load	[N], {kgf}
F_a : Axial load	[N], {kgf}
X_0 : Static radial load factor	
Y_0 : Static axial load factor	

For thrust spherical roller bearings, the static equivalent load is obtained by using following Equation.

Provided, $F_r~\leq~0.55~\cdot~F_r$

4-3-3 Load Calculation for Angular Contact Ball Bearing and Tapered Roller Bearing

The load-applied point for angular contact ball bearings and tapered roller bearings lies at a crossing point between extended contact line and center shaft line, as shown in Fig. 4-6, and the locations of load-applied points are listed in each of bearing dimension tables.

Because the rolling areas of both angular contact ball bearings and tapered roller bearings are inclined, its radial load generates axial repulsive

force, and this repulsing force has to be taken into consideration when calculating the equivalent loads.

This axial component force can be obtained by using the following Equation 4-25.

$$F_a = 0.5 \quad \frac{F_r}{Y}$$
 (Equation 4-25)

Where,

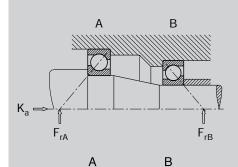
F_a: Axial component force [N], {kgf}

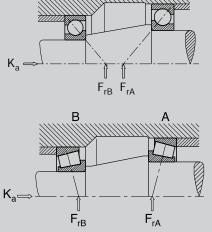
 F_{rB}

F_r: Radial force

Y : Axial load factor

A


Axial loads are calculated by using the formula in


[N], {kgf}

the Table 4-4. A bearing that receives the outside axial load K_a(No relation to axial reaction force) is marked as 'A', and the opposite bearing as 'B'.

Value Y can be calculated by using the dynamic equivalent load equation and table dimensions Y is a given wnstant of axial load Fa

Table 4-4 Axial Loads of Angular Contact Ball Bearings and Tapered Roller Bearings

В

F_{rA} Load Conditions

K_a₌

A

Axial load F_a to be considered when calculating a dynamic equivalent load.

$$\label{eq:eq:second} \begin{array}{c|c} & \text{Bearing A} & \text{Bearing B} \\ \hline \hline F_{rA} \\ \hline Y_A \\ \hline Y_A \\ \hline Y_B \\ \hline \hline Y_B \\ \hline \hline F_{rA} \\ \hline Y_A \\ \hline Y_B \\ \hline \hline Y_B \\ \hline F_{a} = K_a + 0.5 \cdot \frac{F_{rB}}{Y_B} & - \\ \hline K_a > 0.5 \cdot \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B} \right) \\ \hline \hline \hline F_{rA} \\ \hline Y_A \\ \hline F_{rA} \\ \hline Y_B \\ \hline F_{rA} \\ \hline Y_B \\ \hline F_{rA} \\ \hline Y_B \\ \hline F_{rA} \\ \hline F_{rB} \\ \hline F_{rA} \\ \hline F_{rB} \\ \hline F_{rB} \\ \hline F_{rB} \\ \hline F_{rA} \\ \hline F_{rB} \\ \hline F_{rA} \\ \hline F_{rB} \hline$$

5. Permissible Bearing Speed

5. Permissible Bearing Speed

If a bearing rotates at a very high speed, then it heats up, and the deterioration of lubricant accelerates, and eventually, they are burnt to stick to the raceway.

The permissible bearing speed is the maximum speed that allows the bearing to operate for a long time without causing any of above mentioned problems.

Permissible bearing speed(rpm) varies depending on various factors, such as its type and size, cage type, material, lubrication method, and the heat expansion method dictated by the design of surrounding structure, etc. So the empirical value of $d_m \cdot n$ (d_m is the mean value in mm of bearing's inner and outer diameters, and n is the number of rotations rpm) is used.

Permissible speeds for the bearings lubricated with grease or oil are shown in the dimension tables. The values of permissible speed shown in the dimension tables are determined on the condition that standard design bearings are operated under the normal loads(C/P \geq 12, $F_a/F_r \leq$ 0.2). For the permissible speed in terms of oil lubrication listed in the bearing dimension tables, the general oil sump lubrication is used as a standard.

For some types of bearings, even if they perform well in most other areas, they might not be suitable for high speed rotation. Therefore, when the operating speed of a bearing reaches above the 70% of listed permissible speed, the good-quality grease or oil suitable for high speed operation should be used(Refer to Table 12-2, 12-4, and 12-6)

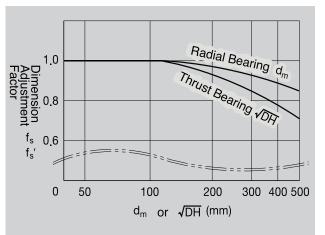
5 -1 Correction of Permissible Speed

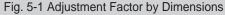
When a bearing is not under normal load condition, the permissible bearing speed can be calculated by using below Equations.

For radial bearings,

 $n \quad f_s \cdot f_l \, \cdot \, f_d \cdot A/d_m \quad \mbox{(Equation 5-1)}$

For thrust bearings,


 $n \quad f_s' \cdot f_l \, \cdot f_d \cdot A \cdot \sqrt{D \cdot H} \quad \mbox{(Equation 5-2)}$


n	: Permissible speed	[rpm]	
dm	: Average of bearing's inner and outer		
	diameters	[mm]	
D	: Bearing' s outer diameter	[mm]	
Н	: Mounted height of thrust bearing [mm]		
f _s	: Dimension factor of radial bearing		
	(R	efer to Fig5-1)	
f_{s}^{\prime}	: Dimension factor of thrust bearing		
	(R	efer to Fig5-1)	
f_1	: Load magnitude factor (Re	gnitude factor (Refer to Fig. 5-2)	
f_d	: Load magnitude factor (Refer to Fig. 5-3)		
А	: Constant determined by bearing type and		
	lubrication method (Refe	r to Table 5-1)	

The permissible speeds of radial and thrust bearings listed in the dimension tables are the speeds that dimension factor, f_s or $f_s^{'}$, has been taken into consideration, so above equations can be simply stated as follows.

$$n \quad f_l \cdot f_d \cdot n_{max}$$
 (Equation 5-3)

Where, $n_{\mbox{\scriptsize max}}$ is a permissible speed listed in the dimension tables.

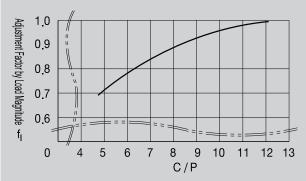


Fig. 5-2 Adjustment Factor by Load Magnitude

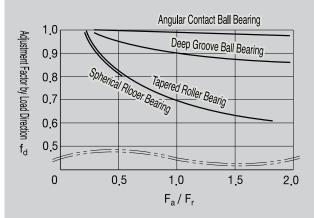


Fig. 5-3 Adjustment Factor by Load Direction

		Grease Lubrication	Oil Sump Lubrication
Deep Groove Ball Bearing		500,000	600,000
Single Row Angular Contact Ball Bearing	Contact Angle 15°	700,000	1,000,000
	Contact Angle 30°	450,000	600,000
	Contact Angle 40°	400,000	500,000
Double Row Angular Contact Ball Bearing		350,000	400,000
Self-Aligning Ball Bearing		400,000	500,000
Cylindrical Roller Bearing		500,000	600,000
Tapered Roller Bearing		250,000	350,000
Spherical Roller Bearing		250,000	350,000
Thrust Ball Bearing		100,000	150,000
Thrust Self-Aligning Ball Bearing		-	200,000
	Single Row Angular Contact Ball Bearing Double Row Angular Contact Ball Bearing Self-Aligning Ball Bearing Cylindrical Roller Bearing Tapered Roller Bearing Spherical Roller Bearing Thrust Ball Bearing	Single Row Angular Contact Ball Bearing Contact Angle 15° Single Row Angular Contact Ball Bearing Contact Angle 30° Double Row Angular Contact Ball Bearing Contact Angle 40° Double Row Angular Contact Ball Bearing Contact Angle 40° Self-Aligning Ball Bearing Cylindrical Roller Bearing Tapered Roller Bearing Spherical Roller Bearing Thrust Ball Bearing Thrust Ball Bearing	Deep Groove Ball Bearing500,000Single Row Angular Contact Ball BearingContact Angle 15° Contact Angle 30° Contact Angle 40°700,000Double Row Angular Contact Ball Bearing350,000450,000Double Row Angular Contact Ball Bearing350,000400,000Self-Aligning Ball Bearing400,000500,000Cylindrical Roller Bearing500,000500,000Tapered Roller Bearing250,000250,000Thrust Ball Bearing100,000100,000

Table 5-1 Value A that Determines the Permissible Speed

Table 5-2 Permissible speed adjustment factor for higher speed

Bearing Type	Adjustment Factor
Deep Groove Ball Bearing	3
Single Row Angular Contact Ball Bearing	
Contact Angle 15°	1.5
Contact Angle 25°, 30°	2
Single Row Cylindrical Roller Bearing	2.5
Tapered Roller Bearing	2
Spherical Roller Bearing	1.5
Needie Roller Bearing(Except broad width)	2
Contact Angle 25°, 30° Single Row Cylindrical Roller Bearing Tapered Roller Bearing Spherical Roller Bearing	2 2.5 2 1.5

Also, when the measures on bearing's tolerances, clearance, cage type, material, and/or lubricating methods, are taken to allow high speeds, bearings can be operated in a higher speed than the permissible speed. When all these conditions have been sufficiently examined, the maximum permissible speed could be increased to the speed obtained by multiplying the permissible speed listed in the dimension tables by adjustment factor in the Table 5-2.

5. Permissible Bearing Speed

5-2 Permissible Speed for Bearings with Rubber Contact Seal

The maximum permissible speed for bearings with rubber contact seal(DD Class and others) is determined depending on the surface sliding speed of seal lip and bearing inner ring.

The values of permissible speeds are listed in the dimension tables.

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

6. Boundary Dimensions and Designated Numbering System

6-1 Selection of Dimensions

Once the fatigue life, L, required for the machine is determined, the basic dynamic load rating, C, required for the bearing at the dynamic equivalent load, P, can be obtained by applying the rating life equation. Using this dynamic load rating, an appropriate bearing can be selected from the dimension tables in this Catalogue.

If the inner/outer diameters and width are within the limits of the permissible space of the machine, then the selected bearing can be applied as is. However, if they are found to be outside these limits, then the changes in bearing type or bearing life cycle should be considered.

6-2 Boundary Dimensions

Boundary dimensions of bearings as shown in picture 6.1~ 6.3 are inner/outer diameters, width, assembled width(Tapered roller bearings), height(Thrust bearings), and chamfer dimensions, etc. Boundary dimensions of bearings are standardized in accordance with ISO standards for international interchangeability and economical production, The Korean Industrial Standards(KS), have been established based on the ISO standards.

Boundary dimensions for radial bearings(Except tapered roller bearings and needle roller bearings) comply with ISO 15 and KS B 2013, and the dimension classifications by contact angles of tapered roller bearings of metric series comply with those of ISO 355 and KS B 2013, where as main dimensions that are in accordance with dimension series(Refer to 6-3 Designation Systems) comply with KS B 2027.

Dimensions of thrust bearings comply with ISO 104 and KS B 2022.

Boundary dimensions by dimension series are shown in Table 6-1 and 6-2 for radial bearings,

Table 6-3 for tapered roller bearings of metric series, and Table 6-4 for thrust bearings.

Also, dimensions for snapring groove and snap ring, and boundary dimensions of housing seating are shown in Table 6-5 and 6-6, respectively.

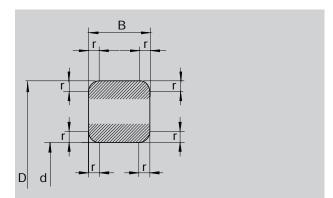


Fig. 6-1 Radial Bearings(Except tapered roller bearings)

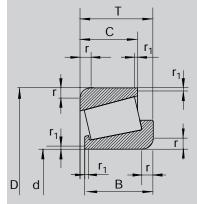


Fig. 6-2 Tapered Roller Bearings

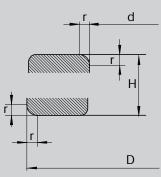


Fig. 6-3 One-Way Thrust Ball Bearings

Bore Diameter Ref. No.	d	D Diame	∣B eter Seri			r _{min}		│ B eter Sei							r _{min}	
			Dimer	nsion Se 27	eries 37	Dimension S		08	Dimer	nsion Se 28	eries 38	48	58	68	Dimension 08	n Series 18~68
- 1 -	0.6 1 1.5	2 2.5 3	0.8 1 1	- - -	- - 1.8	0.05 0.05 0.05	2.5 3 4	- - -	1 1 1.2		1.4 1.5 2					0.05 0.05 0.05
2	2 2.5 3	4 5 6	1.2 1.5 2	- - 2.5	2 2.3 3	0.05 0.08 0.08	5 6 7	- - -	1.5 1.8 2	- - -	2.3 2.6 3					0.08 0.08 0.1
1	4 5 6	7 8 10	2 2 2.5	2.5 2.5 3	3 3 3.5	0.08 0.08 0.1	9 11 13	- - -	2.5 3 3.5	3.5 4 5	4 5 6					0.1 0.15 0.15
7 8 9	7 8 9	11 12 14	2.5 2.5 3	3 - -	3.5 3.5 4.5	0.1 0.1 0.1	14 16 17	- - -	3.5 4 4	5 5 5	6 6 6	- 8 8				0.15 0.2 0.2
00 01 02	10 12 15	15 18 21	3 4 4	- - -	4.5 5 5	0.1 0.2 0.2	19 21 24	- - -	5 5 5	6 6 6	7 7 7	9 9 9				0.3 0.3 0.3
03 04 /22	17 20 22	23 27 -	4 4 -		5 5 -	0.2 0.2 -	26 32 34	- 4 4	5 7 7	6 8 -	7 10 10	9 12 -	- 16 16	- 22 22	- 0.3 0.3	0.3 0.3 0.3
05 /28 06	25 28 30	32 37 -	4 - 4		5 - -	0.2 - 0.2	37 40 42	4 4 4	7 7 7	8 - 8	10 10 10	12 - 12	16 16 16	22 22 22	0.3 0.3 0.3	0.3 0.3 0.3
'32)7)8	32 35 40				- - -		44 47 52	4 4 4	7 7 7	- 8 8	10 10 10	- 12 12	16 16 16	22 22 22	0.3 0.3 0.3	0.3 0.3 0.3
09 10 11	45 50 55				- -		58 65 72	4 5 7	7 7 9	8 10 11	10 12 13	13 15 17	18 20 23	23 27 30	0.3 0.3 0.3	0.3 0.3 0.3
12 13 14	60 65 70				- -		78 85 90	7 7 8	10 10 10	12 13 13	14 15 15	18 20 20	24 27 27	32 36 36	0.3 0.3 0.3	0.3 0.6 0.6
15 16 17	75 80 85			- - -	- -		95 100 110	8 8 9	10 10 13	13 13 16	15 15 19	20 20 25	27 27 34	36 36 45	0.3 0.3 0.3	0.6 0.6 1
18 19 20	90 95 100		-		- -	-	115 120 125	9 9 9	13 13 13	16 16 16	19 19 19	25 25 25	34 34 34	45 45 45	0.3 0.3 0.3	1 1 1
21 22 24	105 110 120				- -	-	130 140 150	9 10 10	13 16 16	16 19 19	19 23 23	25 30 30	34 40 40	45 54 54	0.3 0.6 0.6	1 1 1
26 28 30	130 140 150		- -		- -		165 175 190	11 11 13	18 18 20	22 22 24	26 26 30	35 35 40	46 46 54	63 63 71	0.6 0.6 0.6	1.1 1.1 1.1
82 84 86	160 170 180				- -		200 215 225	13 14 14	20 22 22	24 27 27	30 34 34	40 45 45	54 60 60	71 80 80	0.6 0.6 0.6	1.1 1.1 1.1
38 40 44	190 200 220		- -		- -		240 250 270	16 16 16	24 24 24 24	30 30 30	37 37 37 37	50 50 50	67 67 67	90 90 90	1 1 1 1	1.5 1.5 1.5
48 52 56	240 260 280				-		300 320 350	19 19 22	28 28 33	36 36 42	45 45 52	60 60 69	80 80 95	109 109 125	1 1 1.1	2 2 2

																				ι	Jnit : ı	mm
	B	- O						r _{min}			Diam	B	Contr	- 0					r _{min}		d	Bore Diameter
Dia		r Serie ensior		es				Dimensio	on Series		Dian		Serie: ensior		es				Dimensi	on Series		Ref. No.
	09	19	29	39	49	59	69	09	19~39	49~69		00	10	20	30	40	50	60	00	10~60		
- 4 5	- - -	- 1.6 2	- - -	- 2.3 2.6			- - -	- - -	- 0.1 0.15	- - -	- - 6	- - -	- - 2.5	- - -	- - 3	- - -	- - -	- - -	- - -	- - 0.15	0.6 1 1.5	- 1 -
6 7 8	- -	2.3 2.5 3	- - -	3 3.5 4			- - -	- - -	0.15 0.15 0.15	- - -	7 8 9	- - -	2.8 2.8 3		3.5 4 5	- - -	- - -	- - -		0.15 0.15 0.15	2 2.5 3	2 - 3
11 13 15	- -	4 4 5	- -	5 6 7	- 10 10		- - -	- -	0.15 0.2 0.2	- 0.15 0.15		- -	4 5 6		6 7 9	- - -	- -	- - -	- - -	0.2 0.2 0.3	4 5 6	4 5 6
17 19 20	- -	5 6 6	- - -	7 9 9	10 11 11		- -	- - -	0.3 0.3 0.3	0.15 0.2 0.3	19 22 24	- -	6 7 7	8 9 10	10 11 12	- 14 15	- 19 20	- 25 27	- - -	0.3 0.3 0.3	7 8 9	7 8 9
22 24 28	- -	6 6 7	8 8 8.5	10 10 10	13 13 13	16 16 18	22 22 23	- -	0.3 0.3 0.3	0.3 0.3 0.3	26 26 32	- 7 8	8 8 9	10 10 11	12 12 13	16 16 17	21 21 23	29 29 30	- 0.3 0.3	0.3 0.3 0.3	10 12 15	00 01 02
30 37 39	- 7 7	7 9 9	8.5 11 11	10 13 13	13 17 17	18 23 23	23 30 30	- 0.3 0.3	0.3 0.3 0.3	0.3 0.3 0.3	35 42 44	8 8 8	10 12 12	12 14 14	14 16 16	18 22 22	24 30 30	32 40 40	0.3 0.3 0.3	0.3 0.6 0.6	17 20 22	03 04 /22
42 45 47	7 7 7	9 9 9	11 11 11	13 13 13	17 17 17 17	23 23 23	30 30 30	0.3 0.3 0.3	0.3 0.3 0.3	0.3 0.3 0.3	47 52 55	8 8 9	12 12 13	14 14 16	16 16 19	22 22 25	30 30 34	40 40 45	0.3 0.3 0.3	0.6 0.6 1	25 28 30	05 /28 06
52 55 62	7 7 8	10 10 12	13 13 14	15 15 16	20 20 22	27 27 30	36 36 40	0.3 0.3 0.3	0.6 0.6 0.6	0.6 0.6 0.6	58 62 68	9 9 9	13 14 15	16 17 18	20 20 21	26 27 28	35 36 38	47 48 50	0.3 0.3 0.3	1 1 1	32 35 40	/32 07 08
68 72 80	8 8 9	12 12 13	14 14 16	16 16 19	22 22 25	30 30 34	40 40 45	0.3 0.3 0.3	0.6 0.6 1	0.6 0.6 1	75 80 90	10 10 11	16 16 18	19 19 22	23 23 26	30 30 35	40 40 46	54 54 63	0.6 0.6 0.6	1 1 1.1	45 50 55	09 10 11
85 90 100	9 9 10	13 13 16	16 16 19	19 19 23	25 25 30	34 34 40	45 45 54	0.3 0.3 0.6	1 1 1	1 1 1	95 100 110	11 11 13	18 18 20	22 22 24	26 26 30	35 35 40	46 46 54	63 63 71	0.6 0.6 0.6	1.1 1.1 1.1	60 65 70	12 13 14
105 110 120	10 10 11	16 16 18	19 19 22	23 23 26	30 30 35	40 40 46	54 54 63	0.6 0.6 0.6	1 1 1.1	1 1 1.1	115 125 130	13 14 14	20 22 22	24 27 27	30 34 34	40 45 45	54 60 60	71 80 80	0.6 0.6 0.6	1.1 1.1 1.1	75 80 85	15 16 17
125 130 140	11 11 13	18 18 20	22 22 24	26 26 30	35 35 40	46 46 54	63 63 71	0.6 0.6 0.6	1.1 1.1 1.1	1.1 1.1 1.1	140 145 150	16 16 16	24 24 24	30 30 30	37 37 37	50 50 50	67 67 67	90 90 90	1 1 1	1.5 1.5 1.5	90 95 100	18 19 20
145 150 165	13 13	20 20 22	24 24 27	30 30 34	40 40 45	54 54 60	71 71 80	0.6 0.6 0.6	1.1 1.1 1.1	1.1 1.1 1.1	160 170 180	18 19 19	26 28 28	33 36 36	41 45 46	56 60 60	75 80 80	100 109 109	1 1 1	2 2 2	105 110 120	21 22 24
180 190 210	16 16	24 24 28	30 30 36	37 37 45	50 50 60	67 67 80	90 90 109	1 1 1	1.5 1.5 2	1.5 1.5 2	200 210 225	22 22 24	33 33 35	42 42 45	52 53 56	69 69 75	95 95 100	125 125 136	1.1 1.1 1.1	2 2 2.1	130 140 150	26 28 30
220 230 250	19 19	28 28 33	36 36 42	45 45 52	60 60 69	80 80 95	109 109 125	1 1 1.1	2 2 2	2 2 2	240 260 280	25 28 31	38 42 46	48 54 60	60 67 74	80 90 100	109 122 136	145 160 180	1.5 1.5 2	2.1 2.1 2.1	160 170 180	32 34 36
260 280 300	22 25	33 38 38	42 48 48	52 60 60	69 80 80	95 109 109	125 145 145	1.1 1.5 1.5	2 2.1 2.1	2 2.1 2.1	290 310 340	31 34 37	46 51 56	60 66 72	75 82 90	100 109 118	136 150 160	180 200 218	2 2 2.1	2.1 2.1 3	190 200 220	38 40 44
320 360 380	25 31	38 46 46	48 60 60	60 75 75	80 100 100	109 136 136	145 180 180	1.5 2 2	2.1 2.1 2.1	2.1 2.1 2.1	360 400 420	37 44 44	56 65 65	72 82 82	92 104 106	118 140 140	160 190 190	218 250 250	2.1 3 3	3 4 4	240 260 280	48 52 56

Bore	d	D	B			r _{min}	D	В							r _{min}	
Diameter Ref. No.		Diame	ter Seri	ies 7			Diame	eter Ser	ies 8							
Rel. NO.			Dimer	nsion Se	eries	Dimension	Series		Dimen	ision Se	eries				Dimension	Series
			17	27	37	17~37		08	18	28	38	48	58	68	08	18~68
60 64 68	300 320 340	- - -	- - -	- - -	- - -	- - -	380 400 420	25 25 25	38 38 38	48 48 48	60 60 60	80 80 80	109 109 109	145 145 145	1.5 1.5 1.5	2.1 2.1 2.1
72 76 80	360 380 400	- - -	- - -	- - -	- - -	- - -	440 480 500	25 31 31	38 46 46	48 60 60	60 75 75	80 100 100	109 136 136	145 180 180	1.5 2 2	2.1 2.1 2.1
84 88 92	420 440 460	- -		- - -	- - -	- - -	520 540 580	31 31 37	46 46 56	60 60 72	75 75 90	100 100 118	136 136 160	180 180 218	2 2 2.1	2.1 2.1 3
96 /500 /530	480 500 530	- - -	- - -	- - -	- - -	- - -	600 620 650	37 37 37	56 56 56	72 72 72 72	90 90 90	118 118 118	160 160 160	218 218 218	2.1 2.1 2.1	3 3 3
/560 /600 /630	560 600 630	-	- - -	- - -	- - -	- - -	680 730 780	37 42 48	56 60 69	72 78 88	90 98 112	118 128 150	160 175 200	218 236 272	2.1 3 3	3 3 4
/670 /710 /750	670 710 750	-	- - -	- - -	- - -	- - -	820 870 920	48 50 54	69 74 78	88 95 100	112 118 128	150 160 170	200 218 230	272 290 308	3 4 4	4 4 5
/800 /850 /900	800 850 900	-	- - -	- - -	- - -	- - -	980 1030 1090	57 57 60	82 82 85	106 106 112	136 136 140	180 180 190	243 243 258	325 325 345	4 4 5	5 5 5
/950 /1000 /1060	950 1000 1060	- -		- - -	- - -	- - -	1150 1220 1280	63 71 71	90 100 100	118 128 128	150 165 165	200 218 218	272 300 300	355 400 400	5 5 5	5 6 6
/1120 /1180 /1250	1120 1180 1250	- - -	- - -	- - -	- - -	- - -	1360 1420 1500	78 78 80	106 106 112	140 140 145	180 180 185	243 243 250	325 325 335	438 438 450	5 5 6	6 6 6
/1320 /1400 /1500	1320 1400 1500	-	- -	- - -	- - -	- - -	1600 1700 1820	88 95 -	122 132 140	165 175 185	206 224 243	280 300 315	375 400 -	500 545 -	6 6 -	6 7.5 7.5
/1600 /1700 /1800	1600 1700 1800	-	- -	- - -	- - -	- - -	1950 2060 2180	- - -	155 160 165	200 206 218	265 272 290	345 355 375	- - -	- -	- - -	7.5 7.5 9.5
/1900 /2000		:	-	-			2300 2430		175 190	230 250	300 325	400 425	-	-	-	9.5 9.5

Note :

1. Chamfer dimensions comply with KS B 2013.

2. Chamfer dimensions in this Table are not necessarily applied to the following corners.

) Corner on the side of raceway where snap ring groove is.

O Corner on the side of thin walled cylindrical roller bearing where no shoulder exists.

③ Corner on the front side of raceway of angular contact ball bearing.

④ Corner on the inner ring of tapered bore bearing.

																					Unit :	mm
D	в							r _{min}			D	В							r _{min}		d	Bore
Dia	meter							· 			Dian	neter							· 			Diameter Ref. No.
	-		Serie		1.40	1.50			on Series			-		Serie					Dimensio			
	09	19	29	39	49	59	69	09	19~39	49~69		00	10	20	30	40	50	60	00	10~60		
420 440 460	37 37 37	56 56 56	72 72 72 72	90 90 90	118 118 118	160 160 160	218 218 218	2.1 2.1 2.1	3 3 3	3 3 3	460 480 520	50 50 57	74 74 82	95 95 106	118 121 133	160 160 180	218 218 243	290 290 325	4 4 4	4 4 5	300 320 340	60 64 68
480 520 540	37 44 44	56 65 65	72 82 82	90 106 106	118 140 140	160 190 190	218 250 250	2.1 3 3	3 4 4	3 4 4	540 560 600	57 57 63	82 82 90	106 106 118	134 135 148	180 180 200	243 243 272	325 325 355	4 4 5	5 5 5	360 380 400	72 76 80
560 600 620	44 50 50	65 74 74	82 95 95	106 118 118	140 160 160	190 218 218	250 290 290	3 4 4	4 4 4	4 4 4	620 650 680	63 67 71	90 94 100	118 122 128	150 157 163	200 212 218	272 280 300	355 375 400	5 5 5	5 6 6	420 440 460	84 88 92
650 670 710	54 54 57	78 78 82	100 100 106	128 128 136	170 170 180	230 230 243	308 308 325	4 4 4	5 5 5	5 5 5	700 720 780	71 71 80	100 100 112	128 128 145	165 167 185	218 218 250	300 300 335	400 400 450	5 5 6	6 6 6	480 500 530	96 /500 /530
750 800 850	60 63 71	85 90 100	112 118 128	140 150 165	190 200 218	258 272 300	345 355 400	5 5 5	5 5 6	5 5 6	820 870 920	82 85 92	115 118 128	150 155 170	195 200 212	258 272 290	355 365 388	462 488 515	6 6 6	6 6 7.5	560 600 630	/560 /600 /630
900 950 1000	73 78 80	103 106 112	136 140 145	170 180 185	230 243 250	308 325 335	412 438 450	5 5 6	6 6 6	6 6 6	980 1030 1090		136 140 150	180 185 195	230 236 250	308 315 335	425 438 462	560 580 615	6 6 7.5	7.5 7.5 7.5	670 710 750	/670 /710 /750
1060 1120 1180	85	115 118 122	150 155 165	195 200 206	258 272 280	355 365 375	462 488 500	6 6 6	6 6 6	6 6 6	1150 1220 1280	118	155 165 170	200 212 218	258 272 280	345 365 375	475 500 515	630 670 690	7.5 7.5 7.5	7.5 7.5 7.5	800 850 900	/800 /850 /900
1250 1320 1400	103	132 140 150	175 185 195	224 236 250	300 315 335	400 438 462	545 580 615	6 6 7.5	7.5 7.5 7.5	7.5 7.5 7.5	1360 1420 1500	136	180 185 195	236 243 250	300 308 325	412 412 438	560 560 600	730 750 800	7.5 7.5 9.5	7.5 7.5 9.5		/950 /1000 /1060
1460 1540 1630	115	150 160 170	195 206 218	250 272 280	335 355 375	462 488 515	615 650 690	7.5 7.5 7.5	7.5 7.5 7.5	7.5 7.5 7.5	1580 1660 1750	155	200 212 218	265 272 290	345 355 375	462 475 500	615 650 -	825 875 -	9.5 9.5 -	9.5 9.5 9.5	1180	/1120 /1180 /1250
1720 1820 1950	-	175 185 195	230 243 258	300 315 335	400 425 450	545 - -	710 - -	7.5 - -	7.5 9.5 9.5	7.5 9.5 9.5	1850 1950 2120	-	230 243 272	300 315 355	400 412 462	530 545 615	- -	- - -	- - -	12 12 12	1400	/1320 /1400 /1500
2060 2180 2300	- -	200 212 218	265 280 290	345 355 375	462 475 500	- - -	- -	- - -	9.5 9.5 12	9.5 9.5 12	2240 2360 2500	-	280 290 308	365 375 400	475 500 530	630 650 690	- -	- - -	- - -	12 15 15	1700	/1600 /1700 /1800
2430 -	-	230	308 -	400	530	-	-		12	12	-	-	-		-	-	-			-		/1900 /2000

iameter	d	Diam	Beter Se	eries 1				r _{min}		Diam	∣ B leter Se	eries 2					r _{min}	
ef. No.			Dime	nsion S					on Series		Dime	nsion S		100			Dimension	
			01	11	21	31	41	01	11~41	<u> </u>	82	02	12	22	32	42	82	02~4
1	0.6 1.1 1.5	-				- - -				- - -							-	
<u>2</u> 3	2 2.5 3	-				- - -				- - 10	- - 2.5	- - 4			- - 5		- - 0.1	- - 0.15
	4 5 6	-	- - -			- - -				13 16 19	3 3.5 4	5 5 6			7 8 10		0.15 0.15 0.2	0.2 0.3 0.3
7 3	7 8 9	-	- - -			- - -			- - -	22 24 26	5 5 6	7 8 8			11 12 13	- - -	0.3 0.3 0.3	0.3 0.3 0.3
)0)1)2	10 12 15	-	- - -			- - -				30 32 35	7 7 8	9 10 11		14 14 14	14.3 15.9 15.9	- - 20	0.3 0.3 0.3	0.6 0.6 0.6
)3)4 22	17 20 22	-	- - -			- - -				40 47 50	8 9 9	12 14 14		16 18 18	17.5 20.6 20.6	22 27 27	0.3 0.3 0.3	0.6 1 1
)5 '28)6	25 28 30	-	- - -			- - -				52 58 62	10 10 10	15 16 16		18 19 20	20.6 23 23.8	27 30 32	0.3 0.6 0.6	1 1 1
32)7)8	32 35 40	-	- - -			- - -			- - -	65 72 80	11 12 13	17 17 18		21 23 23	25 27 30.2	33 37 40	0.6 0.6 0.6	1 1.1 1.1
)9 10 11	45 50 55	-	- - -			- - -			- - -	85 90 100	13 13 14	19 20 21		23 23 25	30.2 30.2 33.3	40 40 45	0.6 0.6 0.6	1.1 1.1 1.5
12 13 14	60 65 70	-	- - -			- - -				110 120 125	16 18 18	22 23 24		28 31 31	36.5 38.1 39.7	50 56 56	1 1 1	1.5 1.5 1.5
15 16 17	75 80 85	-	- - -			- - -			- - -	130 140 150	18 19 21	25 26 28		31 33 36	41.3 44.4 49.2	56 60 65	1 1 1.1	1.5 2 2
18 19 20	90 95 100	150 160 165	- - 21	- - 30	- - 39	- - 52	60 65 65	- - 1.1	2 2 2	160 170 180	22 24 25	30 32 34		40 43 46	52.4 55.6 60.3	69 75 80	1.1 1.1 1.5	2 2.1 2.1
21 22 24	105 110 120	175 180 200	22 22 25	33 33 38	42 42 48	56 56 62	69 69 80	1.1 1.1 1.5	2 2 2	190 200 215	27 28 -	36 38 40	- - 42	50 53 58	65.1 69.8 76	85 90 95	1.5 1.5 -	2.1 2.1 2.1
26 28 30	130 140 150	210 225 250	25 27 31	38 40 46	48 50 60	64 68 80	80 85 100	1.5 1.5 2	2 2.1 2.1	230 250 270	- - -	40 42 45	46 50 54	64 68 73	80 88 96	100 109 118		3 3 3
32 34 36	160 170 180	270 280 300	34 34 37	51 51 56	66 66 72	86 88 96	109 109 118	2 2 2.1	2.1 2.1 3	290 310 320	- - -	48 52 52	58 62 62	80 86 86	104 110 112	128 140 140		3 4 4
38 40 44	190 200 220	320 340 370	42 44 48	60 65 69	78 82 88	104 112 120	128 140 150	3 3 3	3 3 4	340 360 400	- - -	55 58 65	65 70 78	92 98 108	120 128 144	150 160 180		4 4 4
48 52 56	240 260 280	400 440 460	50 57 57	74 82 82	95 106 106	128 144 146	160 180 180	444	4 4 5	440 480 500		72 80 80	85 90 90	120 130 130	160 174 176	200 218 218		4 5 5

C	В					r _{min}		١D	В		r _{min}	U Idi	Bore
	er Series 3					I			r Series 4				Diam Ref. N
		on Series					sion Series		Dimens	sion Series	Dimension Series		
	83	03	13	23	33	83	03~33		04	24	04~24		
	-	-	-	-	-	-	-	-	-	-	-	0.6 1.1	-
	-	-	-	-	-	-	-	-	-	-	-	1.5	1:
	-	-	-	-	-	-	-	-	-	-	-	2	2
3	-	5	-	-	- 7	-	0.2	-	-	-	-	2.5 3	- 3
6	-	5	-	-	9	-	0.3	-	-	-	-	4	4
9 2	-	6 7	-	- 11	10	-	0.3 0.3	1	-	-	-	5 6	5 6
6	-	9	_	13	15	_	0.3		_	_	_	7	7
8 0	-	9 10	-	13	15 16	-	0.3 0.6	30 32	10 11	14 15	0.6 0.6	8 9	89
	9	11	_	17	19		0.6		12			-	
5	9	12	-	17	19	0.3	1	37 42	13	16 19	0.6	10 12	00
2	9	13	-	17	19	0.3	1	52	15	24	1.1	15	02
7	10 10	14 15	-	19 21	22.2 22.2	0.6 0.6	1 1.1	62 72	17 19	29 33	1.1	17 20	03
6	11	16	-	21	25	0.6	1.1	-	-	-	-	22	/22
2 8	12 13	17	-	24 24	25.4 30	0.6	1.1	80	21	36	1.5	25 28	05
2	13	19	-	27	30.2	0.6	1.1	90	23	40	1.5	30	06
5 0	14 14	20 21	-	28 31	32 34.9	0.6 0.6	1.1 1.1	- 100	- 25	- 43	- 1.5	32 35	/32
0	16	23	-	33	36.5	1	1.5	110	27	46	2	40	08
00	17	25	-	36	39.7	1	1.5	120	29	50	2	45	09
10 20	19 21	27 29	-	40 43	44.4 49.2	1 1.1	22	130 140	31 33	53 57	2.1 2.1	50 55	10
30	22	31	-	46	54	1.1	2.1	150	35	60	2.1	60	12
40 50	24 25	33 35	-	48 51	58.7 63.5	1.1	2.1 2.1	160 180	37 42	64 74	2.1 3	65 70	13
60	27	37	_	55	68.3	1.5	2.1	190	45	77	3	75	15
70 80	28 30	39 41	-	58 60	68.3 73	1.5	2.1 3	200 210	48 52	80 86	3	80 85	16
90	30	43	-	64	73	2	3	225	54	90	4	90	18
00	33 36	45 47	- 51	67 73	77.8 82.6	2	3	240 250	55	95 98	4	95	19
											4	100	20
25 40	37 42	49 50	53 57	77 80	87.3 92.1	2.1	3 3 3	260 280	60 65 72	100 108	4	105 110	21 22
60	44	55	62	86	106	3	3	310		118	5	120	24
80 00	48 50	58 62	66 70	93 102	112 118	3	4	340 360	78 82	128 132	5 5 5	130 140	26 28
20	-	65	75	108	128	-	4	380	85	138	5	150	30
40 60	-	68 72	79 84	114 120	136 140	-	4 4	400 420	88	142 145	5 5 6	160 170	32 34
80	-	75	88	120	150	-	4	440	92 95	145	6	180	36
00	-	78	92	132	155	-	5	460	98	155 160	6	190	38
20 60	-	80 88	97 106	138 145	165 180	-	5 5 5	480 540	102 115	160 180	6 6 6	200 220	40 44
00	-	95	114	155	195	-	5	580	122	190	6	240	48
40 80	-	102	123	165 175	206 224	-	5 6 6	620 670	132 140	206 224	7.5	260 280	52 56

Bore	d	D	В					l r .		۱D	B						r.	
Diameter			eter Se	rice 1				r _{min}			eter Se	vrice 2					r _{min}	
Ref. No.		Diame		nsion S	Series			Dimensi	on Series			nsion S	Series				I Dimensior	Series
			01	11	21	31	41	01	11~41		82	02	12	22	32	42	82	02~42
60 64 68	300 320 340	500 540 580	63 71 78	90 100 106	118 128 140	160 176 190	200 218 243	5 5 5	5 5 5	540 580 620	- - -	85 92 92	98 105 118	140 150 165	192 208 224	243 258 280		5 5 6
72 76 80	360 380 400	600 620 650	78 78 80	106 106 112	140 140 145	192 194 200	243 243 250	5 5 6	5 5 6	650 680 720	- - -	95 95 103	122 132 140	170 175 185	232 240 256	290 300 315		6 6 6
84 88 92	420 440 460	700 720 760	88 88 95	122 122 132	165 165 175	224 226 240	280 280 300	6 6 6	6 6 7.5	760 790 830		109 112 118	150 155 165	195 200 212	272 280 296	335 345 365		7.5 7.5 7.5
96 /500 /530	480 500 530	790 830 870	100 106 109	136 145 150	180 190 195	248 264 272	308 325 335	6 7.5 7.5	7.5 7.5 7.5	870 920 980		125 136 145	170 185 200	224 243 258	310 336 355	388 412 450		7.5 7.5 9.5
/560 /600 /630	560 600 630	920 980 1030	115 122 128	160 170 175	206 218 230	280 300 315	335 375 400	7.5 7.5 7.5	7.5 7.5 7.5	1030 1090 1150		150 155 165	206 212 230	272 280 300	365 388 412	475 488 515		9.5 9.5 12
/670 /710 /750	670 710 750	1090 1150 1220	136 140 150	185 195 206	243 250 272	336 345 365	412 438 475	7.5 9.5 9.5	7.5 9.5 9.5	1220 1280 1360		175 180 195	243 250 265	315 325 345	438 450 475	545 560 615		12 12 15
/800 /850 /900	800 850 900	1280 1360 1420	155 165 165	212 224 230	272 290 300	375 400 412	475 500 515	9.5 12 12	9.5 12 12	1420 1500 1580		200 206 218	272 280 300	355 375 388	488 515 515	615 650 670		15 15 15
/950 /1000 /1060	950 1000 1060	1500 1580 1660	175 185 190	243 258 265	315 335 345	438 462 475	545 580 600	12 12 12	12 12 12	1660 1750 -		230 243 -	315 330 -	412 425 -	530 560 -	710 750 -		15 15 -
/1180	1120 1180 1250	1750 1850 1950	- - -	280 290 308	365 388 400	475 500 530	630 670 710		15 15 15					- - -				
/1320 /1400 /1500	1320 1400 1500	2060 2180 2300		325 345 355	425 450 462	560 580 600	750 775 800		15 19 19	- -								

Note :

1. Chamfer dimensions comply with KS B 2013.

2. Chamfer dimensions in this Table are not necessarily applied to the following corners.

Corner on the side of raceway where snap ring groove is.

② Corner on the side of thin-walled cylindrical roller bearing where no shoulder exists.

③ Corner on the front side of raceway of angular contact ball bearing.

④ Corner on the inner ring of tapered bore bearing.

												U	nit : mm
D Diamete	B r Series 3					r _{min}		D Diameter	B Series 4		r _{min}	d	Bore Diameter Ref. No.
	Dimensio	on Series				Dimensio	on Series		Dimensi	on Series	Dimension Series		INCI. NO.
	83	03	13	23	33	83	03~33		04	24	04~24		
620 670 710		109 112 118	140 155 165	185 200 212	236 258 272		7.5 7.5 7.5	710 750 800	150 155 165	236 250 265	7.5 9.5 9.5	300 320 340	60 64 68
750 780 820		125 128 136	170 175 185	224 230 243	290 300 308		7.5 7.5 7.5	850 900 950	180 190 200	280 300 315	9.5 9.5 12	360 380 400	72 76 80
850 900 950		136 145 155	190 200 212	250 265 280	315 345 365		9.5 9.5 9.5	980 1030 1060	206 212 218	325 335 345	12 12 12	420 440 460	84 88 92
980 1030 1090		160 170 180	218 230 243	290 300 325	375 388 412		9.5 12 12	1120 1150 1220	230 236 250	365 375 400	15 15 15	480 500 530	96 /500 /530
1150 1220 1280		190 200 206	258 272 280	335 355 375	438 462 488		12 15 15	1280 1360 1420	258 272 280	412 438 450	15 15 15	560 600 630	/560 /600 /630
1360 1420 1500		218 224 236	300 308 325	400 412 438	515 530 560		15 15 15	1500 - -	290 - -	475 - -	15 - -	670 710 750	/670 /710 /750
1600 1700 1780		258 272 280	355 375 388	462 488 500	600 630 650	- - -	15 19 19		- - -	- -	- -	800 850 900	/800 /850 /900
1850 1950 -		290 300 -	400 412 -	515 545 -	670 710 -	- - -	19 19 -	- -	- -	- -	- -	950 1000 1060	/950 /1000 /1060
- -								-	- - -	- -	- -	1120 1180 1250	/1120 /1180 /1250
- -												1320 1400 1500	/1320 /1400 /1500

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: <u>https://www.rstbearing.com.cn</u>

Tab	le 6-3	3 Βοι	undar	y Dir	nensi	ions (of Ta	perec	d Rol	ler B	earing	gs(M	etric	Serie	es)										
Bore Diameter	d	Diam	B eter Se	C	T	В	C	T	r _{min}		D Diam	B eter Si	C eries 0	T	В	C	Т	r _{min}					T	r _{min}	
Ref. No		Diam			Series	29			1				ension	- 20	Dime	ension	Series	30		Diam		eries 1 ension S	Series	31	
			1			11			Inner Ring	Outer Ring			Series	520				Inner Ring	Outer Ring			101011 0	501105		Outer Ring
00 01 02	10 12 15		- - -	- - -	- - -	- - -	- -	- - -		- - -	- 28 32	- 11 12	- - -	- 11 12	- 13 14	- - -	- 13 14	- 0.3 0.3	- 0.3 0.3	- - -	- - -	- - -	- - -	- - -	- - -
03 04 /22	17 20 22	- 37 40	- 11 -	- - -	- 11.6 -	- 12 12	- 9 9	- 12 12	- 0.3 0.3	- 0.3 0.3	35 42 44	13 15 15	- 12 11.5	13 15 15	15 17 -	- - -	15 17 -	0.3 0.6 0.6	0.3 0.6 0.6	-	- - -	- - -	- - -	- -	- -
05 /28 06	25 28 30	42 45 47	11 - 11	- - -	11.6 - 11.6	12.2 12 12 12	9 9 9	12 12 12	0.3 0.3 0.3	0.3 0.3 0.3	47 52 55	15 16 17	11.5 12 13	15 16 17	17 - 20	14 - 16	17 - 20	0.6 1 1	0.6 1 1	- - -	- - -	- - -	- - -	- - -	- -
/32 07 08	32 35 40	52 55 62	- 13 14	- - -	- 14 15	15 14 15	10 11.5 12	14 14 15	0.6 0.6 0.6	0.6 0.6 0.6	58 62 68	17 18 19	13 14 14.5	17 18 19	- 21 22	- 17 18	- 21 22	1 1 1	1 1 1	- - 75	- - 26	- - 20.5	- - 26	- - 1.5	- - 1.5
09 10 11	45 50 55	68 72 80	14 14 16	- - -	15 15 17	15 15 17	12 12 14	15 15 17	0.6 0.6 1	0.6 0.6 1	75 80 90	20 20 23	15.5 15.5 17.5	20 20 23	24 24 27	19 19 21	24 24 27	1 1 1.5	1 1 1.5	80 85 95	26 26 30	20.5 20 23	26 26 30	1.5 1.5 1.5	1.5 1.5 1.5
12 13 14	60 65 70	85 90 100	16 16 19	- - -	17 17 20	17 17 20	14 14 16	17 17 20	1 1 1	1 1 1	95 100 110	23 23 25	17.5 17.5 19	23 23 25	27 27 31	21 21 25.5	27 27 31	1.5 1.5 1.5	1.5 1.5 1.5	100 110 120	30 34 37	23 26.5 29	30 34 37	1.5 1.5 2	1.5 1.5 1.5
15 16 17	75 80 85	105 110 120	19 19 22	- - -	20 20 23	20 20 23	16 16 18	20 20 23	1 1 1.5	1 1 1.5	115 125 130	25 29 29	19 22 22	25 29 29	31 36 36	25.5 29.5 29.5	36	1.5 1.5 1.5	1.5 1.5 1.5	125 130 140	37 37 41	29 29 32	37 37 41	2 2 2.5	1.5 1.5 2
18 19 20	90 95 100	125 130 140	22 22 24	- - -	23 23 25	23 23 25	18 18 20	23 23 25	1.5 1.5 1.5	1.5 1.5 1.5	140 145 150	32 32 32	24 24 24	32 32 32	39 39 39	32.5 32.5 32.5	39	2 2 2	1.5 1.5 1.5	150 160 165	45 49 52	35 38 40	45 49 52	2.5 2.5 2.5	2 2 2
21 22 24	105 110 120	150	24 24 27	- - -	25 25 29	25 25 29	20 20 23	25 25 29	1.5 1.5 1.5	1.5 1.5 1.5	160 170 180	35 38 38	26 29 29	35 38 38	43 47 48	34 37 38	43 47 48	2.5 2.5 2.5	2 2 2	175 180 200	56 56 62	44 43 48	56 56 62	2.5 2.5 2.5	2 2 2
26 28 30	130 140 150		30 30 36	- - -	32 32 38	32 32 38	25 25 30	32 32 38	2 2 2.5	1.5 1.5 2	200 210 225	45 45 48	34 34 36	45 45 48	55 56 59	43 44 46	55 56 59	2.5 2.5 3	2 2 2.5	- - -	- - -	- - -	- - -	-	- -
32 34 36	160 170 180	230	36 36 42	- - -	38 38 45	38 38 45	30 30 34	38 38 45	2.5 2.5 2.5	2 2 2	240 260 280	51 57 64	38 43 48	51 57 64	- - -	- - -	- - -	3 3 3	2.5 2.5 2.5	- - -	- - -	- - -	- - -	- -	- -
38 40 44	200	260 280 300	42 48 48	- -	45 51 51	45 51 51	34 39 39	45 51 51	2.5 3 3	2 2.5 2.5	290 310 340	64 70 76	48 53 57	64 70 76	- -	- -	- - -	3 3 4	2.5 2.5 3	- - -	- -	- -	- - -	- -	- -
48 52 56	240 260 280	360	48 - -	- - -	51 - -	51 63.5 63.5	39 48 48	51 63.5 63.5	3 3 3	2.5 2.5 2.5	360 400 420	76 87 87	57 65 65	76 87 87	- - -	- - -	- - -	4 5 5	3 4 4	- - -	- -	- -	- -	- -	- -
60 64 68 72	300 320 340 360	440	- - -	- - -	- - -	76 76 76 76	57 57 57 57 57	76 76 76 76 76	4 4 4 4	3 3 3 3 3	460 480 - -	100 100 - -	74 74 - -	100 100 - -	- - -	- - -	- - -	5 5 - -	4 4 - -	- - -	- - -	- - -	- - -	- - -	- - -

Note :

1. Regards to the Dimension Series of Diameter Series 9, the dimensions of Div. I have been specified in accordance with old ISO specifications before the revision, and the dimensions Div. II in accordance with the newly revised ISO, and the ones that belong to neither Div. I nor Div. II, have been specified in accordance with the newly revised KS.

2. Chamfer dimensions are the minimum permissible dimensions in accordance with KS B 2013. They are not applied to the corners on the front side.

Unit : mm

D Diame	B Beter Se	C eries 2		В	c	Т	В	С	т	r _{min}		D Diam	B Beter S		 C ¹) 3	Т	В	c	Т	В	c	Т	r _{min}		d	Bore
	Dimens	ion Serie	es 02	Dimens	sion Serie	es 22	Dimens	sion Serie	es 32	Inner Ring	Outer Ring		Dimens	sion Seri	es 03		Dimens	sion Seri	es 13	Dimens	sion Serie	es 23	Inner Ring	Outer Ring		Diameter Ref. No.
30 32 35	9 10 11	- 9 10	9.7 10.75 11.75		- - -	14.7 14.75 14.75	- - -	- - -	- - -		0.6 0.6 0.6	35 37 42	11 12 13	- - 11	- - -	11.9 12.9 14.25	- - -	- - -	- - -	17 17 17	- - 14	17.9 17.9 18.25	0.6 1 1	0.6 1 1	10 12 15	00 01 02
40 47 50	12 14 14	11 12 12	13.25 15.25 15.25	18	14 15 15	17.25 19.25 19.25	-	- -	- - -	1 1 1	1 1 1	47 52 56	14 15 16	12 13 14	- - -	15.25 16.25 17.25	- - -	- - -	- - -	19 21 21	16 18 18	20.25 22.25 22.25		1 1.5 1.5	17 20 22	03 04 /22
52 58 62	15 16 16	13 14 14	16.25 17.25 17.25	19	15 16 17	19.25 20.25 21.25	24	18 19 19.5	22 24 25	1 1 1	1 1 1	62 68 72	17 18 19	15 15 16	13 14 14	18.25 19.75 20.75	- - -	- - -	- -	24 24 27	20 20 23	25.25 25.75 28.75	1.5 1.5 1.5	1.5 1.5 1.5	25 28 30	05 /28 06
65 72 80	17 17 18	15 15 16	18.25 18.25 19.75	23	18 19 19	22.25 24.25 24.75	28	20.5 22 25	26 28 32	1 1.5 1.5	1 1.5 1.5	75 80 90	20 21 23	17 18 20	15 15 17	21.75 22.75 25.25	- - -	- - -	- - -	28 31 33	24 25 27	29.75 32.75 35.25	1.5 2 2	1.5 1.5 1.5	32 35 40	/32 07 08
85 90 100	19 20 21	16 17 18	20.75 21.75 22.75	23	19 19 21	24.75 24.75 26.75	32	25 24.5 27	32 32 35	1.5 1.5 2	1.5 1.5 1.5	100 110 120	25 27 29	22 23 25	18 19 21	27.25 29.25 31.5	- - -	- - -	- -	36 40 43	30 33 35	38.25 42.25 45.5	2 2.5 2.5	1.5 2 2	45 50 55	09 10 11
110 120 125	22 23 24	19 20 21	23.75 24.75 26.25	31	24 27 27	29.75 32.75 33.25	41	29 32 32	38 41 41	2 2 2	1.5 1.5 1.5	130 140 150	31 33 35	26 28 30	22 23 25	33.5 36 38	- - -	- - -	- - -	46 48 51	37 39 42	48.5 51 54	3 3 3	2.5 2.5 2.5	60 65 70	12 13 14
130 140 150	25 26 28	22 22 24	27.25 28.25 30.5	31 33 36	27 28 30	33.25 35.25 38.5		31 35 37	41 46 49	2 2.5 2.5	1.5 2 2	160 170 180	37 39 41	31 33 34	26 27 28	40 42.5 44.5	- - -	- - -	- -	55 58 60	45 48 49	58 61.5 63.5	3 3 4	2.5 2.5 3	75 80 85	15 16 17
160 170 180	30 32 34	26 27 29		40 43 46	34 37 39	42.5 45.5 49	55 58 63	42 44 48	55 58 63	2.5 3 3	2 2.5 2.5	190 200 215	43 45 47	36 38 39	30 32 -	46.5 49.5 51.5	- - 51	- - 35	-	64 67 73	53 55 60	67.5 71.5 77.5	4 4 4	3 3 3	90 95 100	18 19 20
190 200 215	36 38 40	30 32 34	39 41 43.5	50 53 58	43 46 50	53 56 61.5	68 - -	52 - -	68 - -	3 3 3	2.5 2.5 2.5	225 240 260	49 50 55	41 42 46	- - -	53.5 54.5 59.5	53 57 62	36 38 42	63	77 80 86	63 65 69	81.5 84.5 90.5	4 4 4	3 3 3		21 22 24
230 250 270	40 42 45	34 36 38	43.75 45.75 49		54 58 60	67.75 71.75 77	- - -	- - -	- - -	4 4 4	3 3 3	280 300 320	58 62 65	49 53 55	- - -	63.75 67.75 72		44 47 50	68 72 77	93 102 108		98.75 107.75 114	5 5 5	4 4 4		26 28 30
290 310 320	48 52 52	40 43 43	52 57 57	80 86 86	67 71 71	84 91 91	- - -	- - -	- - -	4 5 5	3 4 4	340 360 380	68 72 75	58 62 64	- - -	75 80 83	79 84 88	- - -	82 87 92	114 120 126	95 100 106	121 127 137	5 5 5	4 4 4	160 170 180	32 34 36
340 360 400	55 58 65	46 48 54	60 64 72	92 98 108	75 82 90	97 104 114	- -	- -	- -	5 5 5	4 4 4	400 420 460	78 80 88	65 67 73	- -	86 89 97	92 97 106	- - -	97 101 107	132 138 145	109 115 122	140 146 154	6 6 6	5 5 5	190 200 220	38 40 44
440 480 500	72 80 80	60 67 67	79 89 89	120 130 130	100 106 106	127 137 137	- -	- -	- -	5 6 6	4 5 5	500 540 580	95 102 108	80 85 90	- - -	105 113 119	114 123 132	- -	117 125 135	155 165 175	136	165 176 187	6 6 6	5 6 6	240 260 280	48 52 56
540 580 - -	85 92 - -	71 75 - -	96 104 - -	140 150 - -	115 125 - -	149 159 - -	- - -	- - -	- - -	6 6 - -	5 5 -		- - -	- - -	- - -	- - -	- - -	- - -	145 - - -	- - -	- - -	- - -	- - -	- - -	300 320 340 360	60 64 68 72

Annotations ¹) They are applied to the bearings 303D with large contact angles. In DIN, the ones having equivalent dimensions to 303D of KS are designated as 313, and for the bearings with inner diameter larger than 100mm, the ones of dimension series 13 are designated as 313 just like the dimension series.

re meter . No	d		H er Series Dimens	0 sion Serie	S	r _{min}	D Diamet	H er Series Dimens	1 sion Serie	2S	r _{min}	D Diamet	H er Series Dimens	2 sion Serie	S		r _{min}
			70	90	10			71	91	11			72	92	12	22	
	4 6 8	12 16 18	4 5 5		6 7 7	0.3 0.3 0.3	- - -		- - -			16 20 22	6 6 6		8 9 9		0.3 0.3 0.3
) !	10 12 15	20 22 26	5 5 5		7 7 7	0.3 0.3 0.3	24 26 28	6 6 6		9 9 9	0.3 0.3 0.3	26 28 32	7 7 8		11 11 12	- - 22	0.6 0.6 0.6
	17 20 25	28 32 37	5 6 6		7 8 8	0.3 0.3 0.3	30 35 42	6 7 8		9 10 11	0.3 0.3 0.6	35 40 47	8 9 10		12 14 15	- 26 28	0.6 0.6 0.6
	30 35 40	42 47 52	6 6 6		8 8 9	0.3 0.3 0.3	47 52 60	8 8 9		11 12 13	0.6 0.6 0.6	52 62 68	10 12 13		16 18 19	29 34 36	0.6 1 1
)	45 50 55	60 65 70	7 7 7		10 10 10	0.3 0.3 0.3	65 70 78	9 9 10	- - -	14 14 16	0.6 0.6 0.6	73 78 90	13 13 16	- - 21	20 22 25	37 39 45	1 1 1
2 3 1	60 65 70	75 80 85	7 7 7		10 10 10	0.3 0.3 0.3	85 90 95	11 11 11		17 18 18	1 1 1	95 100 105	16 16 16	21 21 21	26 27 27	46 47 47	1 1 1
	75 80 85	90 95 100	7 7 7		10 10 10	0.3 0.3 0.3	100 105 110	11 11 11		19 19 19	1 1 1	110 115 125	16 16 18	21 21 24	27 28 31	47 48 55	1 1 1
	90 100 110	105 120 130	7 9 9		10 14 14	0.3 0.6 0.6	120 135 145	14 16 16	- 21 21	22 25 25	1 1 1	135 150 160	20 23 23	27 30 30	35 38 38	62 67 67	1.1 1.1 1.1
 	120 130 140	140 150 160	9 9 9		14 14 14	0.6 0.6 0.6	155 170 180	16 18 18	21 24 24	25 30 31	1 1 1	170 190 200	23 27 27	30 36 36	39 45 46	68 80 81	1.1 1.5 1.5
) 2 1	150 160 170	170 180 190	9 9 9		14 14 14	0.6 0.6 0.6	190 200 215	18 18 20	24 24 27	31 31 34	1 1 1.1	215 225 240	29 29 32	39 39 42	50 51 55	89 90 97	1.5 1.5 1.5
5 3)	180 190 200	200 215 225	9 11 11		14 17 17	0.6 1 1	225 240 250	20 23 23	27 30 30	34 37 37	1.1 1.1 1.1	250 270 280	32 36 36	42 48 48	56 62 62	98 109 109	1.5 2 2
1 3 2	220 240 260	250 270 290	14 14 14		22 22 22	1 1 1	270 300 320	23 27 27	30 36 36	37 45 45	1.1 1.5 1.5	300 340 360	36 45 45	48 60 60	63 78 79	110 - -	2 2.1 2.1
6) 1	280 300 320	310 340 360	14 18 18	- 24 24	22 30 30	1 1 1	350 380 400	32 36 36	42 48 48	53 62 63	1.5 2 2	380 420 440	45 54 54	60 73 73	80 95 95		2.1 3 3
<u>}</u>	340 360 380	380 400 420	18 18 18	24 24 24	30 30 30	1 1 1	420 440 460	36 36 36	48 48 48	64 65 65	2 2 2	460 500 520	54 63 63	73 85 85	96 110 112		3 4 4
) 1 3	400 420 440	440 460 480	18 18 18	24 24 24	30 30 30	1 1 1	480 500 540	36 36 45	48 48 60	65 65 80	2 2 2.1	540 580 600	63 73 73	85 95 95	112 130 130		4 5 5
2 5 00	460 480 500	500 520 540	18 18 18	24 24 24 24	30 30 30	1111	560 580 600	45 45 45	60 60 60	80 80 80	2.1 2.1 2.1	620 650 670	73 78 78	95 103 103	130 135 135		5 5 5

9.5

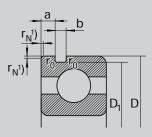
/500

Bore Diameter Ref. No	d		H er Series Dimens 70	0 ion Serie 90	s 10	r _{min}		H er Series Dimens 71	1 ion Serie 91	s 11	r _{min}		H er Series Dimens 72	2 ion Serie: 92	s 12	22	r _{min}
/530	530	580	23	30	38	1.1	640	50	67	85	3	710	82	109	140	-	5
/560	560	610	23	30	38	1.1	670	50	67	85	3	750	85	115	150	-	5
/600	600	650	23	30	38	1.1	710	50	67	85	3	800	90	122	160	-	5
/630	630	680	23	30	38	1.1	750	54	73	95	3	850	100	132	175		6
/670	670	730	27	36	45	1.5	800	58	78	105	4	900	103	140	180		6
/710	710	780	32	42	53	1.5	850	63	85	112	4	950	109	145	190		6
/750 /800 /850	750 800 850	820 870 920	32 32 32	42 42 42	53 53 53	1.5 1.5 1.5	900 950 1000	67 67 67	90 90 90	120 120 120	4 4 4	1000 1060 1120	112 118 122	150 155 160	195 205 212	- -	6 7.5 7.5
/900 /950 /1000	900 950 1000	980 1030 1090	36 36 41	48 48 54	63 63 70	2 2 2.1	1060 1120 1180	73 78 82	95 103 109	130 135 140	5 5 5	1180 1250 1320	125 136 145	170 180 290	220 236 250	- -	7.5 7.5 9.5
/1060	1060	1150	41	54	70	2.1	1250	85	115	150	5	1400	155	206	265	-	9.5
/1120	1120	1220	45	60	80	2.1	1320	90	122	160	5	1460	-	206	-	-	9.5
/1180	1180	1280	45	60	80	2.1	1400	100	132	175	6	1520	-	206	-	-	9.5
/1250	1250	1360	50	67	85	3	1460	-	-	175	6	1610	-	216	-		9.5
/1320	1320	1440	-	-	95	3	1540	-	-	175	6	1700	-	228	-		9.5
/1400	1400	1520	-	-	95	3	1630	-	-	180	6	1790	-	234	-		12
/1500	1500	1630	-	-	105	4	1750	-	-	195	6	1920	-	252	-	-	12
/1600	1600	1730	-	-	105	4	1850	-	-	195	6	2040	-	264	-	-	15
/1700	1700	1840	-	-	112	4	1970	-	-	212	7.5	2160	-	276	-	-	15
/1800	1800	1950	-	-	120	4	2080	-	-	220	7.5	2280	-	288	-	-	15
/1900	1900	2060	-	-	130	5	2180	-	-	220	7.5	-	-	-	-	-	-
/2000	2000	2160	-	-	130	5	2300	-	-	236	7.5	-	-	-	-	-	-
/2120 /2240 /2360 /2500	2120 2240 2360 2500	2300 2430 2550 2700		- - - -	140 150 150 160	5 5 5 5	2430 2570 2700 2850	- - -		243 258 265 272	7.5 9.5 9.5 9.5	- - -	- - - -	- - -	- - -		

Note :

1. Dimension Series 22, 23, and 24 are for those bearings that can carry loads in both axial directions. (For a bearing that can carry loads in both axial directions, its nominal bore diameter is that of central washer, and in this Table, those values have been omitted.)

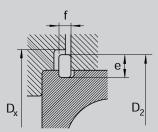
2. Both max. permissible outer diameters of shaft/central washers and min. permissible inner diameter of housing washers have been omitted. (Refer to bearing dimension tables for thrust bearings.)

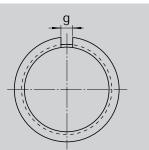

Unit : mm

D Diameter	-	ion Serie 93	s 13	23	r _{min}	D Diamete	│ H er Series 4 │ Dimens │ 74	1 ion Serie: 94	s 14	24	r _{min}	D Diamete	H er Series 5 Dimensi 95	r _{min} 5 on Series	d	Bore Diameter Ref. No
800 850 900	122 132 136	160 175 180	212 224 236	- -	7.5 7.5 7.5	920 980 1030	175 190 195	236 250 258	308 335 335		9.5 12 12	1090 1150 1220	335 355 375	15 15 15	530 560 600	/530 /560 /600
950 1000 1060	145 150 160	190 200 212	250 258 272	- - -	9.5 9.5 9.5	1090 1150 1220	206 218 230	280 290 308	365 375 400	- - -	12 15 15	1280 1320 1400	388 388 412	15 15 15	630 670 710	/630 /670 /710
1120 1180 1250	165 170 180	224 230 243	290 300 315	- - -	9.5 9.5 12	1280 1360 1440	236 250 -	315 335 354	412 438 -	- - -	15 15 15	- - -	- - -	- -	750 800 850	/750 /800 /850
1320 1400 1460	190 200 -	250 272 276	335 355 -	- - -	12 12 12	1520 1600 1670	- - -	372 390 402	- - -		15 15 15	- - -	- - -		900 950 1000	/900 /950 /1000
1540 1630 1710	- - -	288 306 318	- - -	- - -	15 15 15	1770 1860 1950	- -	426 444 462	- - -	- - -	15 15 19	- - -	- - -		1060 1120 1180	/1060 /1120 /1180
1800 1900 2000	- - -	330 348 360	- -	- - -	15 19 19	2050 2160 2280	- -	480 505 530	- - -	- - -	19 19 19	- - -	- - -		1250 1320 1400	/1250 /1320 /1400
2140 2270 -	- - -	384 402 -	- -	- - -	19 19 -	- - -	- -	- - -	- - -	- - -	- - -	- - -	- - -	- -	1500 1600 1700	/1500 /1600 /1700
-	- - -	- - -	- -	- - -	- - -	- -	- - -	- - -	- - -	- - -	- - -	- - -	- - -		1800 1900 2000	/1800 /1900 /2000
:	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -		- - -	- - -	- - -	2120 2240 2360 2500	/2120 /2240 /2360 /2500

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

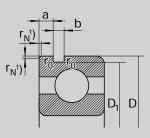

Table 6-5 Dimensions of Snap Ring Groove and Snap Ring - Dimension Series 18, 19



Bearings Snap Ring Groove											
d Dimension	n Corioc	D	D ₁		a Diameter Se	ricc			b		r ₀
18	19	1			18	IIIES	19				
			min	max	min	max	min	max	min	max	min
-	10 12 15	22 24 28	20.5 22.5 26.4	20.8 22.8 26.7		- - -	0.9 0.9 1.15	1.05 1.05 1.3	0.8 0.8 0.95	1.05 1.05 1.2	0.2 0.2 0.25
-	17	30	28.4	28.7	-	-	1.15	1.3	0.95	1.2	0.25
20	-	32	30.4	30.7	1.15	1.3	-	-	0.95	1.2	0.25
22	-	34	32.4	32.7	1.15	1.3	-	-	0.95	1.2	0.25
25	20	37	35.4	35.7	1.15	1.3	1.55	1.7	0.95	1.2	0.25
-	22	39	37.4	37.7	-	-	1.55	1.7	0.95	1.2	0.25
28	-	40	38.4	38.7	1.15	1.3	-	-	0.95	1.2	0.25
30	25	42	40.4	40.7	1.15	1.3	1.55	1.7	0.95	1.2	0.25
32	-	44	42.4	42.7	1.15	1.3	-	-	0.95	1.2	0.25
-	28	45	43.4	43.7	-	-	1.55	1.7	0.95	1.2	0.25
35	30	47	45.4	45.7	1.15	1.3	1.55	1.7	0.95	1.2	0.25
40	32	52	50.4	50.7	1.15	1.3	1.55	1.7	0.95	1.2	0.25
-	35	55	53.4	53.7	-	-	1.55	1.7	0.95	1.2	0.25
45	-	58	56.4	56.7	1.15	1.3	-	-	0.95	1.2	0.25
-	40	62	60.3	60.7	-	-	1.55	1.7	0.95	1.2	0.25
50	-	65	63.3	63.7	1.15	1.3	-	-	0.95	1.2	0.25
-	45	68	66.3	66.7	-	-	1.55	1.7	0.95	1.2	0.25
55	50	72	70.3	70.7	1.55	1.7	1.55	1.7	0.95	1.2	0.25
60	-	78	75.8	76.2	1.55	1.7	-	-	1.3	1.6	0.4
-	55	80	77.5	77.9	-	-	1.9	2.1	1.3	1.6	0.4
65	60	85	82.5	82.9	1.55	1.7	1.9	2.1	1.3	1.6	0.4
70	65	90	87.5	87.9	1.55	1.7	1.9	2.1	1.3	1.6	0.4
75	-	95	92.5	92.9	1.55	1.7	-	-	1.3	1.6	0.4
80	70	100	97.5	97.9	1.55	1.7	2.3	2.5	1.3	1.6	0.4
-	75	105	102.1	102.6	-	-	2.3	2.5	1.3	1.6	0.4
85 90 95	80 - 85	110 115 120	107.1 112.1 117.1	107.6 112.6 117.6	1.9 1.9 1.9	2.1 2.1 2.1	2.3 - 3.1	2.5 3.3	1.3 1.3 1.3	1.6 1.6 1.6	0.4 0.4 0.4
100	90	125	122.1	122.6	1.9	2.1	3.1	3.3	1.3	1.6	0.4
105	95	130	127.1	127.6	1.9	2.1	3.1	3.3	1.3	1.6	0.4
110	100	140	137.1	137.6	2.3	2.5	3.1	3.3	1.9	2.2	0.6
-	105	148	142.1	142.6	-	-	3.1	3.3	1.9	2.2	0.6
120	110	150	147.1	147.6	2.3	2.5	3.1	3.3	1.9	2.2	0.6
130	120	165	161.3	161.8	3.1	3.3	3.5	3.7	1.9	2.2	0.6
140 - 150 160	- 130 140 -	175 180 190 200	171.3 176.3 186.3 196.3	171.8 176.8 186.8 196.8	3.1 - 3.1 3.1	3.3 - 3.3 3.3	- 3.5 3.5 -	- 3.7 3.7 -	1.9 1.9 1.9 1.9	2.2 2.2 2.2 2.2 2.2	0.6 0.6 0.6 0.6

¹) The min. permissible dimension of chamfer dimension $r_{_{\rm N}}$ on the snap ring groove side of outer ring is 0.3mm for the bearings with outer diameter smaller than 78mm among the ones of dimension series 18, as well as the

ones with smaller than 47mm in dimension series 19. And it is 0.5mm for all other bearings exceeding 78mm or 47mm limits.

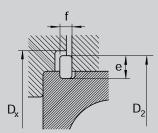


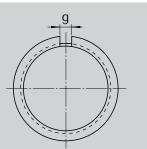
Unit : mm

Snap Ring							Bearing Seats
Bearing Ref. No.	е		f		g²)	D ₂ ²)	D _x
	min	max	min	max	≈ min	max	min
NR 1022	1.85	2.0	0.6	0.7	2	24.8	25.5
NR 1024	1.85	2.0	0.6	0.7	2	26.8	27.5
NR 1028	1.9	2.05	0.75	0.85	3	30.8	31.5
NR 1030	1.9	2.05	0.75	0.85	3	32.8	33.5
NR 1032	1.9	2.05	0.75	0.85	3	34.8	35.5
NR 1034	1.9	2.05	0.75	0.85	3	36.8	37.5
NR 1037	1.9	2.05	0.75	0.85	3	39.8	40.5
NR 1039	1.9	2.05	0.75	0.85	3	41.8	42.5
NR 1040	1.9	2.05	0.75	0.85	3	42.8	43.5
NR 1042	1.9	2.05	0.75	0.85	3	44.8	45.5
NR 1044	1.9	2.05	0.75	0.85	4	46.8	47.5
NR 1045	1.9	2.05	0.75	0.85	4	47.8	48.5
NR 1047	1.9	2.05	0.75	0.85	4	49.8	50.5
NR 1052	1.9	2.05	0.75	0.85	4	54.8	55.5
NR 1055	1.9	2.05	0.75	0.85	4	57.8	58.5
NR 1058	1.9	2.05	0.75	0.85	4	60.8	61.5
NR 1062	1.9	2.05	0.75	0.85	4	64.8	65.5
NR 1065	1.9	2.05	0.75	0.85	4	67.8	68.5
NR 1068	1.9	2.05	0.75	0.85	5	70.8	72
NR 1072	1.9	2.05	0.75	0.85	5	74.8	76
NR 1078	3.1	3.25	1.02	1.12	5	82.7	84
NR 1080	3.1	3.25	1.02	1.12	5	84.4	86
NR 1085	3.1	3.25	1.02	1.12	5	89.4	91
NR 1090	3.1	3.25	1.02	1.12	5	94.4	96
NR 1095	3.1	3.25	1.02	1.12	5	99.4	101
NR 1100	3.1	3.25	1.02	1.12	5	104.4	106
NR 1105	3.89	4.04	1.02	1.12	5	110.7	112
NR 1110	3.89	4.04	1.02	1.12	5	115.7	117
NR 1115	3.89	4.04	1.02	1.12	5	120.7	122
NR 1120	3.89	4.04	1.02	1.12	7	125.7	127
NR 1125	3.89	4.04	1.02	1.12	7	130.7	132
NR 1130	3.89	4.04	1.02	1.12	7	135.7	137
NR 1140	3.89	4.04	1.6	1.7	7	145.7	147
NR 1145	3.89	4.04	1.6	1.7	7	150.7	152
NR 1150	3.89	4.04	1.6	1.7	7	155.7	157
NR 1165	4.7	4.85	1.6	1.7	7	171.5	173
NR 1175	4.7	4.85	1.6	1.7	10	181.5	183
NR 1180	4.7	4.85	1.6	1.7	10	186.5	188
NR 1190	4.7	4.85	1.6	1.7	10	196.5	198
NR 1200	4.7	4.85	1.6	1.7	10	206.5	207

²) The dimensions of g and D₂ are used after mounting the snap ring. Snap rings should be free of radial movement, and tightly fit to the snap ring groove, and expand after mounting.

Table 6-6 Dimensions of Snap Ring Groove and Snap Ring - Diameter Series 0, 2, 3, 4




Bearings					Snap Ring Groove										
d				D	D ₁		а				b		r ₀		
Dimensio 0	on Series	3	4				Diameter 0	Series	2, 3, 4						
					min	max	min	max	min	max	min	max	min		
10 12	-	-	-	26 28	24.25 26.25	24.5 26.5	1.19 1.19	1.35 1.35		-	0.87 0.87	1.17 1.17	0.2 0.2		
-	10	9	8	30	27.91	28.17	-	-	1.9	2.06	1.35	1.65	0.4		
15	12	-	9	32	29.9	30.15	1.9	2.06	1.9	2.06	1.35	1.65	0.4		
17	15	10	-	35	32.92	33.17	1.9	2.06	1.9	2.46	1.35	1.65	0.4		
-	-	12	10	37	34.52	34.77	-	-	1.9	2.46	1.35	1.65	0.4		
-	17	-	-	40	37.85	38.1	-	-	1.9	2.46	1.35	1.65	0.4		
20	-	15	12	42	39.5	39.75	1.9	2.06	1.9	2.46	1.35	1.65	0.4		
22 25 -	- 20 22	- 17 -		44 47 50	41.5 44.35 47.35	41.75 44.6 47.6	1.9 1.9 -	2.06 2.06 -	- 2.31 2.31	- 2.46 2.46	1.35 1.35 1.35	1.65 1.65 1.65	0.4 0.4 0.4		
28	25	20	15	52	49.48	49.73	1.9	2.06	2.31	2.46	1.35	1.65	0.4		
30	-	-	-	55	52.35	52.6	1.88	2.08	-	-	1.35	1.65	0.4		
-	-	22	-	56	53.35	53.6	-	-	2.31	2.46	1.35	1.65	0.4		
32	28	-	-	58	55.35	55.6	1.88	2.08	2.31	2.46	1.35	1.65	0.4		
35	30	25	17	62	59.11	59.61	1.88	2.08	3.07	3.28	1.9	2.2	0.6		
-	32	-	-	65	62.1	62.6	-	-	3.07	3.28	1.9	2.2	0.6		
40	-	28	-	68	64.31	64.82	2.29	2.49	3.07	3.28	1.9	2.2	0.6		
-	35	30	20	72	68.3	68.81	-	-	3.07	3.28	1.9	2.2	0.6		
45	-	32	-	75	71.32	71.83	2.29	2.49	3.07	3.28	1.9	2.2	0.6		
50	40	35	25	80	76.3	76.81	2.29	2.49	3.07	3.28	1.9	2.2	0.6		
-	45	-	-	85	81.31	81.81	-	-	3.07	3.28	1.9	2.2	0.6		
55	50	40	30	90	86.28	86.79	2.67	2.87	3.07	3.28	2.7	3	0.6		
60	-	-	-	95	91.31	91.82	2.67	2.87	-	-	2.7	3	0.6		
65	55	45	35	100	96.29	96.8	2.67	2.87	3.07	3.28	2.7	3	0.6		
70	60	50	40	110	106.3	106.81	2.67	2.87	3.07	3.28	2.7	3	0.6		
75	-	-	-	115	111.3	111.81	2.67	2.87	-	-	2.7	3	0.6		
-	65	55	45	120	114.71	115.21	-	-	3.86	4.06	3.1	3.4	0.6		
80	70	-	-	125	119.71	120.22	2.67	2.87	3.86	4.06	3.1	3.4	0.6		
85	75	60	50	130	124.71	125.22	2.67	2.87	3.86	4.06	3.1	3.4	0.6		
90	80	65	55	140	134.72	135.23	3.45	3.71	4.65	4.9	3.1	3.4	0.6		
95	-	-	-	145	139.73	140.23	3.45	3.71	-	-	3.1	3.4	0.6		
100	85	70	60	150	144.73	145.24	3.45	3.71	4.65	4.9	3.1	3.4	0.6		
105	90	75	65	160	154.71	155.22	3.45	3.71	4.65	4.9	3.1	3.4	0.6		
110	95	80	-	170	163.14	163.65	3.45	3.71	5.44	5.69	3.5	3.8	0.6		
120	100	85	70	180	173.15	173.66	3.45	3.71	5.44	5.69	3.5	3.8	0.6		
-	105	90	75	190	183.13	183.64	-	-	5.44	5.69	3.5	3.8	0.6		
130	110	95	80	200	193.14	193.65	5.44	5.69	5.44	5.69	3.5	3.8	0.6		

 $^{\rm 1})$ The min. permissible dimension of chamfer dimension $\rm r_N$ on the snap ring groove side of outer ring is 0.5mm. However, for the bearings with outer diameter smaller than 35mm among the ones of diameter series 0, it is

0.3mm.

²) The dimensions of g and D₂ are used after mounting the snap ring. Snap rings should be free of radial movement, and tightly fit to the snap ring groove, and expand after

Unit : mm

Snap Ring							Bearing Seats
Bearing Ref. No.	е		f		g²)	D ₂ ²)	D _x
	min	max	min	max	≈ min	max	min
NR 26 ³)	1.91	2.06	0.74	0.84	3	28.7	29.4
NR 28 ³)	1.91	2.06	0.74	0.84	3	30.7	31.4
NR 30	3.1	3.25	1.02	1.12	3	34.7	35.5
NR 32	3.1	3.25	1.02	1.12	3	36.7	37.5
NR 35	3.1	3.25	1.02	1.12	3	39.7	40.5
NR 37	3.1	3.25	1.02	1.12	3	41.3	42
NR 40	3.1	3.25	1.02	1.12	3	44.6	45.5
NR 42	3.1	3.25	1.02	1.12	3	46.3	47
NR 44	3.1	3.25	1.02	1.12	3	48.3	49
NR 47	3.89	4.04	1.02	1.12	4	52.7	53.5
NR 50	3.89	4.04	1.02	1.12	4	55.7	56.5
NR 52 NR 55 NR 56	3.89 3.89 3.89 3.89	4.04 4.04 4.04	1.02 1.02 1.02	1.12 1.12 1.12	4 4 4	57.9 60.7 61.7	58.5 61.5 62.5
NR 58 NR 62 NR 65	3.89 3.89 3.89 3.89	4.04 4.04 4.04	1.02 1.6 1.6	1.12 1.7 1.7	4 4 4	63.7 67.7 70.7	64.5 68.5 71.5
NR 68	4.7	4.85	1.6	1.7	5	74.6	76
NR 72	4.7	4.85	1.6	1.7	5	78.6	80
NR 75	4.7	4.85	1.6	1.7	5	81.6	83
NR 80	4.7	4.85	1.6	1.7	5	86.6	88
NR 85	4.7	4.85	1.6	1.7	5	91.6	93
NR 90	4.7	4.85	2.36	2.46	5	96.5	98
NR 95	4.7	4.85	2.36	2.46	5	101.6	103
NR 100	4.7	4.85	2.36	2.46	5	106.5	108
NR 110	4.7	4.85	2.36	2.46	5	116.6	118
NR 115	4.7	4.85	2.36	2.46	5	121.6	123
NR 120	7.06	7.21	2.72	2.82	7	129.7	131.5
NR 125	7.06	7.21	2.72	2.82	7	134.7	136.5
NR 130 NR 140 NR 145	7.06 7.06 7.06	7.21 7.21 7.21	2.72 2.72 2.72 2.72	2.82 2.82 2.82	7 7 7	139.7 149.7 154.7	141.5 152 157
NR 150	7.06	7.21	2.72	2.82	7	159.7	162
NR 160	7.06	7.21	2.72	2.82	7	169.7	172
NR 170	9.45	9.6	3	3.1	10	182.9	185
NR 180	9.45	9.6	3	3.1	10	192.9	195
NR 190	9.45	9.6	3	3.1	10	202.9	205
NR 200	9.45	9.6	3	3.1	10	212.9	215

mounting.

³) Snap ring and its groove for these bearings are not specified in KS.

6-3 Designated Numbering System

6-3-1 Purpose

The purpose of designating the numbers to the bearings is to prevent confusion during productions or when they are put to use, and also for the convenience of their systematic maintenance. By using the designated codes, boundary dimensions, such as bore or outer diameters, can be easily referenced, and the special characteristic shape of a bearing can be easily recognized just by identifying its prefix and suffix.

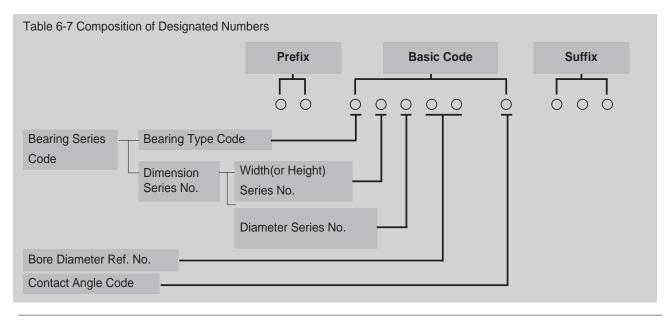
Boundary dimensions of bearings that are most frequently used are generally specified in accordance with the basic plan of boundary dimensions of ISO standards, and the designated numbers of standard bearings are specified in the KS B 2012-(Designated Numbering System for Rolling Bearings).

6-3-2 Composition

Designated numbers consist of two parts, a basic part and a auxiliary part as shown in Table 6-7.

Bearing series code in the basic part consists of code denoting the bearing type and the dimension series number, and the code denoting its type is represented by either a single digit number or a single alphabet letter. Also, the combination of both width series numbers and diameter series numbers are called the dimension series numbers, and they are both represented by a single digit number.

However, in some instances it is customary to omit some of the width series numbers. Detailed illustration on dimension series numbers by each type are shown in Table 6-8.


Bore diameter reference numbers are usually denoted by two digit numbers.

The bearings with the bore diameter larger than 20mm are denoted by a number equal to 1/5 of bore diameter, and for the ones with bore diameter smaller than 10mm, they are denoted by single digit bore diameter, whereas, for the ones between 10mm and 17mm, they are denoted by the numbers from 00 to 03.

For the bearings whose bore diameters cannot be represented with a multiple of 5, the actual bore diameter should be written down after the "/" sign. Examples of these are shown in Table 6-9.

Contact angles for single row angular contact ball bearings and tapered roller bearings(Metric series) are shown in Table 6-10.

Auxiliary codes consist of prefix and suffix representing the detailed specifications, such as bearing's tolerances, clearance, and seal type, etc.

Table 6-8 Dimension Series Numbers

	Dimension Series Width Series No.	Height Series No.	Diameter Series No.
Radial Bearing (Except tapered roller bearings)	8, 0, 1, 2, 3, 4, 5, 6		7, 8, 9, 0, 1, 2, 3, 4
Tapered Roller Bearing Thrust Bearing	0, 1, 2, 3	7, 9, 1, 2	9, 0, 1, 2, 3 0, 1, 2, 3, 4

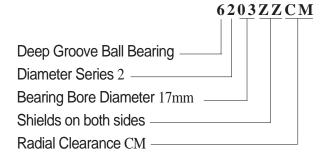

Table 6-9 Bearing Bore Diameter Ref. No.															
Bore Diameter Ref. No.	6	8	9	00	01	02	03	04	05	10	18	/22	/28	/32	/500
Bore Diameter(mm)	6	8	9	10	12	15	17	20	25	50	90	22	28	32	500

Table 6-10 Contact Angle Codes									
Bearing Type	Nominal Contact Angle	Contact Angle Code							
Single Row Angular Contact Ball Bearing	30° 40° 15° 25°	A ¹) B C E							
Tapered Roller Bearings (Metric Series)	Up to approximately 17° $17^{\circ} \sim 24^{\circ}$ $24^{\circ} \sim 32^{\circ}$	Not indicated C D							
1)									

¹) They are generally not indicated in the designated numbers.

In Table 6-14, the arrangements and typical basic and auxiliary codes for KBC bearings are shown. Some examples are shown below.

Example 1

Example 2

302<u>07</u>J

Tapered Roller Bearing(Metric Series)	
Width Series 0	
Diameter Series 2	
Bearing Bore Diameter 35mm	
Matches with ISO specifications	

Example 3	7205BPC
Single Row Angular Contact Ball Bearing Diameter Series 2 Bearing Bore Diameter 25mm Contact Angle 40°	
Reinforced Glass-Fiber ——— Polyamid Cage	

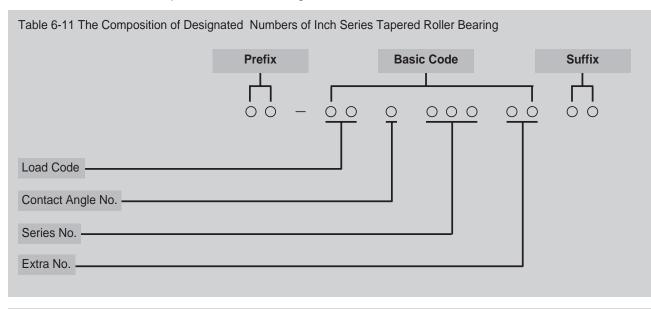
Example 4	
Unit Bearing Diameter Series 2 Bearing Bore Diameter 20mm	

6-3-3 Designated Numbering Systems for Inch Series Tapered Roller Bearings

The composition of designated numbering system for inch series tapered roller bearings are specified in the AFBMA Standards. The composition of designated numbers that are described here will be applied to the newly designed bearings, and for the ones already designated by using the old method, the same old code numbers will be used as is.

The loads are denoted from the lightest to the heaviest in the form of EL, LL, L, LM, M, HM, H, HH, EH, and T. However, T is used only for thrust bearings.

Contact angle No. is represented by a single digit number, and its designation method is shown in Table 6-12.


Series No. is represented by single to triple digit numbers, and the max. inner diameters for each Series No. are shown in Table 6-13.

Extra two digit numbers are placed in front of the auxiliary code, and these numbers are the specifically assigned numbers for the inner or outer rings of the bearing. The numbers from 10 to 19 are designated for outer rings, and the thinnest outer ring is assigned with the number 10 for all tapered roller bearings, regardless of their series. The numbers from 30 to 49 are designated for inner rings, and the thinnest inner ring is assigned with the number 49 for all tapered roller bearings,

regardless of their series. Auxiliary codes are associated with bearing's materials, heat treatments, and detailed design specifications, etc., and they are assigned to all the bearings produced by KBC.

Table 6-12 Contact Angle Numbers of Inch Series Tapered Roller Bearing

Outer Ring	Angle(Contact Angle x 2)	No.
From	Under	
0°	24°	1
24°	25° 30′	2
25° 30′	27°	3
27°	28° 30′	4
28° 30′	30° 30′	5
30° 30′	32° 30′	6
32° 30′	36°	7
36°	45°	8
45° From		9 ¹)
90° Thrust I	Bearing	0
1) Except fo	or thrust bearings.	

Table 6-1	3 Series Numbers Roller Bearing	s of Inch Series Tapered
Max. Bore Over	e Diameter(inch) Up to	Series No.
0 1 2 3 4	1 2 3 4	019 2099, 000030 030129 130189 190999

Refer to the Example shown below for the designation system of inch series tapered roller bearings.

Example	$\frac{\mathbf{L}\mathbf{M}11749\mathbf{g}/10\mathbf{g}}{ $
Inner Ring Load Code LM ——— Contact Angle No.1— Series No.17 ——— Extra No.49 ——— Suffix g —	
Outer Ring Extra No.10 ——— Suffix g —	

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

Table 6-14 Basic and Auxiliary cades of KBC Bearings

Prefix		Basic Code Bearing Seri	es No.		Bore Diar	neter Ref. No.	Contact	Angle Code	Suffix Bore		Materi	ial Code
			Dimension Series	No.			Ů					
Code	Content	,	Width/Height Series		Code	Content	Code	Content	Code	Content	Code	Content
BR	Non-Standard	Deep Groov			8	8mm	Angul	ar Content	A	Bearing of which	g	Case Hardened Stee
	Deep Groove	6	(1)	9	1		Ball E	Bearing		inner design is different		
	Ball Bearing	6	(1)	0	00	10mm	Α	30°		from the standards		
		6	(0)	2	01	12mm	В	40°			HL	heat Treatment For
٢R	Non-standard	6	(0)	3	02	15mm	С	15°				Long Life
	Tapered Roller				03	17mm	E	25°	J	Tapered roller bearing		
	Bearing				:					bearing produced		
		Angular Conta	ict Ball Bearing		04	20mm				in accordance		
EC	Non-creep	7	(1)	0	05	25mm	Tanor	red Roller		with ISO		
						ZJIIIII				with 100		
	Bearing	7	(0)	2	:		Beari					
		7	(0)	3	/22	22mm		Up to 17°				
HC	Bearing Of High				/28	28mm	С	Approx 20°				
	Load Carrying Capacity				/32	32mm	D	Approx 28°				
		Tapered Ro	ller Bearing		1							
		3	2	0	18	90mm						
SM	Angular Contact	3	0	2								
	Ball Bearing For	3	2	2								
	High Speed	3	0	3								
	0	3	2	3								
SA	Single Row	•	-									
571	Angular Contact											
		Thrust Ball	Pooring									
	Ball Bearing		-									
	Special Dimension	5	1	1								
SDA	Double Row Angular											
	Contact Ball Bearing	Unit Bearing	5									
	of Special	UC	(0)	2								
	Dimension	UB	(0)	2								
DT	Double Row Tapered											
	Roller Bearing											
°D	Coromia Boaring											
СВ	Ceramic Bearing											
	Operandia D											
ΗВ	Ceramic Bearing											
	for high speed											
SA	Bearing for											
	special											
	enviroment											

S	uf	fi	Х	

Suffix Cage	Code		-		iter Ring shape Code	Arrang	ement Code		al Clearance eload Code		e Class Code	Grease Code
Cage		Code Z ZZ U U UU	ing Code Content One Side Shield Two Side Shield Noncontact Seal on one side Contact Seal on one side Contact Seal on one side Contact Seal on two sides	Code N NR NCX	tter Ring shape Code Content Snap Ring Groove of the outer ring Snap ring mounted on sna ring groove of outer ring Eccentric Snap ring Groove Bore diameter different from the standards Outer diameter different from the standards Width Dimensions different from the standards	Code pDF pDB DT	ement Code Content Face to face Arrangement Back to back Arrangement Tandem Arrangement	or Pr Code Deep 0 C2 C3 C4 C5 CM Small MC1 MC2 MC3 MC4	eload Code Content Groove Ball Gearing Smaller Than Normal Clearance Larger than Normal Clearance Larger than Class 3 Larger than Class 4 Clearance for Motor Diameter bearing Smaller than MC2 Clearance Smaller than MC3 Clearance Normal Clearance Lager than MC3 Clearance	P6 P5 P4 P2 HW	Content KS General Class KS Class 6 KS Class 5 KS Class 4 KS Class 2	
								Combir Ball E /GL /GM	Clearance Lager than MC4 Clearance nation Angular Contant Bearing Light Preload Medium Preload Heavy Preload			

7. Dimensional and Running Accuracy of Bearings

7. Dimensional and Running Accuracy of Bearings

7-1 Specification of Tolerance Classes

Bearing is an important component mounted in the different parts of various machines, and its dimensional and running accuracies are the element of much importance in its production and usage.

The specifications of bearing's dimensional and running accuracies are contained in KS B 2014, and its measuring method in KS B 2015. And bearing's dimensional accuracies, which are of importance when mounted on a shaft or housing, relate to all tolerances of boundary dimensions, chamfer dimensions, and width variations, etc., and its running accuracies, which need to be considered when controlling the rotating elements, relates to all tolerances of radial runout, axial runout, side face runout, and inclination of outer diameter surface, etc.

Tolerances have been classified into KS Class 0(Normal tolerance class), and Class 6, Class 5, Class 4, and Class 2, increasing in the order of

tighter tolerances, and these tolerances comply with the specifications of ISO. In addition to these Classes, there is another Class HW in between Classes 4 and 2, which has been specified and used just by KBC.

Classes of bearing tolerances for each type in accordance with KS Tolerance Classes as well as those of ISO and other industrial countries, are listed in Table 7-1.

7-2 Definition of Dimensional and Running Accuracy

Dimensional and running accuracies for bearings are designated as below, and their values are shown in Table 7-2 to 7-6.

7-2-1 Dimensional Accuracy

(1) Inner Ring

- d Nominal bore diameter
- d_s Single bore diameter
- d_{mp} Single plane mean bore diameter; The arithmetical mean of the largest and the smallest single bore diameters measured in one radial plane.

Bearing Type		Tolerance Cla				
Radial Bearings(Except tap	ered roller bearings)	KS 0 Class	KS 6 Class	KS 4 Class	KS 2 Class	
	Metric Series	100001033	KS 0 Class	KS 5 Class	KS 5 Class	KS 4 Class
Tapered Roller Bearing						
	Inch Series	AFBMA 4 Class	AFBMA 2 Class	AFBMA 3 Class	AFBMA 0 Cla	ISS
Thrust Ball Bearing		KS 0 Class	KS 6 Class	KS 5 Class	KS 4 Class	
Equivalent Classes of Other Countries	ISO	ISO NarmalClass	ISO 6 Class	SO 5 Class	ISO 4 Class	ISO 2 Class
	DIN	0 Class	6 Class	5 Class	4 Class	2 Class
	JIS	0 Class	6 Class	5 Class	4 Class	2 Class
	AFBMA Ball Bearing	ABEC 1	ABEC 3	ABEC 5	ABEC 7	ABEC 9
	Roller Bearing	RBEC 1	RBEC 3	RBEC 5		

Table 7-1 Bearing Types and Tolerance Classes

Note :

ISO : International Organization for standardization

DIN : German Standards

JIS : Japanese Industrial Standards

AFBMA : Anti-Friction Bearing Manufacturers Association Standards in U.S.A.

 Δ_{dmp} $d_{mp} - d$

Single plane mean bore diameter deviation; The difference between a single plane mean bore diameter and the nominal bore diameter of a basically cylindrical bore.

 Δ_{dmp} $d_{mp} - d$

Deviation of a single bore diameter; The difference between a single bore diameter and the nominal bore diameter of a basically cylindrical bore.

- V_{dp} Bore diameter variation in a single radial plane; The difference between the largest and the smallest of the single bore diameters in a single radial plane.
- V_{dmp} $d_{mpmax} d_{mpmin}$

Mean bore diameter variation; The difference between the largest and the smallest of the single plane mean bore diameters of cylindrical bore.

(2) Outer Ring

- D Nominal outside diameter
- D_s Single outside diameter
- D_{mp} Single plane mean outside diameter; The arithmetical mean of the largest and the smallest of the single outside diameters in one single radial plane.

 Δ_{Dmp} $D_{mp} - D$

Single plane mean outside diameter deviation; The difference between a single plane mean outside diameter and the nominal outside diameter of a basically cylindrical outside surface.

V_{Dp} Outside diameter variation in a single radial plane; Difference between the largest and the smallest of the single outside diameters in a single radial plane.

 V_{Dmp} $D_{mpmax} - D_{mpmin}$

Mean outside diameter variation; The difference between the largest and the smallest of the mean outside diameters.

- (3) Width and Height
- B, C Nominal ring widths

 B_s, C_s Single ring widths

$$\Delta_{Bs}$$
 $B_s - B, \Delta_{Cs}$ $C_s - C$

Deviation of a single ring width; The difference between a single ring width and the nominal ring width.

- $\begin{array}{ll} V_{Bs} & B_{smax}-B_{smin}, V_{Cs} & C_{smax}-C_{smin} \\ & \text{Ring width variation; The difference between} \\ & \text{the largest and the smallest of the single ring} \\ & \text{width of an individual ring.} \end{array}$
- T Nominal bearing width
- T_s Actual bearing width(Tapered roller bearing); The distance between the points of intersection of the bearing axis and the two planes tangential to the actual ring faces designated to bound the width of a radial bearing ring where one inner ring face and one outer ring face are designated to bound the width.
- T_{1s} Single overall width of inner ring(Tapered roller bearing); Single overall width of a tapered roller bearing with cone and master cup.
- T_{2s} Single overall width of outer ring(Tapered roller bearing); Single overall width of a tapered roller bearing with master cone and cup.

7. Dimensional and Running Accuracy of Bearings

nominal single overall width, nominal single overall width with cone and master cup, and nominal single overall width with master cone and cup, respectively.

- H Nominal height
- H_s Single overall height ; Single overall height of thrust bearing

7-2-2 Running Accuracy

- K_{ia}(K_{ea}) Radial runout of assemble bearing inner ring
 ; When radial bearing outer(inner) ring is fixed and inner(outer) ring is floating, the difference between the largest and smallest radial distances of locating outer(inner) ring is called as the radial runout of bearing inner(outer) ring, provided that raceway is in contact with the rolling element at the radial location of above mentioned point.
- $S_{ia}(S_{ea})$ Axial runout ; To measure the axial runout, the outer(inner) ring has to be fixed perpendicular to the bearing central shaft, and then a measured load needs to be applied in the same direction as the central shaft of inner(outer) ring, and then a measuring instrument on the standard side of inner(outer) ring is placed, and then the inner(outer) ring is rotated for one full revolution. Then, the difference between the largest and smallest values shown on the scale is called as the axial runout.
- Side face runout of inner ring with reference to bore ; The difference between the largest and smallest axial distances from the side face to the plane perpendicular to the central shaft from the distance of a radius of mean raceway radius of inner ring in the direction from the inner ring's central shaft to the circumference, is called as the side face runout.

- S_D Inclination variation of outside cylindrical surface; The largest value in total variation of outside cylindrical surface to any two points on both side surfaces of outer ring(They should be distanced by more than 1.2 times of chamfer dimension.)
- Si Shaft washer thickness variation(Thrust bearing); Difference between the largest and smallest distances from raceway middle to back face.
- S_e Housing washer thickness variation(Thrust bearing); Difference between the largest and smallest distances from raceway middle to back face.

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

7. Dimensional and Running Accuracy of Bearings

Table 7-2 Tolerances of Radial Bearing(Except Tapered Roller Bearings)

Inner Ring

	Dimen	sion(unit	t:mm))													
Nominal Over	0.6 ¹)	2.5	10	18	30	50	80	120	150	180	250	315	400	500	630	800	1000
Bore Diameter Up to	2.5	10	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250

Tolerance Class 0(Normal Tolerance)

Bore, Cylindrical Deviation	$\Delta_{\rm dmp}{}^3$)	0 -8	0 -8	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation V _{dp}	Diameter Serie 9	es 10	10	10	13	15	19	25	31	31	38	44	50	56	63			
	0 · 1	8	8	8	10	12	19	25	31	31	38	44	50	56	63			
	$2 \cdot 3 \cdot 4$	6	6	6	8	9	11	15	19	19	23	26	30	34	38			
Variation	V _{dmp}	6	6	6	8	9	11	15	19	19	23	26	30	34	38			
Width Deviation	Δ _{Bs} ⁴)	0 -40	0 -120	0 -120	0 -120	0 -120	0 -150	0 -200	0 -250	0 -250	0 -300	0 -350	0 -400	0 -450	0 -500	0 -750	0 -1000	0 -1250
WidthVariation	V _{Bs}	12	15	20	20	20	25	25	30	30	30	35	40	50	60	70	80	100
Radial Runout	K _{ia}	10	10	10	13	15	20	25	30	30	40	50	60	65	70	80	90	100

Tolerance Class P6

Deviation	$\Delta_{\rm dmp}{}^3$)	0 -7	0 -7	0 _7	0 -8	0 -10	0 -12	0 -15	0 -18	0 -18	0 -22	0 -25	0 -30	0 -35	0 -40		
Variation V _{dp}	Diameter Serie 9	es 9	9	9	10	13	15	19	23	23	28	31	38	44	50		
	0 · 1	7	7	7	8	10	15	19	23	23	28	31	38	44	50		
	2 · 3 · 4	5	5	5	6	8	9	11	14	14	17	19	23	26	30		
Variation	V _{dmp}	5	5	5	6	8	9	11	14	14	17	19	23	26	30		
Width Deviation	$\Delta_{\rm Bs}^{4}$)	0 -40	0 -120	0 -120	0 -120	0 -120	0 -150	0 -200	0 -250	0 -300	0 -300	0 -350	0 -400	0 -450	0 -500		
Width Variation	V _{Bs}	12	15	20	20	20	25	25	30	30	30	35	40	45	50		
Radial Runout	K _{ia}	5	6	7	8	10	10	13	18	18	20	25	30	35	40		

Note The larger Δ_{dmp} and the smaller Δ_{dmp} in the table do not apply when the width of raceway face is within 1.2 times the maximum fillet radius.

Annotations¹) Includes 0.6mm

²) Includes 2.5mm

³) Applies only to cylindrcal inner diameter bearings

⁴) Contact KBC for Δ_{Bs} and Δ_{Cs} of arranged bearings

Outer Ring

		Dime	nsion(ı	unit mr	n)														
Nominal Outside Diameter	Over Up to	2.5 ²) 6	6 18	18 30	30 50	50 80	80 120	120 150	150 180	180 250	250 315	315 400	400 500	500 630	630 800	800 1000	1000 1250	1250 1600	1600 2000
Tolerance	e Class 0	(Nor	mal	Tole	erand	ce)													
		Toler	ance(ı	unit :	m)														
Deviation	$\Delta_{\rm Dmp}$	0 -8	0 -8	0 -9	0 -11	0 -13	0 -15	0 -18	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125	0 -160	0 -200
Variation V _{Dp}	Diameter Seri 9	es 10	10	12	14	16	19	23	31	38	44	50	56	63	94	125			
	0 · 1	8	8	9	11	13	19	23	31	38	44	50	56	63	94	125			
	2 · 3 · 4	6	6	7	8	10	11	14	19	23	26	30	34	38	55	75			
	Sealed Type I 2 · 3 · 4 10	Bearing	12	16	20	26	30	38											
Variation	V _{Dmp}	6	6	7	8	10	11	14	19	23	26	30	34	38	55	75			
Radial Runout	K _{ea}	15	15	15	20	25	35	40	45	50	60	70	80	100	120	140	160	190	220

The width tolerances Δ_{CS} and V_{CS} are same as Δ_{BS} and V_{BS} of inner ring, respectively

Deviation	Δ_{Dmp}	0 -7	0 -7	0 -8	0 -9	0 -11	0 -13	0 -15	0 -18	0 -20	0 -25	0 -28	0 -33	0 -38	0 -45	0 -60		
Variation V _{Dp}	Diameter Serie 9	es 9	9	10	11	14	16	19	23	25	31	35	41	48	56	75		
	0 · 1	7	7	8	9	11	16	19	23	25	31	35	41	48	56	75		
	2 · 3 · 4	5	5	6	7	8	10	11	14	15	19	21	25	29	34	45		
	Sealed Type B 0·1·2·3·4	learing 9	9	10	13	16	20	25	30									
Variation	V _{Dmp}	5	5	6	7	8	10	11	14	15	19	21	25	29	34	45		
Radial Runout	K _{ea}	8	8	9	10	13	18	20	23	25	30	35	40	50	60	75		

Tolerance Class P6

The width tolerances Δ_{CS} and V_{CS} are same as Δ_{BS} and V_{BS} of inner ring, respectively

7. Dimensional and Running Accuracy of Bearings

Inner Ring

		Dimens	ion(unit	:mm)									
Nominal Bore Diameter	Over Up to	0.6 ¹) 2.5	2.5 10	10 18	18 30	30 50	50 80	80 120	120 150	150 180	180 250	250 315	315 400
Tolerance	Class P5												
		Toleran	ce(unit	m)									
Deviation	Δ_{dmp} ³)	0 -5	0 -5	0 -5	0 -6	0 -8	0 -9	0 –10	0 -13	0 -13	0 –15	0 –18	0 -23
Variation V _{dp}	Diameter Seri 9	es 5	5	5	6	8	9	10	13	13	15	18	23
_	$0\cdot 1\cdot 2\cdot 3\cdot 4$	4	4	4	5	6	7	8	10	10	12	14	18
Variation	V _{dmp}	3	3	3	3	4	5	5	7	7	8	9	12
Width Dimension Deviation	$\Delta_{Bs}{}^{5}$)	0 -40	0 -40	0 -80	0 -120	0 -120	0 -150	0 -200	0 -250	0 -250	0 -300	0 -350	0 -400
Width Variation	V _{Bs}	5	5	5	5	5	6	7	8	8	10	13	15
Radial Runout	K _{ia}	4	4	4	4	5	5	6	8	8	10	13	15
Side face Runout	S _d	7	7	7	8	8	8	9	10	10	11	13	15
Axial Runout	S _{ia} 6)	7	7	7	8	8	8	9	10	10	13	15	20
Tolerance	Class P4												
Deviation	Δ_{dmp}^{3}), Δ_{ds}^{4})	0 -4	0 -4	0 -4	0 -5	0 -6	0 -7	0 -8	0 -10	0 -10	0 -12		
Variation V _{dp}	Diameter Devi 9	ation	4	4	5	6	7	8	10	10	12		
	$0\cdot 1\cdot 2\cdot 3\cdot 4$	3	3	3	4	5	5	6	8	8	9		
Variation	V _{dmp}	2	2.	2	2.5	3	3.5	4	5	5	6		

0

5

6

6

7

-250

0

5

8

6

7

-300

0

6

8

7

8

The larger Δ_{dmp} and the smaller Δ_{dmp} in the table do not apply when the width of raceway face is within 1.2 times the maximum fillet radius. Note

0

-120

2.5

3

4

4

0

3

4

4

4

-150

0

4

4

5

5

-200

0

4

5

5

5

-250

Annotations¹) Includes 0.6mm

 $\Delta_{\rm Bs}{}^{\rm 5}$) –40

 V_{Bs}

K_{ia}

 S_{d}

S_{ia}6)

²) Includes 2.5mm

³) applies only to cylindrcal inner diameter bearings.

0

-80

2.5

2.5

3

3

0

-120

2.5

2.5

3

3

0

-40

2.5

2.5

3

3

⁴⁾ these values of Δ_{ds} and Δ_{Ds} apply only to diameter series 0, 1, 2, 3, 4 and 4 ⁵⁾ Contact KBC for Δ_{Bs} and Δ_{Cs} of arranged bearings ⁶⁾ Axial runout, S_{ia} applies to ball bearings (Except self-aligning ball bearings)

Width

Variation Width

Variation

Radial Runout Side face Runout

Axial Runout

Outer Ring

		Dimension	(Unit : mm)										
Nominal Outer Ring	Over Up to	2.5 ²) 6 6 18	18 30	30 50	50 80	80 120	120 150	150 180	180 250	250 315	315 400	400 500	500 630	630 800

Tolerance Class P5

		Tolera	nce(Unit	: m)											
Deviation	V _{Dmp}	0 -5	0 -5	0 -6	0 -7	0 -9	0 -10	0 –11	0 -13	0 -15	0 -18	0 -20	0 -23	0 -28	0 -35
Variation V _{Dp}	Diameter Series 9	5	5	6	7	9	10	11	13	15	18	20	23	28	35
	$0\cdot 1\cdot 2\cdot 3\cdot 4$	4	4	5	5	7	8	8	10	11	14	15	17	21	26
Variation	V _{Dmp}	3	3	3	4	5	5	6	7	8	9	10	12	14	18
Width Variation	V _{Cs}	5	5	5	5	6	8	8	8	10	11	13	15	18	20
Radial Runout	K _{ea}	5	5	6	7	8	10	11	13	15	18	20	23	25	30
Inclination	S _D	8	8	8	8	8	9	10	10	11	13	13	15	18	20
Axial Runout	S _{ea} ⁶)	8	8	8	8	10	11	13	14	15	18	20	23	25	30

The width tolerances Δ_{CS} and V_{CS} are same as Δ_{BS} and V_{BS} of inner ring, respectively

Dimension	$\Delta_{\rm Dmp}$	0 -4	0 -4	0 -4	0 -6	0 -7	0 -8	0 -9	0 -10	0 -11	0 -13	0 -15		
Dimension	$\Delta_{\rm DS}{}^4$)	0 -4	0 -4	0 -5	0 -6	0 -7	0 -8	0 -9	0 -10	0 -11	0 -13	0 -15		
Variation V _{Dp}	Diameter Series 9	4	4	5	6	7	8	9	10	11	13	15		
	$0\cdot 1\cdot 2\cdot 3\cdot 4$	3	3	4	5	5	6	7	8	8	10	11		
Variation	V _{Dmp}	2	2	2.5	3	3.5	4	5	5	6	7	8		
Width Deviation	V _{Cs}	2.5	2.5	2.5	2.5	3	4	5	5	7	7	8		
Radial Runout	K _{ea}	3	3	4	5	5	6	7	8	10	11	13		
Inclination	S _D	4	4	4	4	4	5	5	5	7	8	10		
Axial Runout	S _{ea} ⁶)	5	5	5	5	5	6	7	8	10	10	13		

$\label{eq:class} \ P4$

The width tolerances Δ_{CS} and V_{CS} are same as Δ_{BS} and V_{BS} of inner ring, respectively

7. Dimensional and Running Accuracy of Bearings

Inner Ring

		Dimensio	on (Unit :	mm)							
Nominal Bore	Over	0.6 ¹)	2.5	10	18	30	50	80	120	150	180
Diameter	Up to	2.5	10	18	30	50	80	120	150	180	250

Tolerance Class HW

Tolerance (unit: m)

Deviation	Δ_{dmp}^{3}), Δ_{ds}^{4})	0 -4	0 -4	0 -4	0 -4	0 -5		
Variation V _{dp}	Diameter Series	4	4	4	4	5		
Variation	V _{dmp}	2	2	2	2	2.5		
Width Deviation	Δ _{Bs} ⁵)	0 -40	0 -80	0 -120	0 -120	0 -125		
Width Variation	V _{Bs}	2	2	2	2	2		
Radial Runout	K _{ia}	2	2	2.5	2.5	2.5		
Side Face Runout	S _d	2	2	2	2	2		
Axial Runout	S _{ia} 6)	2	2	2.5	2.5	2.5		

Tolerance Class P2

Deviation	$\Delta_{ m dmp}^3$), $\Delta_{ m ds}^4$)	0 -2.5	0 -2.5	0 -2.5	0 -2.5	0 -2.5	0 -4	0 -5	0 -7	0 -7	0 -8
Variation V _{dp}	Diameter Seri 0 · 1 · 2 · 3 · 4	ies 2.5	2.5	2.5	2.5	2.5	4	5	7	7	8
Variation	V _{dmp}	1.5	1.5	1.5	1.5	1.5	2	2.5	3.5	3.5	4
Width Deviation	Δ _{Bs} ⁵) –40	0 -40	0 -80	0 -120	0 -120	0 -150	0 -200	0 -250	0 -250	0 -300	0
Width Variation	V _{Bs}	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	4	5
Radial Runout	K _{ia}	1.5	1.5	1.5	2.5	2.5	2.5	2.5	2.5	5	5
Side Face Runout	S _d	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	4	5
Axial Runout	S _{ia} 6)	1.5	1.5	1.5	2.5	2.5	2.5	2.5	2.5	5	5

The larger Δ_{dmp} and the smaller Δ_{dmp} in the table do not apply when the width of raceway face is within 1.2 times the maximum fillet radius. Note

Annotations¹) Includes 0.6mm

2) Includes 2.5mm

³) applies only to cylindrcal inner diameter bearings.

- ^(a) applies only to cylindrati inter diameter beamings. ^(a) these values of Δ_{ds} and Δ_{Ds} apply only to diameter series 0, 1, 2, 3, 4 and 4 ^(b) Contact KBC for Δ_{Bs} and Δ_{Cs} of arranged bearings ^(b) Axial runout, S_{ia} applies to ball bearings (Except self-aligning ball gearings

Outer Ring

		Dimens	sion(Unit	: mm)	1							
Nominal Outside	Over	2.5 ²)	6	18	30	50	80	120	150	180	250	315
Diameter	Up to	6	18	30	50	80	120	150	180	250	315	400

Tolerance Class $\boldsymbol{H}\boldsymbol{W}$

		Toleran	ce(Unit	: m)						
Deviation	$\Delta_{\mathrm{Dmp'}} \Delta_{\mathrm{Ds}}$			0 -4	0 -4	0 -4	0 -5	0 -5		
Variation V _{Dp}	$\begin{array}{c} \text{Diameter Series} \\ 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \end{array}$			4	4	4	5	5		
Variation	V _{Dmp}			2	2	2	2.5	2.5		
Width Variation	V _{Cs}			2	2	2	2.5	2.5		
Radial Runout	K _{ea}			2.5	2.5	4	5	5		
Inclination	S _D			2	2	2	2.5	2.5		
Axial Runout	S _{ea} ⁶)			2.5	2.5	4	5	5		

The width tolerances Δ_{CS} and V_{CS} are same as Δ_{BS} and V_{BS} of inner ring, respectively

Tolerance Class P2

Deviation	$\Delta_{\mathrm{Dmp'}} \Delta_{\mathrm{Ds}}$	0 -2.5	0 -2.5	0 -4	0 -4	0 -4	0 -5	0 -5	0 -7	0 -8	0 -8	0 -10
Variation V _{Dp}	Diameter Series 0 · 1 · 2 · 3 · 4	2.5	2.5	4	4	4	5	5	7	8	8	10
Variation	V _{Dmp}	1.5	1.5	2	2	2	2.5	2.5	3.5	4	4	5
Width Variation	V _{Cs}	1.5	1.5	2.5	2.5	4	5	5	5	7	7	8
Radial Runout	K _{ea}	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	4	5	7
Inclination	S _D	1.5	1.5	2.5	2.5	4	5	5	5	7	7	8
Axial Runout	S _{ea} ⁶)	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	4	5	7

The width tolerances Δ_{CS} and V_{CS} are same as Δ_{BS} and V_{BS} of inner ring, respectively

7. Dimensional and Running Accuracy of Bearings

Table 7-3 Tolerances of Metric Series Tapered Roller Bearing

Inner Ring

		Dimen	sion(Uni	t:mm)								
Nominal Bore Diameter	Over up to	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500	500 630	630 800

Tolerance Class 0(Normal Tolerance)

Tolerance(Unit: m)

Deviation	$\Delta_{\rm dmp}$	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75
Variation	V _{dp}	8	10	12	15	20	25	30	35	40			
	V _{dmp}	6	8	9	11	15	19	23	26	30			
Width Deviation	Δ_{BS}	0 -120	0 -120	0 -120	0 -150	0 -200	0 -250	0 -300	0 -350	0 -400	0 -450	0 -500	0 -750
Radial Runout	K _{ia}	15	18	20	25	30	35	50	60	70	70	85	100
Width Deviation	Δ_{Ts}	+200 0	+200 0	+200 0	+200 0	+200 -200	+500 -250	+350 -250	+350 -250	+400 -400	+400 -400	+400 -500	+600 -600
	Δ_{T1s}	+100 0	+100 0	+100 0	+100 0	+100 -100	+150 -150	+150 -150	+150 -150	+200 -200			
	Δ_{T2s}	+100 0	+100 0	+100 0	+100 0	+100 -100	+200 -100	+200 -100	+200 -100	+200 -200			

Tolerance Class P6X

Deviation	$\Delta_{\rm dmp}$	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75
Variation	V _{dp}	8	10	12	15	20	25	30	35	40			
	V _{dmp}	6	8	9	11	15	19	23	26	30			
Width Deviation	Δ_{BS}	0 -50											
Radial Runout	K _{ia}	15	18	20	25	30	35	50	60	70	70	85	100
Width Deviation	Δ_{Ts}	+100 0	+100 0	+100 0	+100 0	+100 0	+150 0	+150 0	+200 0	+200 0			
	$\overline{\Delta_{ extsf{T1s}}}$	+50 0	+100 0	+100 0									
	Δ_{T2s}	+50 0	+50 0	+50 0	+50 0	+50 0	+100 0	+100 0	+100 0	+100 0			

Note : 1) The larger Δ_{dmp} and the smaller Δ_{dmp} in the table do not apply when the width of raceway face is within 1.2 times the maximum fillet radius.

²) A part of this Table complies with the specifications of KBC.

Outer Ring

		Dimer	nsion (l	Jnit : n	nm)									
Nominal Outside Diameter	e Over Up to	18 30	30 50	50 80	80 120	120 150	150 180	180 250	250 315	315 400	400 500	500 630	630 800	800 1000
Tolerance (Class 0(Norn	nal T	olera	nce)										
		Tolera	ance (U	nit: 1	m)									
Deviation	$\Delta_{\rm Dmp}$	0 -9	0 -11	0 -13	0 -15	0 -18	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100
Variation	V _{Dp}	9	11	13	15	18	25	30	35	40	45	50		
	V _{Dmp}	7	8	10	11	14	19	23	26	30	34	38		
Width Deviation	Δ_{CS}	The v	vidth to	olerance	es ∆ _{Cs}	are sa	ame as	s∆ _{Bs} c	f inner	ring, r	espectiv	vely		
Radial Runout	K _{ea}	18	20	25	35	40	45	50	60	70	80	100	120	120

Tolerance Class P6X

Deviation	Δ_{Dmp}	0 -9	0 -11	0 -13	0 -15	0 -18	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100
Variation	V _{Dp}	9	11	13	15	18	25	30	35	40	45	50		
	V _{Dmp}	7	8	10	11	14	19	23	26	30	34	38		
Width Devition	Δ_{Cs}	0 -100												
Radial Runout	K _{ea}	18	20	25	35	40	45	50	60	70	80	100	120	120

7. Dimensional and Running Accuracy of Bearings

Inner Ring

		Dimen	sion (Uni [.]	t:mm)									
Nominal Bore Diameter	Over Up to	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500	500 630	630 800
Tolerance	Class P6												
		Tolera	nce (Unit	: m)									
Deviation	$\Delta_{\rm dmp}$	0 -7	0 -8	0 -10	0 -12	0 -15	0 -18	0 -22	0 -25	0 -30	0 -35	0 -40	0 -60
Variation	V _{dp}	7	8	10	12	15	18	22					
	V _{dmp}	5	6	8	9	11	14	16					
Width Variation	Δ_{Bs}	0 -120	0 -120	0 -120	0 -150	0 -200	0 -250	0 -300	0 -350	0 -400			
Radial Runout	K _{ia}	7	8	10	10	13	18	20	25	30	35	40	45
Width Deviation	Δ_{Ts}	+200 0	+200 0	+200 0	+200 0	+200 -200	+500 -250	+350 -250	+350 -250	+400 -400	+400 -400	+400 -500	+600 -600
Tolerance	Class P5												
Deviation	$\Delta_{\rm dmp},\Delta_{\rm ds}$	0 -7	0 -8	0 -10	0 -12	0 -15	0 -18	0 -22	-25	-30	-35	-40	-60
Variation	V _{dp}	5	6	8	9	11	14	17					
	V _{dmp}	5	5	5	6	8	9	11					
Width Variation	Δ_{Bs}	0 -200	0 -200	0 -240	0 -300	0 -400	0 -500	0 -600	-700	-800	-800	-800	-800
Radial Runout	K _{ia}	3.5	4	5	5	6	8	10	13	15	18	20	22
Side Face Runout	S _d	7	8	8	8	9	10	11	13	15	19	22	27
Width Deviation	Δ_{Ts}	+200 -200	+200 -200	+200 -200	+200 -200	+200 -200	+350 -250	+350 -250	+350 –250	+400 -400	+400 -400	+500 -500	+600 -600

Note :

1. The larger Δ_{dmp} and the smaller Δ_{dmp} in the table do not apply when the width of raceway face is within 1.2 times the maximum fillet radius.

2. A part of this Table complies with the specifications of KBC.

Outer Ring

		Dimer	nsion (Ur	nit : mm)									
Nominal Outside Diamet	Over er Up to	18 30	30 50	50 80	80 120	120 150	150 180	180 250	250 315	315 400	400 500	500 630	630 800	800 1000
Tolerance	Class P6										<u>.</u>	<u>`</u>	<u>`</u>	
		Variat	ion (Unit	:: m)										
Deviation	$\Delta_{\rm Dmp}$	0 -8	0 -9	0 -11	0 -13	0 -15	0 -18	0 -20	0 -25	0 -28	0 -33	0 -38	0 -45	0 -60
Variation	V _{Dp}	8	9	11	13	15	18	20	25	28				
	V _{Dmp}	6	7	8	10	11	14	15	19	21				
Width Deviation	Δ_{Cs}	The w	idth toler	ances Δ_{C}	; _s are sa	me as Δ	Bs ^{of} inn	ier ring, i	respective	ely				
Radial Runout	K _{ea}	9	10	13	18	20	23	25	30	35	40	50	60	75
Tolerance	Class P5													
Deviation	$\Delta_{\rm Dmp'} \; \Delta_{\rm Ds}$	0 -8	0 -9	0 -11	0 -13	0 -15	0 -18	0 -20	0 -25	0 -28	-33	-38	-45	-60
Variation	V _{Dp}	6	7	8	10	11	14	15	19	22				

	V _{Dmp}	5	5	6	7	8	9	10	13	14				
Width Deviation	Δ_{Cs}	The wi	dth tolera	ances Δ_{C}	s are sa	me as $\Delta_{ }$	Bs ^{of} inn	er ring, i	respective	ely				
Radial Runout	K _{ea}	6	7	8	10	11	13	15	18	20	23	25	30	35
Inclination	S _D	8	8	8	9	10	10	11	13	13	15	18	20	23

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO., LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

7. Dimensional and Running Accuracy of Bearings

Table 7-4 To	olerand									
Inner Ring	9									
			Dimensio	n (Unit : mi	m)					
Nominal Bore Diameter		Over Up to	76.2	76.2 266.7	266.7 304.8	304.8 609.6	609.6 914.4	914.4 1219.2	1219.2	
Tolerance	Class	S AFBMA		e (Unit: m	1)					
Deviation	$\Delta_{\rm ds}$		+13 0	+25 0	+25 0	+51 0	+76 0	+102 0	+127 0	
Tolerance	Class	S AFBMA	A 2							
Deviation	$\Delta_{\rm ds}$		+13 0	+25 0	+25 0	+51 0	+76 0	+102 0	+127 0	
Tolerance	Class	S AFBMA	3							
Deviation	$\Delta_{\sf ds}$			+13 0	+13 0	+25	+28 0	+51 0	+76 0	
Tolerance	Class	AFRMA	N 0							
loioranoc				12	. 10	0.5	1.28	+51	176	
Deviation	Δ_{ds}		+13	+15	+13	+25	+20	101	+76	
Deviation	$\Delta_{\sf ds}$		+13 0	0	0	+25 0	0	+51 0	0	
		·			0	+25 0	0	0		
Deviation Deviation		·	all Widt	h		+25 0	0	0		
Deviation	of Sii	ngle Overa	all Widt	h n (Unit : mi	m)	6 09.6	0			
	of Sii	·	all Widt	h			0			
Deviation	of Sii	n gle Over Over Up to	all Widt Dimensio 101.6	h n (Unit : mı 101.6	m) 304.8 609.6		0			
Deviation Nominal Bore Diameter	of Sii	n gle Over Over Up to	all Widt Dimensio 101.6	h n (Unit : mi 101.6 304.8	m) 304.8 609.6		0			
Deviation Nominal Bore Diameter Tolerance Deviation	of Sin Class Δ _{Ts}	Over Up to AFBMA	all Widt Dimensio 101.6 4 Tolerance +203 0	h n (Unit : mı 101.6 304.8 e (Unit : m +356	m) 304.8 609.6 1) +381	609.6	0			
Deviation Nominal Bore Diameter Tolerance	of Sin Class Δ _{Ts}	Over Up to AFBMA	all Widt Dimensio 101.6 4 Tolerance +203 0 2 +203	h n (Unit : mi 101.6 304.8 e (Unit : m +356 -254 +203	m) 304.8 609.6 n) +381 -381 +381	609.6	0			
Deviation Nominal Bore Diameter Tolerance Deviation Tolerance	of Sin Class Δ_{Ts} Class	Over Up to AFBMA	all Widt Dimensio 101.6 4 Tolerance +203 0	h n (Unit : mi 101.6 304.8 e (Unit : m +356 -254	m) 304.8 609.6 n) +381 -381	609.6	0			
Deviation Nominal Bore Diameter Tolerance Deviation Tolerance	of Sin Class Δ _{Ts} Class Δ _{Ts}	Over Up to AFBMA	all Widt Dimensio 101.6 4 Tolerance +203 0 2 +203 0	h n (Unit : mi 101.6 304.8 e (Unit : m +356 -254 +203	m) 304.8 609.6 n) +381 -381 +381	609.6	0			
Deviation Nominal Bore Diameter Tolerance Deviation Tolerance Deviation	of Sin Class Δ _{Ts} Class Δ _{Ts}	Over Up to AFBMA	all Widt Dimensio 101.6 4 Tolerance +203 0 2 +203 0 3	h n (Unit : mi 101.6 304.8 e (Unit : m +356 -254 +203	m) 304.8 609.6 n) +381 -381 +381	609.6	0			
Deviation Nominal Bore Diameter Tolerance Deviation Tolerance Deviation Tolerance Deviation	of Sin Class Δ _{Ts} Class Δ _{Ts}	ngle Over ^{Over} ^{Up to} 5 AFBMA 5 AFBMA 5 AFBMA D≤508mm	all Widt Dimensio 101.6 4 Tolerance +203 0 2 +203 0 2 +203 0	h n (Unit : mi 101.6 304.8 e (Unit : mi +356 -254 +203 0	m) 304.8 609.6 n) +381 -381 +381 -381 +203	609.6 +381 -381 +381	0			
Deviation Nominal Bore Diameter Tolerance Deviation Tolerance Deviation Tolerance Deviation	of Sin Class Δ _{Ts} Class Δ _{Ts} Class Δ _{Ts}	ngle Over Up to AFBMA AFBMA AFBMA AFBMA AFBMA AFBMA D \leq 508mm In Case of D $>$ 508mm In Case of	all Widt Dimensio 101.6 4 Tolerance +203 0 2 +203 0 3 +203 -203 +203 -203	h n (Unit : mi 101.6 304.8 e (Unit : mi +356 -254 +203 0 +203 -203 +203	m) 304.8 609.6 n) +381 -381 +381 -381 +203 -203 +203	609.6 +381 -381 +381 -381 +381	0			
Deviation Nominal Bore Diameter Tolerance Deviation Tolerance Deviation Tolerance Deviation	of Sin Class Δ _{Ts} Class Δ _{Ts} Class Δ _{Ts}	ngle Over Up to AFBMA AFBMA AFBMA AFBMA AFBMA AFBMA D \leq 508mm In Case of D $>$ 508mm In Case of	all Widt Dimensio 101.6 4 Tolerance +203 0 2 +203 0 3 +203 -203 +203 -203	h n (Unit : mi 101.6 304.8 e (Unit : mi +356 -254 +203 0 +203 -203 +203	m) 304.8 609.6 n) +381 -381 +381 -381 +203 -203 +203	609.6 +381 -381 +381 -381 +381				

Outer Ring

	Dimensior	n(Unit:mm	n)			
Nominal outside Over Diameter Up to	266.7	266.7 304.8	304.8 609.6	609.6 914.4	914.4 1219.2	1219.2
Tolerance Class AFB		(Unit: m))			
Deviation Δ_{Ds}	+25 0	+25 0	+51 0	+76 0	+102 0	+127 0
Radial Runout K _{ia} , K _{ea}	51	51	51	76	76	76
ToleranceClass AFBNDeviation Δ_{Ds}	+25	+25	+51	+76	+102	+127
	0	0	0	0	0	0
Radial Runout K _{ia} , K _{ea}	38	38	38	51		
Tolerance Class AFB	MA 3					
Deviation Δ_{Ds}	+13 0	+13 0	+25 0	+38 0	+51 0	+76 0
Radial Runout K _{ia} , K _{ea}	8	8	18	51	76	76

Tolerance Class AFBMA 0

Deviation	Δ_{Ds}	+13 0	+13 0	+25 0	+38 0	+51 0	+76 0
Radial Runout	K _{ia} , K _{ea}	4	4				

7. Dimensional and Running Accuracy of Bearings

Table 7-5 Tolerances of Thrust Ball Bearings(One Way Flat Washer Type)

Shaft Washer

	Dimer	nsion(Uni	t:mm)										
Nominal Bore Over	18	18	30	50	80	120	180	250	315	400	500	630	800	1000
Diameter Up to		30	50	80	120	180	250	315	400	500	630	800	1000	1250

Tolerance Class AFBMA 0

Tolerance(Unit:	m)
-----------------	----

Deviation	$\Delta_{\rm dmp}$	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V _{dp}	6	8	9	11	15	19	23	26	30	34	38			
Thickness Variation	S _i	10	10	10	10	15	15	20	25	30	30	35	40	45	50

Tolerance Class AFBMA P6

Deviation	$\Delta_{\rm dmp}$	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V _{dp}	6	8	9	11	15	19	23	26	30	34	38			
Thickness Variation	S _i	5	5	6	7	8	9	10	13	15	18	21	25	30	35

Tolerance Class AFBMA P5

Deviation	$\Delta_{\rm dmp}$	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V _{dp}	6	8	9	11	15	19	23	26	30	34	38			
Thickness Variation	Si	3	3	3	4	4	5	5	7	7	9	11	13	15	18

Tolerance Class AFBMA P4

Deviation	$\Delta_{\rm dmp}$	0 -7	0 -8	0 -10	0 -12	0 -15	0 -18	0 -22	0 -25	0 -30	0 -35	0 -40	0 -50	
Variation	V_{dp}	5	6	8	9	11	14	17	19	23	26	30		
Thickness Variation	S _i	2	2	2	3	3	4	4	5	5	6	7	8	

High

	Dimension(Unit:mm)														
Nominal Bore Diameter	Over Up to	30	30 50	50 80	80 120	120 180	180 250	250 315	315 400						
Tolerance Class AFBMA 0P4															
		Tolerar	nce(Unit	: m)											
Deviation	$\Delta_{\rm Hs}$	0 -75	0 -100	0 -125	0 -150	0 -175	0 -200	0 -225	0 -300						

Housing Washer

		Dimens	sion(Uni [.]	t:mm))										
Nominal outside Diameter	Over Up to	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500	500 630	630 800	800 1000	1000 1250
Tolerance Cla	Folerance Class AFBMA 0														
	Tolerance(Unit: m)														
Deviation	$\Delta_{\rm Dmp}$	0 –11	0 -13	0 -16	0 -19	0 -22	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V_{Dp}	8	10	12	14	17	19	23	26	30	34	38	55	75	
Thickness Variation	S _e	Thickr	ness va	ariation	S _e of I	nousing	washe	er is sa	ame as	s that o	of shaf	t wash	er S _i		<u>. </u>

Tolerance Class AFBMA P6

Deviation	Δ_{Dmp}	0 -11	0 -13	0 -16	0 -19	0 -22	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V _{Dp}	8	10	12	14	17	19	23	26	30	34	38	55	75	
	6	T 1			C						C C		C		

Thickness Variation S_e Thickness variation S_e of housing washer is same as that of shaft washer S_i

Tolerance Class AFBMA P5

Deviation	$\Delta_{\rm Dmp}$	0 -11	0 -13	0 -16	0 -19	0 -22	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V_{Dp}	8	10	12	14	17	19	23	26	30	34	38	55	75	
Thislusses \/suistion	c	Thiola	nickness veriation S of housing washer is some as that of shaft weeker S												

Thickness Variation S_e | Thickness variation S_e of housing washer is same as that of shaft washer S_i

Tolerance Class AFBMA P4

Deviation Δ	Dmp	0 -7	0 -8	0 -9	0 –11	0 -13	0 –15	0 -20	0 -25	0 -28	0 -33	0 -38	0 -45	
Variation V	/ _{Dp}	5	6	7	8	10	11	15	19	21	25	29	34	

Thickness Variation S_e Thickness variation S_e of housing washer is same as that of shaft washer S_i

7. Dimensional and Running Accuracy of Bearings

Table 7-6 Tolerances of Chamfer Dimensions	

Code

r ₁ , r ₃	Ra	ad	lia	I	Chai	mfe	r	Dimer	nsion
	-			_		-	_		

r_2, r_4 Axial	Chamfer	Dimension
------------------	---------	-----------

r _{min} *)	Min, Chamfer Dimension
	$\mathbf{r}_{1\min}, \mathbf{r}_{2\min}, \mathbf{r}_{3\min}, \mathbf{r}_{4\min}$
	Max, Radial Chamfer Dimension
r_{2max}, r_{4max}	Min, Axial Chamfer Dimension

Chamfer Dimension of Radial Bearings(Except Tapered Roller Bearings)

r _{min}		Unit : 1	mm 0.15	0.2	0.3		0.6		1		1.1		1	1.5		
Nominal Bore Diameter d	Over up to				40	40	40	40	50	50	120) 12		120	120	
r _{1max}		0.2	0.3	0.5	0.6	0.8	1	1.3	1.5	1.9	2	2.	5 2	2.3	3	
r _{2max}		0.4	0.6	0.8	1	1	2	2	3	3	3.5	4		1	5	
Chamfer Dimensions Inner Ring	s of Ta			Bea	rings											
r _{min}		Unit : 1 0.3	1	0.6	1	1	1	1.5			2	1				
Nominal Bore Diameter d	Over up to	40	40	40	40	50	50	120	120 250	250	120) 12 25		250		
r _{1max}		0.7	0.9	1.1	1.3	1.6	1.9	2.3	2.8	3.5	2.8	3.	5 4	1		
r _{2max}		1.4	1.6	1.7	2	2.5	3	3	3.5	4	4	4.	5 5	5		
Outer Ring																
r _{min}		Unit : 1	mm	0.6		1		1.5			2					
Nominal Outside Diameter ${f D}$	Over up to	40	40	40	40	50	50	120	120 250	250	120) 12		250		
r _{3max}		0.7	0.9	1.1	1.3	1.6	1.9	2.3	2.8	3.5	2.8	3.	5 4	1		
r _{4max}		1.4	1.6	1.7	2	2.5	3	3	3.5	4	4	4.	5 5	5		
Chamfer Dimension of Thrust Bearings																
r _{min} Unit : m	m 0.15 0.	2 0.3	0.6	1	1.1	1.5 2	2.	1 3	4	5	6	7.5	9.5	12	15	19
r _{1max} . r _{2max} 0.2	0.3 0.	5 0.8	1.5	2.2	2.7	3.5 4	4.	5 5.5	6.5	8	10	12.5	15	18	21	25

*) The Min, chamfer dimensions in accordance with ISO 582 and KS B 2013 are listed in the Dimension Tables The dimensions of fillet radius of shaft and housing are determined by using these values.

Radia	al Bea	rings				Таре	ered F	Roller	Bear	rings		Thr	ust B								
	-	r _{2max}	_				-	r _{4max}	-						nax 2						
r _{1max}	_		- nin			r _{3ma}	- x		— nin_			r ₁ ,	nax		r _{min}						
												···_ ד									
				r		1				۲ ۲		4	- 			<i>.</i>					
1	r ₁ '' ^{mir}	וי	1	r <u>1max</u> ∫min ↓	< •		r ₃ '' ^m	"" [\		r _{min}	1max		r ₁	r _{min}		//////r	Imax				
				<u>≡</u> ¶={-	1			E			=┦─┦					' min	-1-1				
			min	$ r_1^{I}$	1		Ţ		r _{mi}	in L	r_1				r _{min}		r ¹				
D	d		r ₂ _	r _{2max}		D	d		r _{2_}	r _{2n}		Dg			d _w r₂_→		·				
-1	- 1		╼┥	Zmax		-1	- 1		-	2n	nax_	g			- WI	r _{2m}	<u>nax</u>				
2			2.1		2.5			3		4	5	6	7.5	9.5	12	15	19				
2	00	220	2.1	200	2.5	100	200	3	200		5	0	7.5	9.5	12	15	19				
80	80 220	220	280	280	100	100 280	280	280	280												
3	3.5	3.8	4	4.5	3.8	4.5	5	5	5.5	6.5	8	10	12.5	15	18	21	25				
4.5	5	6	6.5	7	6	6	7	8	8	9	10	13	17	19	24	30	38				
2.5			3				4				5		6								
	120	250		120	250	400	-	120	250) 400		180		180							
120	250	230	120	250	400	400	120	250	400		180	100	180								
3.5	4	4.5	4	4.5	5	5.5	5	5.5	6	6.5	6.5	7.5	7.5	9							
 5	5.5	6	5.5	6.5	7	7.5	7	7.5	8	8.5	8	9	10	+ 11							
2.5		I	3			4 5				5	5 6										
120	120 250	250	120	120 250	250 400	400	120	120 250	250 400) 400	180	180	180	180							
 3.5	4	4.5	4	4.5	5	5.5	5	5.5	6	6.5	6.5	7.5	7.5	9							
5	5.5	6	5.5	6.5 ^I	7	7.5	7	7.5	8	8.5	8	9	10	' 11							
Cham	nfer D	imens	ions c	of Incl	h Ser	ies Ta	aperec	Roll	er B	earings	(ISC) 1123	3)								
Inner	Ring								0	uter Rin	ıg										
Nominal	Bore Diam	neter D	Over	Unit :	mm 101	.6			No	ominal Outsid	le Diamete	er D	ا) Dver	Init : m	m 101.6	168.3	266.7				
			Up to		101		4							01.6	168.3	266.7	355.6				
r _{min} (Re	efer to t	he Dime	ension Ta	ables)					r _m	_{nin} (Refer	to the D)imensio									
				lolera	ance : m				_						e:mm						
r _{1max}				r _{min} +0.38	8 r _{min} +0.5	51 r _{mi} +0	n .64		r ₃	max			r +	^{min} -0.58	r _{min} +0.64	r _{min} +0.84	r _{min} +1.7				
r _{2max}				r _{min} +0.89	9 +1.2	27 +1	ⁿ .78		r ₄	max			r	^{min} ∙1.07	r _{min} +1.17	r _{min} +1.35	r _{min} +1.7				
				,																	

8. Fits

8. Fits

8-1 Importance of Correct Fits

For bearings to serve their function well, both shaft fit of inner ring and housing fit of outer ring have to be appropriate for their specific use.

Therefore, fitting is as important as selecting an appropriate bearing, and improper fitting will shorten the bearing life.

Common symptoms caused by improper fitting are creeping, rupture of rings, and indentation on raceway at ball pitch intervals by rolling element, etc.

Creeping usually happens when bearing is mounted on the shaft with almost no interference, causing the inner/outer rings to move relatively in circumferential direction against the shaft or housing, which generates excessive heat or wornout, and leaves scratches on fitted surface.

If this happens, the peeled-off metal particles may enter the inside of the bearing. This may shorten the bearing life.

When interference is excessively large, rings could even crack in circumferential direction due to large hoop stress, and narrowing of bearing clearance generates excessive stress between rolling element and ring, which, in return, may leave the indentation marks on the rings at ball pitch intervals.

The following aspects should be taken into account when selecting the fit.

- The bearing rings should be well supported on their circumference, so that the load carrying capacity of the bearing is fully utilized.
- The inner/outer rings should not move on their mating parts, otherwise seats will be damaged.
- One of the floating bearing rings must be able to accomodate length variations of shaft and housing, which means it is axially adjustable.
 (Except the bearings of split type, of which inner/outer rings are freely, axially displaceable.)
- High loads, especially shock loads, require a larger interference and tighter tolerances.

- The radial clearance changes with tight fits and temperature gradient between inner and outer rings. Therefore, this should be taken into consideration when selecting the radial clearance group.
- Mounting and dismounting of bearings should be easy and convenient.

8-2 Selection of Fits

The basic factor in fit selection for bearings is whether the direction of applied load is rotating or stationary in relation to the bearing ring.

If an applied load is rotating in relation to its ring, then it is called a circumferential load, and if it is constantly directed at the same point, a point load.

For some machines with not so simple operating conditions, it will be difficult to determine whether it is a circumferential or point load.

For example, for a machine with fast rotating element, a certain load is applied to the rolling element by its weight load. This, in return, causes generation of the rotating load, because its rolling element is dynamically unbalanced.

When an operating load of a machine is applied to this combined load, its directions vary even more widely, which is why the fits have to be carefully selected.

Fitting conditions for each kind of applied loads are shown in Table 8-1.

Table 8-1 Proper Fits for Various Loads										
Bearing Motions	Examples	Illustration	Loading Conditions	Fits						
Rotating inner Ring Stationary Outer Ring Constant Direction	Weight suspended by the shaft Driving wheel of automotive vehicles	Weight	Circumferential load on inner ring	Inner ring Tight fit mandatory						
Fixed Inner Ring Rotating Outer Ring Directions of Load Rotating with Outer Ring	imbalance load applied to outer ring	Imbalance load	Point load on outer ring	outer ring Slide fit permissible						
Bearing Motions	Examples	Illustration	Loading a Conditions	Fits						

Bearing Motions	Examples	Illustration	Loading a Conditions	Fits
Stationary Inner Ring	Non driven wheel			
Rotating Outer Ring	Non-driven wheel of automotive vehicles Conveyor		Point load on Inner Ring	Inner ring slide fit Permissble
Constant Direction Load	idler	Weight		
Rotating Inner Ring				
Stationary Outer Ring	Centrifuge Vibrating screen		Circumferential Load on outer ring	Outer ring Tight fit mandatory
Direction of Load Rotating with Outer Ring		Imbalance Load		
				•

8. Fits

8-3 Calculation of Fitting Tolerances

When selecting the fitting tolerances, the minimum interference has to be determined first, considering varying fits depending on the kinds of applied loads to bearing and the temperature gradient of mounted parts, the interference variations caused by surface roughness when fitting, and the effect of centrifugal force generated by fast rotation, etc.

Furthermore, the hoop stress applied to the inner/outer rings of bearing has to be considered to prevent the bearing from being damaged.

8-3-1 Minimum Required Interference

(1) Influences by Load

When radial load is applied to bearing, clearance can be created in some parts of the unloaded zone because of the reduced interference.

The minimum amount of interference, which will be used for prevention of clearance generated by the loads, can be obtained by using the following Equations.

- In case of $F_r \leq 0.2C_{0r}$

$$\Delta_{dF} = 0.08 \sqrt{\frac{d \cdot F_r}{B}}$$
 (Equation 8-1)

- In case of $\,F_r > 0.2 C_{0r}$

٨	0.02	Fr	(Equation 8-2)
∐dF	0.02	В	

Where,

 Δ_{dF} : Reduction in inner ring interference by the load

	1000	[]
d	: Bearing bore diameter	[mm]

- B : Width of bearing inner ring [mm]
- F_r : Radial load applied to bearing [N]
- C_{0r} : Bearing's static load rating [N]

(2) Influences by Temperature

When bearing becomes hotter during operation, the amount of interference of fitting surface of bearing rings can be either increased or decreased. The variations of interference caused by temperature rises of fitting surface, bearing, or surrounding parts can be calculated by using the Equations below.

$\Delta_{\rm dT}$	(_{Bi} -	$_{\rm S})\Delta_{\rm TS}\cdot {\rm d}$	(Equation 8-3)
Δ_{DT}	(_H -	$_{\rm Bo})\Delta_{\rm TH}\cdot {\rm D}$	(Equation 8-4)

Where,

- Δ_{dT} : Interference variation by temperature difference between bearing's inner ring and shaft [m]
- $\Delta_{\rm DT}$: Interference variation by temperature difference between bearing's outer ring and housing. [m]
- Δ_{TS} : Temperature difference between seated surface area of inner ring and shaft, and the surrounding area of housing. [°C]
- Δ_{TH} : Temperature difference between seated surface area of outer ring and housing, and the surrounding area of housing. [°C]
 - Bi : Linear expansion coefficient of inner ring material. [1/°C]
- s : Linear expansion coefficient of shaft material [1/°C]
- H : Linear expansion coefficient of housing material [1/°C]
- Bo : Linear expansion coefficient of outer ring material [1/°C]
- d : Bearing bore diameter [mm]
- D : Bearing outer diameter [mm]

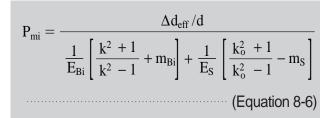
For practical use, when bearing becomes hotter due to its rotation, the minimum interference required for proper fits of inner ring and shaft can be obtained, by using the Equation below.

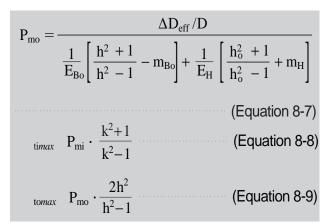
$$\Delta_{dT} \quad 0.0015 \cdot d \cdot \Delta_{T} \quad (\text{Equation 8-5})$$

Where,

- Δ_{dT} : Reduction in interference by temperature difference [m]
- $\label{eq:dt} \Delta_T \quad : \mbox{Temperature difference between bearing} \\ \mbox{inside and the surrounding housing} \quad [^{\circ}C\,]$
- (3) Influences by Surface Roughness and Plastic Deformation

Plastic deformation occurs in the fitted area because of the mounting force and interference, and this is why the amount of residual interference measured after fitting is smaller than the theoretical value calculated by presuming various fitting conditions. And the magnitude of variation depends on the degree of roughness of both fitted surfaces. The reductions in interference in relation to surface roughness are shown in Table 8-2.


Table 8-2 Interference Reduction by Fabrication Precision									
Fabrication Precision	Surface Roughness R _a [m]	Reduction of interference [m]							
Super Precision Grinding	0.8	≈ 1.0							
Precision Grinding	2.0	≈2.5							
Super Precision Lathe-Turning	4.0	≈ 5.0							
Precision Lathe-Turning	6.0	≈ 7.0							


(4) Influences by Centrifugal Force

When bearing is rotating at a high speed, the interference of inner ring and shaft can vary due to the radial expansion of inner ring. However, it is recommended and practical to take the centrifugal force restrictively into consideration only when the bearing is operated above its permissible speed

8-3-2 Maximum Interference

The fitting interference causes the mounting seats of surrounding structures, such as bearing, its shaft, and housing, not only to expand or contract, but also to generate the surface stress. The surface stress and the max circumferential stress generated in the mounting seats by fitting interference can be calculated by using the Equations below, and for the heat-treated bearing steel, the material tensile strength generally lies in the range of 1570 \sim 1960MPa, so it is safe to set up the fitting conditions, so that the max. circumferential stress generated by fitting interference does not exceed 130MPa.

Where,

$\Delta d_{eff}, \Delta D_{eff}$: Effective interference of fitting	
surface of inner/outer ring.	[mm]
d : Shaft diameter or bearing bore diame	ter
	[mm]
d_{Bi} : Mean outer diameter of bearing inner	ring
	[mm]
D _S : Outer diameter of hollow shaft	[mm]
D : Inner diameter of housing or bearing	
outer diameter	[mm]
$d_{\rm H}$: Outer diameter of housing	[mm]
D_{Bo} : Mean inner diameter of bearing outer	ring
	[mm]
E_{Bi}, E_{Bo} : Elastic modulus of bearing	
inner/outer rings	V/mm ²]
E_{s}, E_{H} : Elastic modulus of materials	
of shaft and housing [N	V/mm ²]

8. Fits

- $m_{Bi},\,m_{Bo}$: Poisson's ratio of Bearing inner/outer rings
- $m_S,\,m_H~~$: Poisson' s ratio of shaft and housing
- $k \quad : \quad d_{Bi} \mathop{/} d$
- k_o : d / D_S
- $h \quad : \quad D \ / \ D_{Bo}$
- h_o : d_H / D
- $\label{eq:pmi} \begin{array}{ll} P_{mi} : \text{Surface stress of mounted seat generated} \\ \text{by fitting interference between bearing inner} \\ \text{ring and shaft.} & [N/mm^2] \end{array}$
- $P_{mo}: \mbox{Surface stress of mounted seat generated} \\ \mbox{by fitting interference between bearing outer} \\ \mbox{ring and housing.} \qquad [N/mm^2] \label{eq:pmo}$
- timax : Max. circumferential stress of the mounted seats generated by fitting interferen-

ce between bearing inner ring and shaft. $\label{eq:nonlinear} [N/mm^2]$

 $_{tomax}$: Max. circumferential stress of the mounted seats generated by fitting interference between bearing outer ring and housing. [N/mm²]

Table 8-3 Recommended Shaft Tolerances for Radial Bearings(Cylindrical Bore D	
	iomotor)
Table 6-3 Recommended Shall Tolerances for Radial Deannos(Cylinghical Dore D	lameter

Type of Load	Bearing Type	Shaft Diameter	Axial Displacement Ability and Load Magnitude	Tolerances
Point Load on Inner Ring	Ball, Roller, and Needle Roller Bearings	All sizes	Floating bearings with sliding inner ring	g6 (g5)
			Angular contact ball bearings and tapered roller bearings with adjustable preload of inner ring	h6 (j6)
Circumferential	Ball Bearings	Up to 40mm	Normal load	j6 (j5)
Load on Inner Ring		Up to 100mm	Low load	j6 (j5)
or Indeterminate			Normal and high load	k6 (k5)
Load		Up to 200mm	Low load	k6 (k5)
			Normal and high load	m6 (m5)
		Over 200mm	Normal load	m6 (m5)
			High load Shocks	n6 (n5)
	Roller and	Up to 60mm	Low load	j6 (j5)
	Needle Roller		Normal and high load	k6 (k5)
	Bearings	Up to 200mm	Low load	k6 (k5)
			Normal load	m6 (m5)
			High load	n6 (n5)
		Up to 500mm	Normal load	m6 (n6)
			High load Shocks	p6
		Over 500mm	Normal load	n6 (p6)
			High load	p6

8-4 Recommended Fits

The most generally recommended fitting tolerances of radial bearings are shown in Table 8-3 and 8-4, and in Table 8-5 for deep groove ball bearing with CM clearance, and in Table 8-6 and 8-7 for inch series tapered roller bearings.

Also, in Table 8-8 and 8-9, the interferences for

Type of Load Axial Displacement Ability **Operating Conditions** Tolerances and Load Magnitude Point Load on H7(H6) Floating Side Bearing Closeness of tolerances Outer Ring Easily Adjustable Outer Ring based on required running accuracy. Outer ring generally displaceable, Requires high running accuracy H6(J6) angular contact ball bearings and Requires normal running accuracy H7(J7) tapered roller bearings with adjustment via outer ring. G7 Heat dissipation through shaft Circumferential Load on K6, M6, N6, and P6, when high Low load K7(K6) Outer Ring or running accuracy is required. Normal load shocks M6(M6) Indeterminate Load high load shocks N7(N6) High load, severe impact, N7(P6) thin housing

Table 8-4 Recommended Housing Tolerances for Radial Bearings

Table 8-5 Recommended Fitting Tolerances for Deep Groove Ball Bearings of Clearance Class CM

Bearing Over	g Bore Diameter Up to	Shaft Tolerances	Housing Tolerances
10¹)	18	js5(j5)	H6H7 or
18 30 50 80	30 50 80 100	k5	Js6Js7 (J6J7)
100	120	m5	

¹) Including 10mm

each tolerance class of "KS Class 0" radial bearings and their shaft and housing are shown.

8. Fits

Table 8-6 Recommended Shaft Tolerances of Inch Series Tapered Roller Bearings

AFBMA CLASS 4 AND CLASS 2

Operating Condi	tions	Bearing Bore	e Diameter d	Shaft Tolera	ances	Remarks
		Over	Up to	min	max	
Circumferential Load on Inner Ring	Load on Inner		76.2 304.8 609.6 914.4	+38 +64 +127 +190	+25 +38 +76 +114	For bearings with $d \le 152.4$, the bearings with larger clearance than normal are generally used.
	High Load, Impact Load, High Speed Rotation	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+64 A A +381	+38 +305	The average interference of "A" should be approximately 0.0005d.
Circumferential Load on Outer Ring	High Load, Impact Load, High Speed Rotation	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+64 A A +381	+38 +305	The average interference of "A" should be approximately 0.0005d.
	Normal Load without Impact(When placed apart from ground surface)	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0 0	
	Normal Load without Impact(When it touches the ground surface)	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	0 0 0 0	-13 -25 -51 -76	Axially displaceable inner ring

AFBMA CLASS 3 AND CLASS 0 1)

Operating Conditions		Bearing Bore	e Diameter d	Shaft Tolera	ances	Remarks
		mm Over Up to		m min	max	
Circumferential Main Shaft of Load on Inner Ring		- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0 0 0	
	High Load, Impact Load, High Speed Rotation	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	B B B B		The minimum interference of "B" should be approximately 0.00025d.
Circumferential Load on Outer Ring	Main Shaft of Precision Tools	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0 0	

¹) There are no Class 0 bearings for the ones with bore diameter(d) larger than 304.8mm.

Table 8-7 Recommended Housing Tolerances of Inch Series Tapered Roller Bearings

AFBMA CLASS 4 AND CLASS 2

Operating Condit	ions		e Diameter D	Housing Tol	erances	Remarks
		mm Over	Up to	m min	max	
Circumferen- tial Load on Inner Ring	When used in Floating or Locating Sides	- 76.2 127 304.8 609.6	76.2 127 304.8 609.6 914.4	+76 +76 +76 +152 +229	+51 +51 +51 +102 +152	Axially displaceable outer ring
	Outer ring can be displaced axially.	- 76.2 127 304.8 609.6	76.2 127 304.8 609.6 914.4	+25 +25 +51 +76 +127	0 0 +25 +51	Axially displaceable outer ring
	Outer ring can not be displaced axially.	- 76.2 127 304.8 609.6	76.2 127 304.8 609.6 914.4	-13 -25 -25 -25 -25 -25	-38 -51 -51 -76 -102	Axially non-displaceable outer ring
Circumfere- ntial Load on Outer Ring	Outer ring can not be displaced axially.	- 76.2 127 304.8 609.6	76.2 127 304.8 609.6 914.4	-13 -25 -25 -25 -25 -25	-38 -51 -51 -76 -102	Axially non-displaceable outer ring

AFBMA CLASS 3 AND CLASS 0 1)

Operating Condit	ions	Bearing Bore	e Diameter D	Housing Tolerances m		Remarks
		Over	Up to	min	max	
Circumfere- ntial Load on Inner Ring	Used in Floating Side	- 152.4 304.8 609.6	152.4 304.8 609.6 914.4	+38 +38 +64 +89	+25 +25 +38 +51	Axially displaceable outer ring
	Used in Locating Side	- 152.4 304.8 609.6	152.4 304.8 609.6 914.4	+25 +25 +51 +76	+13 +13 +25 +38	Axially displaceable outer ring
	Outer ring can be displaced axially.	- 152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +25 +25 +38	0 0 0 0	Axially displaceable outer ring
	Outer ring can not be displaced axially.	- 152.4 304.8 609.6	152.4 304.8 609.6 914.4	0 0 0 0	-13 -25 -25 -38	Axially non-displaceable outer ring
Circumfere- ntial Load on Outer Ring	Outer ring can not be displaced axially.	- 76.2 152.4 304.8 609.6	76.2 152.4 304.8 609.6 914.4	-13 -13 -13 -13 -13 -13	-25 -25 -38 -38 -51	Axially non-displaceable outer ring

¹) There are no Class 0 bearings for the ones with outer diameter(D) larger than 304.8mm.

8. Fits

Bearing Bore	e Diameter	Mean Bore Di	ameter Deviation	g5	g6	h5	h6	j5	js5	j6
d		Δ_{dmp}^{1})		Bearing Shaft						
mm Over	Up to	mm Upper	Lower							
3	6	0	-8	4T9L	4T12L	8T5L	8T8L	11T2L	10.5T2.5L	14T2L
6	10	0	-8	3T11L	3T14L	8T6L	8T9L	12T2L	11T3L	15T2L
10	18	0	-8	2T14L	2T17L	8T8L	8T11L	13T3L	12T4L	16T3L
18	30	0	-10	3T16L	3T20L	10T9L	10T13L	15T4L	14.5T4.5L	19T4L
30	50	0	-12	3T20L	3T25L	12T11L	12T16L	18T5L	17.5T5.5L	23T5L
50	80	0	-15	5T23L	5T29L	15T13L	15T19L	21T7L	21.5T6.5L	27T7L
80	120	0	-20	8T27L	8T34L	20T15L	20T22L	26T9L	27.5T7.5L	33T9L
120 140 160	140 160 180	0	-25	11T32L	11T39L	25T18L	25T25L	32T11L	34T9L	39T11L
180 200 225	200 225 250	0	-30	15T35L	15T44L	30T20L	30T29L	37T13L	40T10L	46T13L
250 280	280 315	0	-35	18T40L	18T49L	35T23L	35T32L	42T16L	46.5T11.5L	51T16L
315 355	355 400	0	-40	22T43L	22T54L	40T25L	40T36L	47T18L	52.5T12.5L	58T18L
400 450	450 500	0	-45	25T47L	25T60L	45T27L	45T40L	52T20L	58.5T13.5L	65T20L

Table 8-8 Comparisons of Fitting Interferences of "KS Class 0" Radial Bearings and Shafts

¹) The tolerances, for the tapered roller bearings with 30mm of bearing bore diameter(d) or lower, are different from the values shown in this Table.

Table 8-9 Comparisons of Fitting Interferences of "KS Class O" Radial Bearings and Housings

Bearing Outer	Diameter	Mean outer Di	ameter Deviation	G7	H6	H7	J6	J7	Js7	K6
D		$\Delta_{\rm Dmp}$ ¹)		Housing Bearing						
mm Over	Up to	mm Upper	Lower							
6	10	0	-8	5L28L	017L	023L	4T13L	7T16L	7.5T15.5L	7T10L
10	18	0	-8	6L32L	019L	026L	5T14L	8T18L	9T17L	9T10L
18	30	0	-9	7L37L	022L	030L	5T17L	9T21L	10.5T19.5L	11T11L
30	50	0	-11	9L45L	027L	036L	6T21L	11T25L	12.5T23.5L	13T14L
50	80	0	-13	10L53L	032L	043L	6T26L	12T31L	15T28L	15T17L
80	120	0	-15	12L62L	037L	050L	6T31L	13T37L	17.5T32.5L	18T19L
120	150	0	-18	14L72L	043L	058L	7T36L	14T44L	20T38L	21T22L
150	180	0	-25	14L79L	050L	065L	7T43L	14T51L	20T45L	21T29L
180	250	0	-30	15L91L	059L	076L	7T52L	16T60L	23T53L	24T35L
250	315	0	-35	17L104L	067L	087L	7T60L	16T71L	26T61L	27T40L
315	400	0	-40	18L115L	076L	097L	7T69L	18T79L	28.5T68.5L	29T47L
400	500	0	-45	20L128L	085L	0108L	7T78L	20T88L	31.5T76.5L	32T53L

¹) The tolerances, for the tapered roller bearings with 150mm of bearing outer diameter(D) or lower, are different from the values shown in this Table.

3	k5 Bearing Shaft			m6 Bearing Shaft	n6	· ·	r6 Bearing Shaft
Bearing Shaft		Bearing Shaft			Bearing Shaft	Bearing Shaft	
12T4L	14T1T	17T1T	17T4T	20T4T	24T8T	28T12T	
12.5T4.5L	15T1T	18T1T	20T6T	23T6T	27T10T	32T15T	
13.5T5.5L	17T1T	20T1T	23T7T	26T7T	31T12T	37T18T	
16.5T6.5L	21T2T	25T2T	27T8T	31T8T	38T15T	45T22T	
20T8L	25T2T	30T2T	32T9T	37T9T	45T17T	54T26T	
24.5T9.5L	30T2T	36T2T	39T11T	45T11T	54T20T	66T32T	
31T11L	38T3T	45T3T	48T13T	55T13T	65T23T	79T37T	
37.5T12.5L	46T3T	53T3T	58T15T	65T15T	77T27T	93T43T	113T63T 115T65T 118T68T
44.5T14.5L	54T4T	63T4T	67T17T	76T17T	90T31T	109T50T	136T77T 139T80T 143T84T
51T16L	62T4T	71T4T	78T20T	87T20T	101T34T	123T56T	161T94T 165T98T
58T18L	69T4T	80T4T	86T21T	97T21T	113T37T	138T62T	184T108T 190T114T
65T20L	77T5T	90T4T	95T23T	108T23T	125T40T	153T68T	211T126T 217T132T

K7	M7	N7	P7
Housing Bearing	Housing Bearing	Housing Bearing	Housing Bearing
10T13L	15T8L	19T4L	24T1T
12T14L	18T8L	23T3L	29T3T
15T15L	21T9L	28T2L	35T5T
18T18L	25T11L	33T3L	42T6T
21T22L	30T13L	39T4L	51T8T
25T25L	35T15L	45T5L	59T9T
 28T30L	40T18L	52T6L	68T10T
28T37L	40T25L	52T13L	68T3T

46T...30L

52T...35L

57T...40L

33T...43L

36T...51L

40T...57L

45T...63L |63T...45L |80T...28L |108T...0 Note: Fitting code "L" means the clearance and "t" means the interference.

79T...3T

88T...1T

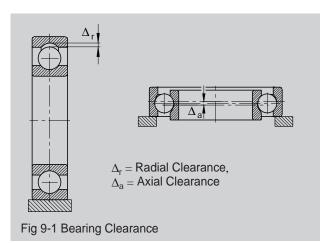
98T...1T

60T...16L

66T...21L

73T...24L

9. Bearing Clearance


9. Bearing Clearance

The internal clearance of bearing is the measurement by which one ring can be displaced in relation to the other one either in the radial direction or in the axial direction from one end position to the other, and these clearances are specified in the KS B 2102. The internal clearances of bearing are the relative amount of displacement of either inner or outer ring, and they can be divided into two groups, namely axial or radial clearances, depending on their directions, as shown in Table 9-1.

A bearing in operation with an inappropriate internal clearance reduces its life, and generates excessive vibration and heat.

Theoretically, the operating clearances of small minus values allows the life to be extended, but it is practically difficuit to achieve such values. In other words, because the internal clearances vary depending on mounting methods, different heat expansion due to temperature gradient, or deformation by loads, etc., it is imperative to precisely

Table 0.1 Padial Internal Clearance Specifications of Deep Greeve Ball Rearing

analyze the operating conditions to select appropriate amount of clearance for the bearings.

9-1 Selection of Bearing Internal Clearance

Bearing clearances can be classified into the Normal Clearance Group appropriate for regular operating conditions, smaller Group C2, and larger Groups, C3, C4, and C5. Also, there is a Group CM, which has been specially and empirically created

Table 9-1 Radial Internal Clearance Specifications of Deep Groove Ball Bearings																	
		Unit:	mm														
Nominal Bore Diameter	Over up to	6 10	10 18	18 24	24 30	30 40	40 50	50 65	65 80	80 100	100 120	120 140	140 160	160 180	180 200	200 225	225 250
		Beari	ng Cle	arance	: m (0.0011	nm)										
C2	Min Max	0 7	0 9	0 10	1 11	1 11	1 11	1 15	1 15	1 18	2 20	2 23	2 23	2 25	2 30	4 32	4 35
CM (For electric motors)	Min Max	4 11	4 11	5 12	5 12	9 17	9 17	12 22	12 22	18 30	18 30	24 38	24 38	-	-	-	-
Normal Group	Min Max	2 13	3 18	5 20	5 20	6 20	6 23	8 28	10 30	12 36	15 41	18 48	18 53	20 61	25 71	25 80	30 90
C3	Min Max	8 23	11 25	13 28	13 28	15 33	18 36	23 43	25 51	30 58	36 66	41 81	46 91	53 102	63 117	74 134	84 149
C4	Min Max	14 29	18 33	20 36	23 41	28 46	30 51	38 61	46 71	53 84	61 97	71 114	81 130	91 147	107 163	124 189	144 214
C5	Min Max	20 37	25 45	28 48	30 53	40 64	45 73	55 90	65 105	75 120	90 140	105 160	120 180	135 200	150 230	- -	-
Table 9-2 Radial Inner Clearance Specifications of Extra Small Bore Deep Groove Ball Bearings(With bore diameters smaller than 10mm)																	
Unit : mm Clearance Groups MC1 MC2 MC3 MC4 MC5 MC6																	
		Beari	ng Cle	arance	: m(0).001n	nm)										
Clearance	Min Max	0 7		3 8	5 10		8 13		13 20	20 28							

by KBC for motor application that require noise control, and this Group CM has a very small range of radial clearances as well as the small clearance values.

For the miniature bearings, the Clearance Groups of MC1 to MC6 are provided, and the larger the suffix number is, the bigger the clearances are. And MC3 is the Normal Clearance Group for them.

The radial clearance of deep groove ball bearings are shown in Table 9-1 and 9-2.

9-2 Bearing Clearance Variations

A distinction can be drawn between the bearing clearance before mounting and the clearance of mounted bearing under operating temperature (Operating clearance). In order to guide the shaft properly, the operating clearance should be as small as possible.

The clearance of the unmounted bearing gets reduced when mounted due to tight fits of the bearing rings. Furthermore, the radial clearance is also reduced during operation, as inner ring becomes warmer than outer ring, which is usually the case. Therefore, in general, the clearance of unmounted bearing should be larger than the operating clearance.

9-2-1 Reduction of the Radial Clearance by Means of Temperature Differences

$\Delta_{\rm Grt} ~\Delta_{\rm t} \cdot ~\cdot ({\rm d+D})/2$ (Eq	uation 9-1)			
Where,				
Δ_{Grt} : Reduction of radial clearance	[mm]			
Δ_t : Temperature difference between	1			
inner and outer rings	[°C]			
: Linear thermal expansion coefficient				
of bearing steel [1/°C]				
d : Bearing bore diameter	[mm]			
D : Bearing outside diameter	[mm]			
The radial clearance can vary a great deal, if the				

I he radial clearance can vary a great deal, if the bearing is exposed to input or dissipation of heat. A

smaller radial clearance results from heat transfer through the shaft or heat dissipation through the housing. On the other hand, a larger radial clearance results from heat transfer through the housing or heat dissipation through the shaft. Rapid run-up of bearings to operating speed results in greater temperature gradient between the bearing rings than is the case in a steady state. So, either the bearings should be run up slowly or a larger radial clearance than theoretically necessary for the bearings when under operating temperatures should be selected in order to prevent detrimental preload and bearing deformation.

9-2-2 Reduction of Radial Clearance by Means of Tight Fits

Although the radial clearances vary depending on the materials of bearing seat, temperature, or wall thickness, etc., the expansion of the inner ring raceway and the contraction of the outer ring raceway can be assumed to be approximately 80% and 70% of the interference, respectively, provided that solid steel shaft and steel housing with normal wall thickness are used.

Contact KBC for more exact calculations under various conditions, which can be obtained by using KBC's advanced computer software.

$\Delta_{\rm fit}$	$(0.7 \sim 0.8) \cdot \Delta d_{eff}$	(Equation 9-2)
$\Delta_{\rm fit}$	$(0.7 \sim 0.8) \cdot \Delta d_{eff}$	(Equation 9-2)

Where,

$\Delta_{\rm fit}$: Reduction of radial clearance	[mm]
Δd_{ef}	: Effective interference	[mm]

10. Bearing Preload

10. Bearing Preload

Bearing is usually selected to have a small clearance during normal operation, but some bearings are selected to have a negative clearance, when mounted, to generate the internal stress, so that various effects can be achieved.

This is so-called preload method, which can be applied only to the rolling bearings, not sliding ones.

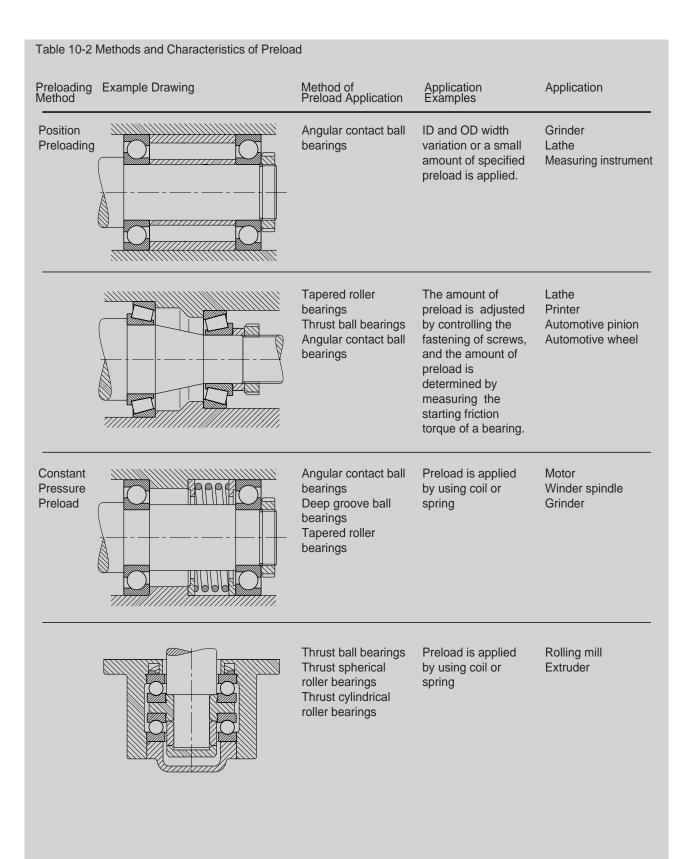
10-1 Purpose of Preload

The objectives and application examples of preloading are shown in the Table 10-1.

10-2 Methods and Characteristics of Preload

There are two main types of preload, namely, a position preload and a constant pressure preload.

Position preload can be further divided into several sub-groups, namely, a method tightly fitting a pair of preloaded bearings, a method adjusting the dimensions of a spacer or seam to obtain the proper preload without using a matched pair of bearings, and a method employing the direct control of proper degree of fastening force to apply the appropriate amount of preload by measuring the starting friction moment without using spacer or seam.


These kinds of position preload allow a bearing to keep the constant relative position regardless of its operation status.

The constant pressure preload is a method that uses any of coil spring, plate spring, or board spring to apply a proper amount of preload to bearing. Because the rigidity of preload springs is generally and sufficiently smaller than that of bearing, the preloads are kept almost constant although bearing's relative positions vary during operation.

The comparisons between position preload and constant pressure preload are listed below.

- Influence on the increase of bearing rigidity : Constant pressure preload < Position preload
- Variation of bearing rigidity by bearing load : Constant pressure preload > Position preload
- Variation of preload by temperature and load : Constant pressure preload < Position preload

Table 10-1 Preload Purposes and Application Examples					
Preload Purpose	Applications				
To precisely determine the position of a shaft in radial and axial directions, and to increase its rotating precision at the same time.	Precision bearings for position controlling, used for main shaft bearing of machining tools or precision measuring instruments.				
To increase the bearing rigidity	Pinion bearings of main shaft bearing of machining tools or automotive differentials.				
To prevent vibration or abnormal noise generated by trembling shaft.	Bearings for small motors of home appliances and others.				
To prevent false brinelling	Used where vibration is strong. Bearings for motors required to stop frequently and kingpin thrust ball bearings of automotive vehicles.				
To restrict the sliding revolution and sliding rotation of rolling element.	Angular contact ball bearings for high frequency motors or cylindrical roller bearings for jet engines				
To restrict the gyration sliding of rolling element	Ball bearings with contact angles or roller bearings of high speed rotation				
For exact position control of rolling element against the rings.	For a thrust ball bearing or thrust self-aligning roller bea- ring used on the side shaft, or to prevent skidding due to ring's own weight load when stopped.				

10. Bearing Preload

10-3 Preload and Rigidity of Bearing

It is necessary to know the correlations between the applied load and displacement of bearing to find out correlations between preload and rigidity, and to theoretically determine the proper amount of preload.

The correlations between load and displacement, when only axial load is applied to bearing, is easy to analyze, because all rolling elements receive same amount of load. But, when the radial or combined load is applied, it's difficult because of varying load distribution.

Axial displacement against axial load can be calculated as follows.

For ball bearings, the axial displacement, Δ_{t} is

Δ_{a}	c sin	$(Q^2/D_a)^{1/3}$	(Equation 10-1)
--------------	----------	-------------------	-----------------

Where,

Δ_{a} : Axial displacement	[mm]
c : Constant(Refer to Table 10-3)	
: Contact angle	
Q : Weight of rolling element	[kgf]
D _a : Ball diameter	[mm]

٨	0.0006	$Q^{0.9}$	(Equation 10.2)
Δ_{a}	sin	$l_a^{0.8}$	(Equation 10-2)

Where,

l_a : Effective contact length of roller [mm]

Table 10-3 Corelations between f and c							
f	0.51	0.515	0.5175	0.52	0.525	0.53	0.54
c×10 ⁵	176	194	201	207	218	227	242
("f" is the ratio of radius of raceway groove to ball diameter.)							

0	Fa		$uation 10_3$
Q	Zsin	(느Ⴗ	ualion 10-3)

Where,

[kgf]

 F_a : Axial load Z : Number of rolling elements

In case of tapered roller bearings, because their contact angles do not change regardless of the axial loads, the same nominal contact angles as determined in the design can be used. But for ball bearings, the following Equation has to be used to obtain effective contact angles, because their contact angles change depending on the axial loads.

$$\frac{\cos}{\cos}$$
 $_{0}$ $1 + \frac{c}{f_{0} + f_{i} - 1} (Q/D_{a}^{2})^{2/3}$ (Equation 10-4)

In the above Equation, f_o and f_i represent the ratios of raceway radius of outer and inner rings to ball diameter, D_a , and in case of ball bearings, their initial contact angle, $_o$, can be obtained by using the inside residual clearance, Δ_{r} , as follows.

$$\cos \quad _{o} \quad 1+\frac{\Delta_{r}}{2(f_{o}+f_{i}-1)D_{a}} \quad \mbox{(Equation 10-5)}$$

10-4 Evaluation of Preload

As mentioned earlier, various effects can be achieved by applying the preload appropriately, but application of excessive preload can become the causes for excessive heat generation, increased friction moment, and/or reduction of bearing life, etc.

Therefore the amount of preload should be decided after careful analysis of bearing operating conditions and the purpose of preload, and others.

For example, the main purpose of preload for the bearings of main shaft of machining tools is to increase its rigidity, so the amount of preload can be calculated by using the elastic modulus required for bearing in the shaft system. But, in case of machining tools, RPM range of main shaft is generally very wide, which means that good result can be obtained when heavy cutting job is carried out at low speeds, while the light cutting job at high speeds may generate excessive heat.

Also, in case the main purpose is to prevent false brinelling, the exact amount of preload needs be calculated just enough to prohibit the creation of clearance by vibration load, so as to prevent rolling element from being vibrated by outside vibration when shaft is not rotating.

However, for electric motors, it is essential to review whether the heat generation and shortening of bearing life, caused by preload, has some effect on the performances or system life of the electric motor or not.

Therefore, the appropriate amount of preload should be decided only after comprehensive analysis of theoretically calculated values as well as the empirical/experimental data.

10-5 Controlling of Preload

Various preload control methods are shown below.

(1) Control by measuring the starting friction moment of bearing

This method uses the starting friction moment, which is measured by using the co-relations between itself and axial load, so as to control the preload. This method is widely used for tapered roller bearings when they are applied with the preload.

(2) Control by measuring the spring

displacements

This method is used for constant pressure preload. By using the findings of corelations between the load of preload spring and its displacement, preload can be controlled in accordance with the spring displacements.

(3) Control by measuring the axial displacement of bearing

By using the findings of co-relations between the axial load and axial displacements, preload can be controlled in accordance with its axial displacements.

(4) Control by measuring the torque(fastening force) of nut

In case that the preload is applied by using the fastening nut on a matched pair of bearings without using a spacer or seam, if the nut has been sufficiently smoothened and fastened by applying sufficiently strong torque, the fastening force, in other word, the preload, can be applied within a comparatively minor fluctuation, which makes it possible to control the preload. This method is widely used for tapered roller bearings in the automotive vehicles.

11. Design of Surrounding Structure

11. Design of Surrounding Structure

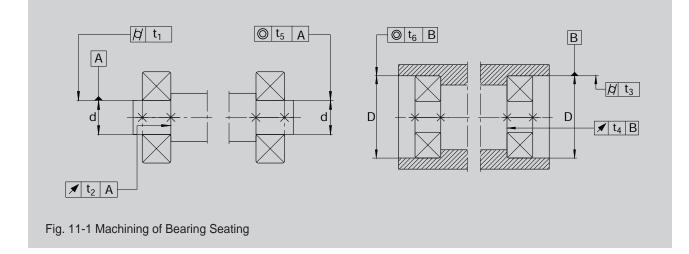
11-1 Precision of Shaft and Housing

The recommended IT Tolerance Classes, required to be observed when machining the mating components based on the Tolerance Classes of bearings, are shown in the Table 11-1, and their values in the Appendix.

In the Table 11-1, the tolerances of cylindricity and shoulder of fitting surfaces in axial direction need to be one IT Class higher than that of their diameter. Form tolerances, t_5 and t_6 , to the shaft or housing seating should be determined only after analyzing the alignment of each bearing. At this time, tilting of shaft and housing caused by elasticity modulus should also be taken into account.

To satisfy the cylindricity, t_1 and t_3 , following values are recommended to be met in the measured area(Width of bearing seating).

Straightness	$0.8 \cdot t_1$ or $0.8 \cdot t_3$
Roundness	$0.8 \cdot t_1$ or $0.8 \cdot t_3$
Parallel	$1.6 \cdot t_1$ or $1.6 \cdot t_3$


The bearings with tapered inner diameter are mounted directly on the tapered shaft, or on adapter or withdrawal sleeves. Decision to apply tight fitting should not be made based on the shaft tolerances, but on the axial insertion magnitude of tapered seating, just like the bearings with cylindrical bore diameter.

The seating tolerances of adapter or withdrawal sleeves could be larger than the diameter tolerances of cylindrical shaft, but form tolerances

Table 11-1 Rec Rou	ommended Ma ighness of Bea		rance and
Bearing	Seating	Machining	Roughness
Tolerance Class		Tolerances	Class
Normal, P6X	Shaft	IT6 (IT5)	N5N7
	Housing	IT7 (IT6)	N6N8
P5	Shaft	IT5	N5N7
	Housing	IT6	N6N8
P4, HW	Shaft	IT4	N4N6
	Housing	IT5	N5N7
P2	Shaft	IT3	N3N5
	Housing	IT4	N4N6

The higher Roughness Class should be applied, when the diameter gets bigger.

Table 11-2 Rou	ighne	ess Cl	asses	Base	d on	ISO	1302	
Roughness Class	N3	N4	N5	N6	N7	N8	N9	N10
	Unit	:µm						
Average Roughness Value ${\sf R}_a$	0.1	0.2	0.4	0.8	1.6	3.2	6.3	12.5
Depth of Roughness $R_z \approx R_t$	1	1.6	2.5	6.3	10	25	40	63

should be smaller than diameter tolerances.

Roughness of bearing seating should be in proportion to its Tolerance Class. The average roughness value, R_a , should not be too large, so that interference reduction may be within its limit.

11-2 Sealing

The seals are used so as to prevent dust, moisture, metal fragments, and other contaminants from entering into bearing, and also to prevent lubricants from being leaked.

The seals have to be able to serve their functions under all operating conditions, and should not produce any abnormal friction, and should not result in any seizure. Also, they have to be easy to mount/dismount and repair/maintain, and also reasonably economical. Therefore, it is necessary to examine the different lubricating methods suitable for each bearing s requirements at the same time when selecting the seals.

11-2-1 Non-Contact Seals

These are the ones that do not come in contact with shaft, and they utilize the centrifugal force or narrow sealing gap to tightly block out inside from outside. These can be applied to the bearings with high speed or under high temperature, because they are free of heat generation, wear and tear of seals, or increase of friction torque.

(1) Narrow Gap Sealing

This is done by having a narrow gap between shaft and housing, and sometimes, they increase the sealing effectiveness by installing several oil grooves of same size in the housing bore.

Also, there is another method of recovering the leaking oil by making the spiral grooves on the shaft outer surface that touches the housing inner surface. When making the grooves, its spiral direction should be decided considering the rotating direction of the shaft.

If it is decided to use the narrow gap sealing method, then it is better to have as narrow gap

between shaft and housing as possible, and the gaps should be between 0.2 0.4mm for bearing shaft diameter smaller than 50mm, and 0.5 1mm for the ones larger than 50mm.

Also, the groove width of 2 3mm is ideal, and the depth of 4 5mm. The number of grooves should be three or more, if no other additional sealing methods are employed.

When a narrow gap sealing method is applied to the oil lubrication, it alone might not be enough to provide sufficient anti-leakage performances, so it is recommended to use it along with other sealing methods. For example, if the grease of worked penetration 200 is applied to the grooves, dust can be blocked out fairly well.

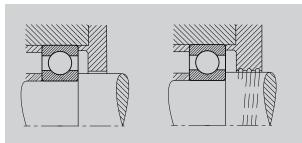
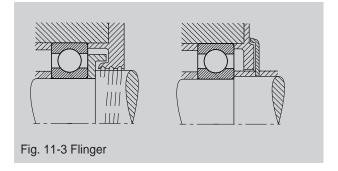



Fig. 11-2 Narrow Gap Sealing

(2) Flinger

This method is to prevent oil leakage or to force out the dusts by utilizing the centrifugal force of a mounted rolling element, flinger, on the shaft.

There are two types of flingers. One is installed inside the housing to prevent the leakage of lubricant by the centrifugal force generated from its rotation, and the other is installed outside the housing to force out the foreign materials, such as dust and water.

11. Design of Surrounding Structure

(3) Labyrinth Seals

This employs the labyrinth shaped seals with narrow gaps to make the passage to outside comparatively longer to increase the sealing effect.

When the gaps are filled with grease, sealing is more effective. And, if the environment is dirty, it is recommended to press grease from the inside into the sealing gaps in shorter time intervals.

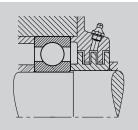


Fig. 11-4 Labyrinth Seals

Table 11-3 Shaft and Gaps of Labyrinth Seals				
Nominal Dimension of Shaft (mm)	Labyrinth Gap Radial Direction	Axial Direction		
50 up to 50200	0.250.4 0.51.5	12 25		

(4) Lamellar Rings

Lamellar rings made of steel spring disks require some mounting space to both inside and outside of the rings. Lamellar rings can prevent the oil leakage and block out the foreign materials, and they can also serve as a secondary seal when water is often splashed outside bearings.

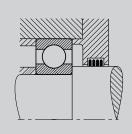


Fig. 11-5 Lamellar Rings

11-2-2 Contact Seals

Contact seals, made of elastic materials, such as synthetic rubber, synthetic resin, or felt, etc., directly rub against the shaft to produce high sealing effect, although there exists a danger of heat generation and increase of rotating torque, due to friction with contact area.

(1) Oil Seals

This is the most commonly used method, and their various sizes and shapes are standardized(KS B 2804).

These seals are usually used, where threat of foreign materials, such as dust and water, etc., being penetrated into is high. And, the eccentricity of shaft can be also corrected, up to a certain degree, by seal lip of synthetic rubber or coil spring in the oil seal.

Because wear and hardening of oil seals varies depending on the circumferential velocities and temperatures of the applied parts, it is important to select a seal of appropriate material. To assist the readers to select the appropriate seals, Table 11-4 shows the permissible speeds and operating temperature ranges for each type of materials.

Table 11-4 Permissible Speeds and Operating Temperature Ranges by Oil Seal Materials					
Seal Material	Permissible Speed(m/s)	Operating Temperature(°C)			
Synthetic Rubber Nitril-series rubber Acryl-series rubber Silicon-series rubber Fluorine-series rubber	Up to 16 Up to 25 Up to 32 Up to 32	-25+100°C -15+130°C -70+200°C -30+200°C			
PTFE Resin	Up to 15	-50+200°C			

If the circumferential velocity or the inside pressure is high, it is necessary to smoothen the contact surface of the shaft, and also to keep the eccentricity of the shaft less than 0.02 0.05mm.

Table 11-5 Circumferential Velocity of Shaft and Contact Surface Roughness					
Circumferential Velocity(m/s)	Surface F	Roughness			
	Ra	R _{max}			
up to 5	0.8a	3 2s			
510	0.4a	1.6s			
over 10	0 2a	0.8s			

Also, the shaft surface should have the hardness above H_{RC} 40, which can be obtained by applying heat-treatment or plating with hard chrome. The standard values of contact surface roughness required in accordance with circumferential speeds of the shaft are shown in the Table 11-5.

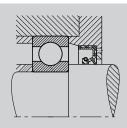


Fig. 11-6 Oil Seals

(2) Felt Rings

Felt rings are simple sealing elements which prove to be particularly successful with grease lubrication. However, they can not provide perfect protection against oil penetration or leaking, so they are usually used, in case of grease lubrication, just for prevention of dust or foreign materials from being entered, and they are generally soaked in oil before mounting for considerably better sealing effect.

If environmental conditions are adverse, two felt rings can be arranged side by side.

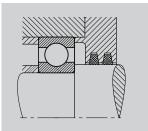


Fig. 11-7 Felt Ring

(3) V-Ring

V-ring is a lip seal with axial effect. During mounting, this one-piece rubber ring is pushed onto the shaft under tension until its lip contacts the housing wall. The sealing lip also acts as a flinger ring.

Axial lip seals are insensitive to radial misalignment and slight shaft inclinations.

With grease lubrication, rotating V-rings are suitable for circumferential velocities of up to 12m/s, stationary ones up to 20m/s. For circumferential velocities over 8m/s, V-rings must be axially supported and for those with 12m/s or more they must also be radially encased. V-rings are frequently used as assisting seals in order to keep dirt away from a radial shaft seal.

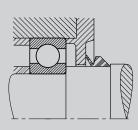


Fig. 11-8 V-Ring

12. Lubrication

12. Lubrication

Lubrication can be defined as the application of some materials between two objects moving relative to each other to allow smooth operation as much as necessary.

Either oil or grease is used for rolling bearings to prevent noise, wear and tear, and heat from being generated from their rolling and sliding movements, and in some special cases, solid lubricants are occasionally used.

The amounts and kinds of lubricants for rolling bearings are determined depending on operation speed, temperature, and surrounding condition, etc. And because the lubricants spent their service-life or polluted with foreign materials can not serve their function well, they have to be periodically replaced or oiled.

12-1 Purpose of Lubrication

Main purposes of lubrication are as follows;

- To prevent wear and premature fatigue by forming the lubrication film on the surface of load transferring parts to prevent contacts between metals.
- To enhance the favorable driving characteristics, such as low noise or friction.
- -To prevent overheating of bearings and to prevent lubricant s own deterioration by radiating the generated heat to outside. It works particularly well if the circulation lubrication method is adopted.
- To prevent foreign material penetration, rust, and corrosion.

12-2 Lubrication Methods

For bearing lubrications, either grease or oil is used. It is important to choose the appropriate lubrication method that suits bearing s operating conditions and purpose, for the bearing to perform well.

Oil lubrication is generally better than grease lubrication in many respects, but grease lubrication

is also widely used, because they have merits in that bearings have the available inside spaces for grease and that it is comparatively quite simple to use them.

	parisons between Gr ications	ease and Oil
Kinds	Grease Lubrication	Oil Lubrication
Lubrication Effect	Good	Excellent
Cooling Effect	None	Good when circulation lubrication is adopted
Permissible Load	Average load	High load
Speed	Allowable velocity is 60 80% of oil lubrication.	High allowable speed
Sealing and Housing Structure	Simple	Complex
Dust Protection	Easy	Difficult
Leaking of Lubricant	Small	Large
Repairing	Easy	Difficult
Lubricant Replacing	Difficult	Convenient
Torque	Comparatively large	Small
Removing of Foreign Materials	Impossible	Easy
Periodic Inspection	Long	Short

12-3 Grease Lubrication

12-3-1 Lubricating Grease

Grease can be defined as the lubricant of solid or semi-solid state that contains the thickener, and some greases contain various special ingredients. Because various kinds of greases have their own distinct characteristics, and sometimes even the same kind of greases produce quite different performance results, one has to be careful when selecting the greases.

Name	Lithium Grease			Sodium Grease	Calcium Grease	Mixed Grease	Compound Grease	Non-soap Ty Grease	ype
Thickener	Li Soap			Na Soap	Ca Soap	Na+Ca Soap Li+Ca Soap	Ca Compound Soap Al Compound Soap	Urea, Carbon, Bla Organic compound	uck Fluorine Heat-Resistant d
base oil	mineral oil	diester Oil polyol-ester Oil	Silicon Oil	mineral Oil	mineral Oil	mineral Oil	mineral Oil	mineral Oil	Compound grease (Ester Oil, Polyol- ester Oil, Silicon Oil, Combined carbohydrate Oil, Fluorine Oil
Dropping Point(°C)	170195	170195	200210	170210	7090	160190	180300	230	230
Operating Temperature (°C)	-20110	-50…130	-50160	-20130	-2060	-2080	-20130	-10130	220
Permissible Speed Ratio (%)	70	100	60	70	40	70	70	70	40100
Pressure Resistance	Ø	O	O	0	×	0	Ø	Ø	O
Mechanical Stability	Δ		×	0	×	0	0	0	Δ
Water Resistance	Ø	Ø	O	×	Ø	one that contains Na is bad	Ø	O	0
Rust Prevention	O	O	×		0	0	0	Δ	Δ
Remarks	General Purpose	Excellent low temperature and friction characterstics Suitable	For high temperature Advantageous in high speed and high load	Caution when in contact with water or under high temperature	Excellent Pressure resistance when it contains EP resistance	Used mainly for large bearings	Excellent in pressure resistance and mechanical stability	General purpose	for special purposs such as heat-resistance and acid resistance

Table 12-2 Types and Performances of Greases

(1) Base Oil

Base oil in the grease is the main ingredient which actually provides lubricating function, and it forms 80 90% of grease. So, it is important to select the right kind of base oil and its viscosity.

There are two main types of base oil, mineral base oils and compound base oils.

Mineral oils from low to high viscosity are widely

used. Generally, the mineral oils with higher viscosity are used for the locations requiring the lubrications of high load, low speed, and high temperature, and the ones with lower viscosity for the locations requiring the lubrications of low load, low speed, and low temperatures.

Compound base oils are generally very expensive and used for the locations requiring the

12. Lubrication

lubrications of extremely high or low temperatures, or wide temperature ranges, and fast speed and high precision. Compound base oils of mainly esther, poly---olefine, or silicon series are generally used, but the use of fluorine compound oils are increasing nowadays.

(2) Thickener

Thickener is one of the most important elements in deciding the properties of the grease, and the thickness of grease depends on how much thickener is mixed in the grease.

There are mainly three kinds of thickeners, namely, metal soap, non-organic non-soap, and organic non-soap, but the metal soap thickeners are mostly used, and the non-organic non-soap thickeners are generally used only for the special cases, such as operationin in high temperature.

Generally speaking, the grease with high dropping point can be used in high temperatures, and the water-resistance of grease depends on that of thickener. Also for the bearings that come in contact with water or are operated under the high humidity level, the Na soap grease or the grease that contains Na soap can not be used, because they deteriorate quickly when in contact with the water or moisture.

(3) Additives

Various kinds of additives are used to enhance the grease performance and to meet the customers demands for different functions. These additives enhance the physical or chemical properties of grease, and/or minimize the wear, corrosion, or rust to the lubricated metals.

There are various kinds of additives used for prevention of oxidization, wear and tear, or rust. There are also the EP additives. The appropriate grease containing right kind of additives to the applied location has to be used.

(4) Worked Penetration

Worked penetration is used to represent the hardness of grease, and it is shown as the penetrated depth(1/10mm) to grease by the pendulum of specified weight, and the greater the value is, the softer the grease is.

12-3-2 Polymer Grease

Polymer grease of hardened lubricant mixed with polyamid is generally used, and it allows to supply the grease for a long period.

It is widely used for the bearings to which the strong centrifugal force is applied, such as the ones in wire stranding machines or compressors, or to which leaking and pollution to the environment or insufficient lubrication is easy to happen.

12-3-3 Injection of Grease

(1) Injection Amount of Grease

The grease usually occupies 30% of bearing space, initially, and it is distributed evenly during the

NLGI Worked Penetration No.	KS Worked Penetrations of Mixtures	State	Usage
0	355385	Semi-gel or soft	Centralized lubrication system
1	310340	Soft	Centralized lubrication system
2	265295	Ordinary	For general use, sealed ball bearings
3	220250	Ordinary or rather hard	For general use, high temperature use
4	175205	Rather hard	For special purposes

Table 12-3 shows the greases of different worked penetrations and their usage

Fig. 12-1 Bearings Filled with Polymer Grease

initial few hours of operation. And then, it is operated with just 30 50% of initial friction of the bearing.

The bearings purchased without grease inside, have to be filled with grease by the users themselves, and following cautions have to be taken while filling.

- (a) The space inside the bearing has to be filled completely, but, in case of high speed rotation(n dm>500,000 min⁻¹ mm), only 20 25% of free space has to be filled.
- (b) It is recommended to fill only up to 60% of housing space adjacent to the bearing, so as to leave sufficient room for the dispelled grease from the bearing.
- (c) In case of low speed rotation(n dm>50,000 min⁻¹ mm), whole space of bearing and housing can be filled with grease.
- (d) For the bearings rotating at a very high speed, it is necessary to test-run the bearings in advance, so as to distribute the grease evenly.

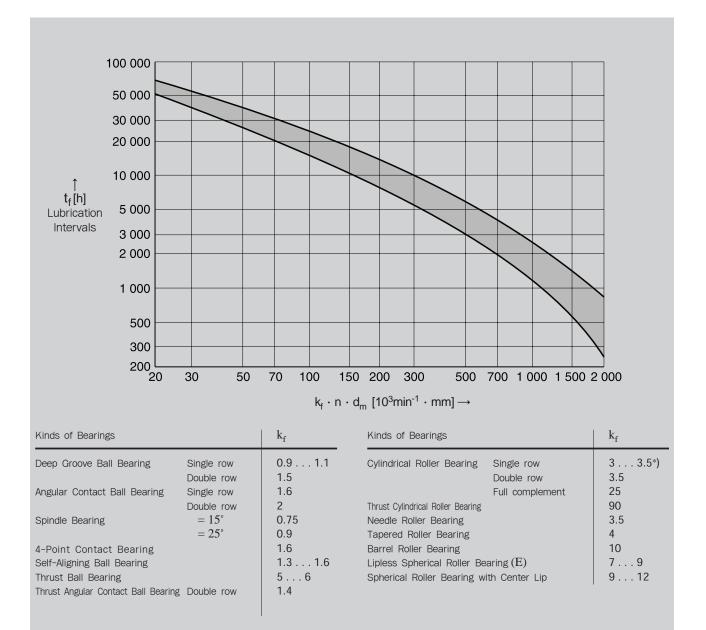
(2) Life Span of Grease

The life span of grease is a period from the start of bearing operation to bearing failure due to its insufficient lubricating action.

The life span of a grease with 10% of bearing failure possibility is denoted by F_{10} . The F_{10} Life Span Curves can be obtained by laboratory experiments set up close to the real operation situations. In most cases, because users do not know the values of F_{10} , the lubrication interval, $t_{\rm f}$, is reco-

mmended as the minimum value for the life span of the standard grease. Refilling inte-rval is set considerably shorter than the lubrication interval, so as to provide stability. Reliability can be increased sufficiently even for the greases barely meeting the minimum requirements, if lubricated in accordance with the lubrication interval curves in the Fig. 12-2.

The lubrication intervals are determined by the values of $k_f n d_m$, which can be obtained from the speed formula related to bearings, and the different values of k_f have been assigned to various kinds of bearings.


The bearings with larger load capacities have larger $\rm k_f$ values, and vice versa. The graph in the Fig. 12-2 shows the lubrication intervals under the conditions of below $70^\circ\rm C$ measured at the outer ring and P/C<1 for average load.

If either load and/or temperature rise, then the lubrication intervals should be shortened. Furthermore, if the operating and surrounding conditions are not favorable, then they should be even shorter. Also, If the life span of grease is considerably shorter than that of bearing, then it has to be recharged again with grease or the grease has to be totally exchanged. If it is just recharged again with grease, then only a part of whole grease gets to be replaced, therefore, the recharging intervals should be shorter than the lubrication intervals (Generally, between $0.5 \cdot t_f$ and $0.7 \cdot t_f$).

When recharging with grease, different kinds of greases could be mixed together. It is comparatively safe to mix different kinds of greases as follows.

- Greases containing the same thickener
- Lithium grease/calcium grease
- Calcium grease/bentonite grease

12. Lubrication

Note : 1) Bearing applied with radial load and constant axial load ; When axial loads fluctuate, $K_f = 2$.

Remarks 1) Lubrication intervals under fairly good conditions.

²) Grease life span applied to Lithium soap of 10% break possibility under 70° C.

Fig. 12-2 Lubrication Intervals

12-3-4 Properties of Greases

Grease	Color	Thickener	Base Oil Viscosity (40°C) mm²/s	Worked Penetration NLGI	Operating Temperature ℃	Limit Rotating Ratio (%)	Main Properties	Main Applications
G6	Light Brown	Lithium soap	ISO VG 90	2	-15+90	60	Medium speed Heavy load	General industrial Machinery
G9	Brown	Lithium soap	ISO VG 20	2	-55+130	100	Ultra high speed	Machining tools spinning machine, spindle bearing, small precision bearing
G12	White	Lithium soap	ISO VG 38	2/3	-30+200	60	Medium speed	OA equipment, electric motor and high temperature use high temperature equipment bearing
G14	Green	Polyurea	ISO VG 110	2	-30+175	100	Ultra high speed	Coupling, electric equipment(elecric motor, generator)
G15	Pale	Lithium soap	ISO VG 28	3	-40+150	100	High speed	Electric motor precision tools and machinery automotive elecrical equipment
G26	Beige	Polyurea	ISO VG 31	2	-40+160	100	High speed High temperature Long life	Automotive generator, electronic clutch, electric motor
G33	White	Fluorine	ISO VG 400	2	-35+300	60	Low speed Ultra high temp Special purpose	Chemical equipment, vacuum and semi-conductor equipment, kiln truck
G35	Light green	Polyurea	ISO VG 43	2	-50+170	100	Hign speed Wide range temp Chemical resistance Radioactive resistance	Automotive generator automtive electric equipment, household appliances
G42	Beige	Polyurea	ISO VG 95	2	-40+170	100	High speed Wide range temp	Automtive generator household appliances
G100	Light green	Lithium soap	ISO VG 100	2	-30+130	70	Standard grease General bearings	Electrical motor, agricultural equipment construction equipment
G101	Pale Yellow	Lithium soap	ISO VG 33	3	-40+150	100	High speed Wide range temp	Electrical motor Household appliances

Table 12-4 Grease Property and Application Table-Grease.

12. Lubrication

12-4 Oil Lubrication

12-4-1 Lubricants

Lubricants can be largely divided into two groups, namely mineral oil base lubricants and synthetic lubricants.

When selecting a lubricant, its viscosity is one of the most important factors to be considered. If its viscosity is too low at its operating temperature, oil film can t be sufficiently formed, causing abrasion and/or burning-and-sticking. And, if it s too high, its viscosity resistance becomes higher, causing temperature/friction rise and subsequent abnormal power loss.

In general, lubricants with low viscosity are used when it runs at high speed and low load, and ones with high viscosity when at low speed and high load.

The minimum viscosity at its operating temperature during normal operation is shown at the Table 12-5 shown below, and it should not go under these minimum values.

Lubricants should be selected in accordance with viscosity specified by ISO, and its viscosity index can be used conveniently for references. Although it depends on viscosity indices, its viscosity gets

Table 12-5 Bearing types and minmum dynamic viscosity required for lubricants

Bearing Type	Dyminic viscosity during operation(cSt)
Ball Bearing, Cylindrical roller bearing	over 13
Tapered roller bearing, Cylindrical roller bearing Thrust needle roller bearing	over 20
Thrust spherical roller bearing	over 32

reduced by half whenever the temperature of lubricant increases by 10 *↔*.

Typical lubricants to be selected depending on bearing s operating condition are shown on Table 12-6.

Table 12-6 Selection of	of Lubricants		
Operating temperature $^{\circ}C$	Revolving Speed	ISO Viscosity Class (VG) of Lubricant Light Load or Nomal Load	High Load Impact Load
-300	Up to allowable speed	15, 22, 32	46
050	up to one half of allowable speed	32, 46, 68	68, 100
	Up to allowable speed	15, 22, 32	32, 46
	Same or above allowable speed	10, 15, 22	-
5080	up to one half of allowable speed	100, 150, 200	220, 320
	Up to allowable speed	46, 68, 100	100, 150
	Same or above allowable speed	32, 46, 68	-
80100	up to one half of allowable speed	320, 460	460, 680
	Up to allowable speed	150, 220	220, 320
	Same or above allowable speed	68	-

Remarks: 1) In case of oil sump or circulation lubrication

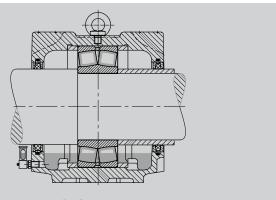
2) Contact KBC if operating conditions are beyond the values of this Table.

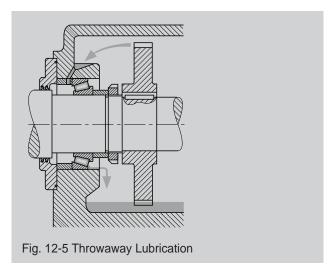
12-4-2 Oil Lubrication Methods

(1) Oil Sump Lubrication

It is the most generally used lubrication method, especially for low or medium speed operations.

Oil surface should be, in principle, placed at the center of lowest rolling element, and it is better to be able to confirm the location of oil surface by using the oil gauge(Fig. 12-3).

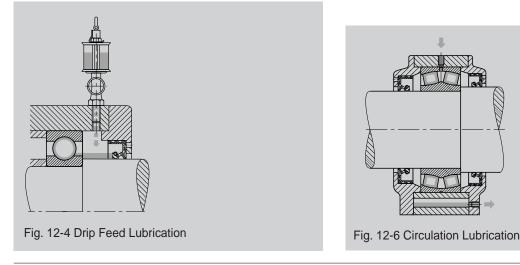



Fig. 12-3 Oil Sump Lubrication

(2) Drip Feed Lubrication

This method is widely used for small bearings that operate at a relatively high speed, and oil supply is controlled by adjusting the volume of oil drip(Fig. 12-4).

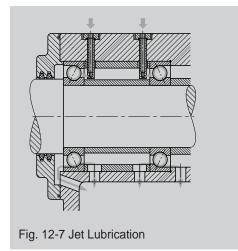
(3) Throwaway Lubrication


This is a method that utilizes gear or circulation ring to supply oil to bearings. It is widely used for automotive transmissions or gears(Fig. 12-5).

(4) Circulation Lubrication

It is widely used when it is necessary to cool the bearing parts that revolve at a high speed, or that with high surrounding temperature. Oil is fed through feed pipe and recovered through recovery pipe, which is cooled down and re-fed again.

The diameter of recovery pipe should be bigger than that of feed pipe, so as to prevent back pressure from occurring to the oil inside a bearing(Fig. 12-6).

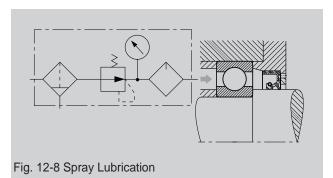

12. Lubrication

(5) Jet Lubrication

Jet lubrication is widely used for high speed revolution bearings(for n dm 1,000,000), and oil is jet-sprayed through one or several nozzles under constant pressure into the inside of a bearing.

In general, jet stream speed should be faster than 1/5 of circumferential speed of inner ring outer surface because air wall formed by surrounding air revolving with bearing tends to weaken the jet stream.

Provided that total volume of lubricant is same, the more the number of nozzles are, the smoother and the greater the cooling effect is(Fig. 12-7).



(6) Spray Lubrication

Spray lubrication is a method that vaporizes the lubricant by blowing in the air to be sprayed into bearing. It has following merits.

- Due to small volume of lubricant required, its churning resistance gets smaller, which in return makes it suitable for high speed revolution bearings.
- Because it minimizes volume of discharged lubricant, the pollution to the equipment can be also kept to the minimum.
- Because fresh lubricant is fed all the time, bearing life can be extended.

Therefore, it is widely used for various machining tools, such as high speed spindle, high speed revolution pump, or roll neck bearing of roller(Fig. 12-8).

(7) Oil Air Lubrication

Oil air lubrication is a method that forcefully feeds the exactly calculated minimum amount of required lubricant at an optimum interval to each bearing to the end.

Because the minimum amount of fresh lubricant is fed exactly and continuously, lubricant contamination is also kept to the minimum, and air cooling effect is maximized to keep the bearing temperature sufficiently low. Also, pollution to the environment is also kept to the minimum due to the bare minimum amount of lubricant used(Fig. 12-9)

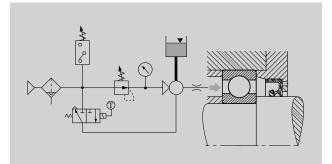


Fig. 12-9 Oil Air Lubrication

13. Bearing Material

Rolling bearing is made of ring and rolling elements, which directly receive the load, and the cage for maintaining rolling elements at a uniform distance.

Ring and rolling elements of bearing receive high contact stress repeatedly, and they involve contact rolling movement along with sliding movement. And cage receives both tensile and compressive forces while having a sliding contact with either ring or rolling element. Bearings, which are used for a long time while continuously and repeatedly receiving high stress, eventually show fatigue effect, and the sliding contact area also becomes slowly worn out, which eventually damage the bearing.

Also, when selecting the bearing material, it is important to consider the stress conditions of each part, as well as lubricating condition, reaction with lubricant, operating temperature and environment, etc.

13-1 Material of Ring and Rolling Element

Both ring and rolling element need to have high mechanical strength, rolling-fatigue resistance, hardness, and wear-resistance.

Furthermore, their material should have excellent dimension stability to prevent performance deterioration caused by dimensional changes. Also, it should have good machinability in consideration of economical production.

Most commonly used materials that satisfy all the above conditions are high carbon chrome bearing steel and case hardened steel, and their chemical composition are shown in Table 13-1 and 13-2.

Kinds of bearing steels depending on the characteristics of used location are shown below.

- General locations

High carbon chrome bearing steel treated with complete hardening process.

- Locations requiring impact load and toughness High carbon chrome bearing steel treated with surface induction hardening. Chrome steel, Cr-Mo steel, Ni-Cr-Mo steel treated with carburizing heat treatment.

The probability of rolling fatigue life distribution using same material can vary significantly. This is mainly caused by non-metallic inclusions in the bearing material or segregation and unevenness of other chemical elements.

Non-metallic inclusions affect the characteristics and properties of bearing material in different ways depending on different production procedures in raw materials, melting methods, casting methods, and heat treatments, etc.

KBC makes it a standard procedure to use vacuum degassed raw steel materials, and various data including degree of segregation, and defects, are analyzed and maintained continuously to minimize the deviation. And FHBC also applies special heat(HL) treatment on bearings to even further enhance the resistance of rolling fatigue life.

In general, bearings are made to be used under the operating temperature below 120° C. If used above 120° C, these bearings can post some problems, such as softening or dimension changes of the parts, or insufficient lubrication. To overcome the problems generated during high temperature usage, special measures have been developed to insure the hardness and prevent dimension changes of bearing materials, and these bearings can be safely used under the operating temperatures up to 350° C, provided some operating conditions are met.

Some bearing materials to be used under high temperature or corrosive environment are shown below.

- High operating temperature above 350° C : Ceramic bearings made of heat resisting steel or Si_3N_4 , etc.
- Heat-resisting or anti-corrosion: Stainless steel of martensite series.

Also, some special heat treatment processes have been also developed to make it lighter and/or

tougher to overcome the severe operation conditions. By evenly distributing the chemical elements that enhances the surface toughness, cracking propagation caused during lubricating condition such as in the case of foreign materials entered from unclean operating environment can be subdued. And, special heat(RC) treatment which generates fine microstructures, can further increase the rolling fatigue life.

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

Table 13-1 Chemical Composition of Bearing Steel

Specifications	Symbol	С	Si	Mn	Ρ	S	Cr	Ni	Unit % Mo
KOREA KS D 3525	STB2 STB3 STB4	0.95…1.1 0.95…1.1 0.95…1.1	0.150.35 0.40.7 0.150.35	≤0.5 0.9~1.15 ≤0.5	≤0.025 ≤0.025 ≤0.025	≤0.025 ≤0.025 ≤0.025	1.31.6 0.91.2 1.31.6	≤0.25 ≤0.25 ≤0.25	≤0.08 ≤0.08 1.10.25
GERMANY VDEH (German Iron &Steel Association)	105Cr2 105Cr4 105Cr6 100CrMn6	11.1 11.1 0.91.05 0.9~1.05	0.150.35 0.150.35 0.150.35 0.50.7	0.250.4 0.250.4 0.250.4 11.2	≤0.03 ≤0.03 ≤0.025 ≤0.025	≤ 0.025 ≤ 0.025 ≤ 0.02 ≤ 0.02	0.40.6 1.91.15 1.41.65 1.41.65	- - -	- - -
JAPAN JIS G 4805	SUJ1 SUJ2 SUJ3 SUJ4 SUJ5	0.951.1 0.951.1 0.951.1 0.951.1 0.951.1	0.150.35 0.150.35 0.40.7 0.140.35 0.40.7	≤0.5 ≤0.5 0.9…1.15 ≤0.5 0.9…1.15	≤ 0.025 ≤ 0.025 ≤ 0.025 ≤ 0.025 ≤ 0.025	≤ 0.025 ≤ 0.025 ≤ 0.025 ≤ 0.025 ≤ 0.025	0.91.2 1.31.6 0.91.2 1.31.6 0.91.2	≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25	≤0.08 ≤0.08 ≤0.08 1.10.25 1.10.25
U.S.A AISI SAE J405	E51100 E52100	0.981.1 0.981.1	0.20.35 0.20.35	0.250.45 0.250.45		≤0.025 ≤0.025	0.91.15 1.31.6	≤0.25 ≤0.25	≤0.08 ≤0.08
FRANCE AFNOR	100C2 100C6 100CD7	0.95…1.1 0.95…1.1 0.95…1.05	0.150.35 0.150.35 0.20.45	0.20.4 0.20.4 0.20.4	≤0.03 ≤0.03 ≤0.03	≤0.025 ≤0.025 ≤0.025	0.40.6 1.351.6 1.651 95	 ≤0.3 	– ≤0.1 0.15…0.3
GREAT BRITAIN BS970 PART 2	535A99	0.91.2	0.10.35	0.3~0.75	≤0.05	≤0.05	11.6	-	-
SWEDEN SKF	SKF 24 SKF 25	0.921.02 0.921.02	0.250.4 0.250.4	0.250.4 0.250.4	≤0.03 ≤0.03	≤0.025 ≤0.025	1.651.95 1.651.95	-	0.150.3 1.30.4

Table 13-2 Chemical Composition of Surface Hardened Steel

Specifications	Symbol	С	Si	Mn	Ρ	S	Ni	Cr	Unit % Mo
KOREA	SCr420H	0.170 23	0.150.35	0.550.9	≤0.03	≤0.03	_	0.851.25	_
KS D 3754	SCM415H	0.120.18	0.150.35	0.550.9	≤0.03	≤0.03	-	0.851.25	0.150.35
	SCM420H	0.17023	0.150.35	0.550.9	≤0.03	≤0.03	-	0.851.25	0.150.35
	SNCM220H	0.170 23	0.150.35	0.60.95	≤0.03	≤0.03	0.350.75	0.350.65	0.150.3
	SNCM420H	0.17023	0.150.35	0.40.7	≤0.03	≤0.03	1.552	0.350.65	0.150.3
GERMANY	16MnCr5	0.140.19	0.150.35	1.01.3	≤0.035	≤0.035	_	0.81	_
DIN	20MnCr5	0.170 22	0.150.35	1.11.4	≤0.035	≤0.035	_	11.3	_
17210	15CrNi6	0.120.17	0.150.35	0.40.6	≤0.035	≤0.035	1.41.7	1.41.7	-
	18CrNi8	0.1502	0.150.35	0.40.6	≤0.035	≤0.035	1.82.1	1.82.1	-
JAPAN	SCr420H	0.170 23	0.150.35	0.550.9	≤0.03	≤0.03	_	0.851.25	_
JISG	SCM415H	0.120.18	0.150.35	0.550.9	≤0.03	≤0.03	_	0.851.25	0.150.35
4052	SCM420H	0.170 23	0.150.35	0.550.9	≤0.03	≤0.03	_	0.851.25	0.150.35
	SNCM220H	0.17023	0.150.35	0.60.95	≤0.03	≤0.03	0.350.75	0.350.65	0.150.3
	SNCM420H	0.17023	0.150.35	0.40.7	≤0.03	≤0.03	1.552	0.350.65	0.150.3
U.S.A. ASTM	5120H	0.170 23	0.150.3	0.61	≤0.025	≤0.025	_	0.601	_
A 304	4118H	0.17023	0.150.3	0.61	≤0.025	≤0.025	_	0.30.7	0.080.15
	8620H	0.17023	0.150.3	0.60.95	≤0.025	≤0.025	0.350.75	0.350.65	0.150.25
	4320H	0.17023	0.150.3	0.40.7	≤0.025	≤0.025	1.552	0.350.65	0.20.3
FRANCE	20ND8	0.16023	0.10.35	0.20.5	≤0.03	≤0.025	1.82.3	_	0.150.3
AFNOR	16MC5	0.140.19	0.10.4	11.3	≤0.03	≤0.025	_	0.81	-
	20NCD2	0.18023	0.10.4	0.70.9	≤0.03	≤0.025	0.40.7	0.40.6	0.150.3
	16NCD4	0.120.19	0.10.4	0.50.9	≤0.03	≤0.025	11.3	0.40.7	0.10.2
	16NCD13	0.120.18	0.10.4	0.20.5	≤0.03	≤0.025	33.5	0.851.15	0.150.35
	18NCD4	0.160.22	0.20.35	0.50.8	≤0.03	≤0.025	0.91.2	0.350.55	0.150.3
	20NCD7	0.160.22	0.20.35	0.450.65	≤0.03	≤0.025	1.652	0.20.6	0.20.3
GREAT BRITAIN	665H17	0.1402	0.10.35	0.30.6	≤0.05	≤0.05	1.52	_	0.20.3
BS970 PART 3	655H13	0.10.16	0.10.35	0.30.6	≤0.05	≤0.05	33.75	0.61.1	-
	832H13	0.10.16	0.10.35	0.30.6	≤0.05	≤0.05	33.75	0.61.1	0.10.25
	820H17	0.1402	0.10.35	0.60.9	≤0.05	≤0.05	1.52	0.81.2	0.10.2
	805H20	0.18023	0.150.35	0.71	≤0.05	≤0.05	0.40.7	0.550.8	0.150.25

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

13-2 Cage Material

Cage guides rolling elements between the rings, and keeps rolling elements at equal distances, so as to minimize the friction between rolling elements.

So it is essential for cage to have appropriate hardness and abrasive-resistance as well as deformation-resistance against adverse impact.

Although the applied load to cages could be considered to be a lot smaller than those to rolling elements or rings, they comparatively have more chances for sliding contacts, which needs to be considered.

Cages can be divided into two groups, namely, metal(ferrous and non-ferrous) cages and synthetic resin cages. Metal cages can be further divided into press cages and machined cages.

And there are many kinds of cages for different kinds, sizes, revolving speeds, temperature conditions, lubricating methods, machining workability of various bearings.

Cold strip steel sheets, such as shown on Table 13-3, are mainly used for ferrous cages, and they are generally press fabricated and used for most of deep groove ball bearings, cylindrical roller bearings, and tapered roller bearings. In case of general use, they do not usually pose any problems at all even under the temperatures higher than 250 $^{\circ}$ C. For larger bearings, some machine-tooled ferrous cages are sometimes used.

On the other hand, non-ferrous cages are mostly

made of high-tensile brass and they are usually machine-tooled.

Metal cages are sometimes processed(SL Treatment) for efficient lubrication and high heatresistance, when required for special use. And, to make efficient lubrication even better, which helps to improve torque and noise-level even further, special solid lubrication thin film is sometimes applied. And, in these days, the quantity of KBC production of light, self-lubricating, synthetic resin cages are increasing more and more.

Glass-fiber reinforced, polyamide is widely used for cage material, because it has an excellent lubricating property, reducing friction between rolling elements and rings, and it is also light, making it easy to obtain high revolving speed. Also, it produces almost no wear debris, which helps, in case of grease lubrication, to increase the grease life span.

And its excellent workability makes it an excellent choice for complex shaped cages made to suit the special bearings. However, its heat resistance quality is not that good, although it poses no problem up to general operating temperature of 120° C.

Sometimes, multi-layer penol resin is used as cage material, and this is usually made of fabric layers on penol resin base. Because of its ability to absorb lubricant, heightening lubrication quality drastically, it is widely used for bearings with ultra high revolving speed.

Table 13-3 Chemica	al Composition	of Cage Materia	als(Cold Strip	Steel Sheet)			
						Unit %	
Standards	Codes	C	Si	Mn	Р	S	
KOREA	SCP1	≤0.1	≤0.04	0.250.45	≤0.03	≤0.03	
KS D 3512	SCP2	0.130.2	≤0.04	0.250.5	≤0.03	≤0.03	
	SCP3	0.450.55	0.150.35	0.400.85	≤0.03	≤0.03	
JAPAN BAS 361	SPB1	≤0.1	≤0.04	0.250.45	≤0.03	≤0.03	
	SPB2	0.130.2	≤0.04	0.250.5	≤0.03	≤0.03	
	SPB3	0.450.55	0.150.35	0.40.85	≤0.03	≤0.03	
U.S.A SAE J403g	1008	≤0.1	≤0.1	0.30.5	≤0.04	≤0.05	
J118	1009	≤0.15	≤0.1	≤0.6	≤0.04	≤0.05	
J403g	1010	0.080.13	≤0.1	0.30.6	≤0.04	≤0.05	

14. Handling of Bearings

14. Handling of Bearings

Bearings are heavy-duty machine elements with high precision, so care has to be taken for them to serve their functions to the fullest degree.

To last up to their life span, following points especially have to be observed.

(1) Always keep bearings and working environment clean and tidy.

When a bearing is mounted on shaft and housing while working environment is polluted with dust or other foreign particles, or while bearing itself is dirty due to unclean storage, dust or minute foreign particles can induce indentation or scratches on bearing rolling element surface, resulting in fatigue rupture at the time below rated fatigue life.

Therefore surrounding working environment needs to be kept clean and tidy all the time, and also tools and hands need to be clean and dry while working on bearings.

Also, spare bearings need to be stored in wellventilated, dry space, and they need to be checked for appropriateness before mounting.

(2) Handle the Bearings with care.

Sudden impacts to or dropping of a bearing while handling them, or mounting of a bearing with excessive force while using hammer or others, can cause indentation or scratches on bearing rolling element surfaces, resulting in its early rupture.

Care has to be taken while handling the bearings, because abnormal or excessive damage to bearing rolling element surface can induce breakage of rings or separation of rings of non-separable type bearings.

(3) Use only clean lubricants and greases.

When dismounting and checking the bearings for abnormality, surroundings around housing should be cleaned first before dismounting starts, and then after dismounting, foreign materials on and around outside and inner surface of bearing and others should be wiped off thoroughly by using dry cloth. In case of open type bearings, it is recommended to clean them with kerosene oil or equivalents before re-mounting them.

Also, only clean lubricants or greases not contaminated with dust or any other solid foreign materials should be used.

(4) Be sure to prevent bearing corrosion from developing

When bearing comes in contact with hand sweat, water-soluble lubricants or cleansers, rust can be developed later on.

Therefore when it is necessary to work on a bearing with bare hands, hands should be washed thoroughly first to get rid of sweat and then highquality mineral oil should be applied to hands before working on a bearing.

Specially during rainy seasons or summer, care should be taken to prevent corrosion.

(5) Use appropriate tools.

Use of inappropriate tools, which just happen to be around, for example, while working on bearings, should be avoided at all cost. Use only appropriate tools suitable for the tasks involved.

Also, when using the cloth for cleaning, one needs to make it sure it's not a kind that produces shag, which contaminate a bearing.

14-1 Storage Precautions

Preservation medium and packaging of KBC bearings are designed to retain the bearing properties as long as possible.

Certain requirements must, therefore, be met for storage and handling. During storage, the bearings must not be exposed to the effects of aggressive media such as gases, mists or aerosols of acids, alkaline solutions or salts. Direct sunlight should also be avoided because it can cause large temperature variations in the package, apart from the harmful effects of UV radiation. The formation of condensation water is avoided under the following conditions.

14. Handling of Bearings

- Temperature range : $6\sim25^\circ\mathbb{C}$ ($30^\circ\mathbb{C}$ for short period)
- Max. temperature difference, day/night: 8K
- Max. relative air humidity: 65%
- Location should be free of excessive vibration.

With standard preservation, bearings can be stored safely up to 5 years, if the said conditions are met. If this is not the case, shorter storage periods must be taken into consideration.

If the permissible storage period is exceeded, it is recommended to check the bearing for its preservation state and corrosion prior to use. In case of sealed type bearings filled with grease, their permissible storage periods tend to be shorter, because the lubricating grease contained in the bearings may change their chemico-physical behavior due to aging.

Bearings completed inspection or ones with damaged packages contaminating the inside, should be washed by using appropriate washing oil. While washing with oil, turn either inner or outer ring little by little.

Ones with seal or shield on one side should be handled same as open type bearings. And the others with them on both sides should not be washed at all, but, instead, anti-corrosion agent should be applied thinly prior to use, or they should be wrapped with oil paper before being stored.

14-2 Mounting of Bearings

The shop drawings should be studied prior to mounting to become familiar with the design. The order of the individual work steps is schematically laid down including the required heating temperatures, mounting forces and grease quantities. The anti-corrosion agent of the packed KBC bearing has no effect on the standard greases which are most commonly used(Lithium soap mineral grease), and does not have to be washed out prior to mounting. It is only wiped off the seats and mating surfaces.

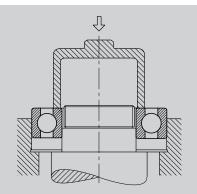
When anti-corrosion agent is washed off from KBC bearings, rust can be developed easily, so

they should not be stored for long before being used.

Rolling bearings must be protected from dirt and humidity under all circumstances so as to avoid damage to the running areas. The work area must, therefore, be clean and free of dust.

When mounting the bearings, loads of rings and rolling elements should not be applied to them, and mounting forces should be applied uniformly to all points around rings. Blows with the hammer applied directly to the bearings, which can damage them, should be avoided completely.

14-2-1 Mounting of Tapered Bore Bearings


In the case of mounting the non-separable bearings by using press or hammer, the mounting forces are applied to the ring which is to have a tight fit by using a unrelieved mounting disk on ring's to be mounted, or by using mounting disk that touches both outer and inner rings, as shown in Fig. 14-1.

However, in bearings where the cage or balls project laterally(e. g. Some self-aligning ball bearings), a relieved disk should be used so as not to damage cage or balls during mounting, as shown on Fig 14-2. But, separable bearings can be mounted independently.

Bearings with a maximum bore of approximately 80 mm can be mounted cold. The use of mechanical or hydraulic press is recommended.

Should no press be available, the bearing can be driven on with hammer and mounting sleeve. Bearings with a cylindrical bore for which tight fits on a shaft are specified and which cannot be pressed mechanically onto the shaft without great effort, are heated before mounting. Fig. 14-3 shows the heat-up temperatures required for easy mounting as a function of the bearings bore d.

The data applies to the maximum interference, a room temperature of 20° C plus 30 K to be on the safe side. At this time, bearings should be heated up higher than 120° C.

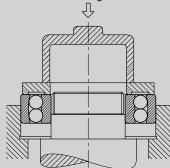


Fig. 14-2 Simultaneous Pushing In of Both Inner and Outer Rings

Induction heating devices are particularly suitable for fast, safe and clean heating, and the device should be selected considering the size and weight of a bearing.

Individual bearings can be heated provisionally on an electric heating plate, and the bearing can be covered with a metal sheet and turned several times.

A safe and clean method of heating bearings it to use a thermostatically controlled hot air or heating cabinet.

It is used mainly for small and medium-sized bearings, but the heat-up times are relatively long.

Bearing of all sizes and types can be heated in an oil bath except for sealed and greased bearings as well as precision bearings.

A thermostat control is advisable(Temperature 80 to 100°C). The bearings are placed on a grate or hung up for them to heat uniformly. This method has some disadvantages, such as accident hazard, pollution of the environment by oil vapours, inflammability of hot oil, danger of bearing contamination.

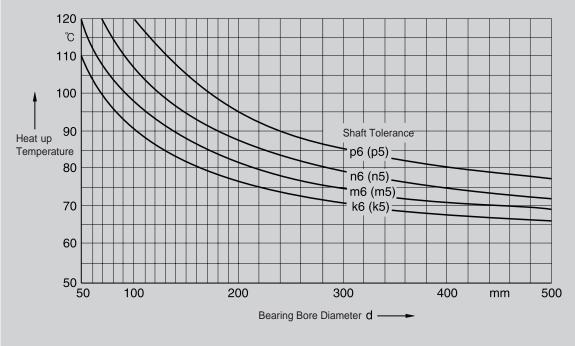


Fig. 14-3 Diagram for Determining the Heat-up Temperature

14. Handling of Bearings

14-2-2 Mounting of Tapered Bore Bearings

Rolling bearings with a tapered bore are either fitted directly onto the tapered shaft seat or onto a cylindrical shaft with an adapter sleeve or a withdrawal sleeve(Refer to Fig. 14-4, 14-5, 14-6).

In general, tapered bore bearings require tight fits whose interference is a little bigger than that of cylindrical bore bearings. The bigger the applied load is, the stronger tight fit is required.

And this makes inner ring expand, and which, in return, makes bearing's inner clearance smaller. Therefore, the inner clearance of a tapered roller bearing prior to mounting should be bigger than that of a cylindrical bore bearing. The resulting tight fit of the inner ring is measured by checking the radial clearance reduction due to the expansion of the inner ring or by measuring the axial drive-up distance.

Small bearings(up to approx. 80mm bore) can be pressed with a locknut onto the tapered seat of the shaft or the adapter sleeve. A hook spanner is used to tighten the nut.

Small withdrawal sleeves are also pressed with a locknut into the gap between the shaft and inner ring bore.

Considerable forces are required to tighten the nut with medium-sized bearings. Locknuts with thrust bolts facilitate mounting in such cases.

It is advisable to use a hydraulic press for driving up larger bearings or pressing them onto the sleeve.

Hydraulic nuts are available for all popular sleeve and shaft threads. For bearings with a bore of approximately 160mm and upwards mounting and especially dismounting are greatly facilitated by the hydraulic method.

An oil with a viscosity of about $75mm^2/s$ at $20^\circ\rm C$ (Nominal viscosity at $40^\circ\rm C$: $32mm^2/s)$ is recommended for mounting.

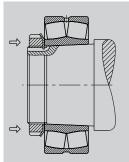


Fig. 14-4 Direct Mounting on a Tapered Shaft

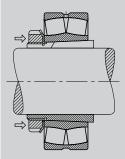


Fig. 14-5 Mounting on an Adapter Sleeve

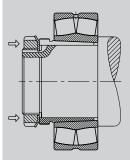


Fig. 14-6 Mounting on a Withdrawal Sleeve

14-3 Bearing Performance Test

14-3-1 Manual Operation Test

Small bearings can be turned around manually, and for large bearings, power is turned on momentarily without applying any load at all, then turned off, and then their performance is checked whether they run smoothly.

Followings and others need to be checked; Excessive torque or noise or vibration, or interfere-

nce in the revolving parts, caused by imbalance revolution torque caused by inserted foreign materials or dust, groove or indentation mark, or improper mounting, inappropriate amount of clearance, or seal friction.

14-3-2 Operation Test with Power On

If no abnormality is found during manual test, then the bearing's performance is tested again with power on.

The test is carried on by starting the machine in low speed without applying any load, and then accelerating it in accordance with specified

condition until rated operation is achieved. Its performance is checked during whole operation for noise, abnormal sound, bearing temperature variation, temperature rise due to friction, color changes and leakage of lubricant, etc.

It's possible to directly measure the temperature of bearing outer ring through oil hole, but, in general, it is estimated by measuring the temperature of housing's outer surface. Bearing temperature rises as running time passes, but after certain time, it reaches constant normal running temperature. But, if there exists some bearing mounting error, excessive inner clearance, or excessive friction in sealing device, etc., then temperature rises rapidly, which calls for inspection.

14-4 Dismounting of Bearings

When it is required to inspect or replace the bearings, the mounted bearings have to be dismounted first.

Dismounting of bearings require careful handling just like its mounting, and bearings need to be designed from the beginning with dismounting safety and convenience in mind, so as not to damage the bearing, shaft, housing, or any other surrounding parts during dismounting, and proper dismounting tools should also be provided.

If the bearings are to be used again, the extraction force should be applied only to the tightly fitted bearing ring with interference.

14-4-1 Dismounting of Cylindrical Bore Bearings

It is efficient enough to use, in case of small bearings, a rubber hammer, or an extracting tools as shown on Fig. 14-7 or 14-8, or a press as shown on Fig.14-9. And with non-separable bearings, such as deep groove ball bearings, if the inner ring is tightly fitted, then care should be taken to apply all extraction forces only to the inner ring.

When extraction tools are used to dismount the bearings, inner ring supporting parts of them should be sufficiently fixed onto the side of inner ring. This is why the size of shaft lip dimension as well as the location of groove for holding extraction tool have to be considered from the initial design stage.

When a tightly-fitted large bearing is mounted onto the shaft, large extraction force is required. In this case, oil injection method, which utilizes oil pressure on the tightly fitted surface, is widely used. This method works because inner ring gets expanded as wide as the thickness of oil film formed by forced injection, which makes bearing dismounting that much easier.

In case of dismounting cylindrical roller bearings of NU or NJ types, or others, which has no lip, or just one integral lip, the induction heating device that rapidly heats up and expands the inner ring locally is used.

When dismounting non-separable bearings, a loosely fitted side should be separated first, and then the tightly fitted side is dismounted. And when dismounting separable bearings, inner and outer rings can get dismounted independent of each other.

14. Handling of Bearings

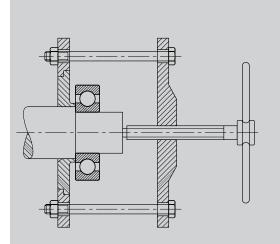


Fig. 14-7 Dismounting of Ball Bearing by using a Extraction Tool

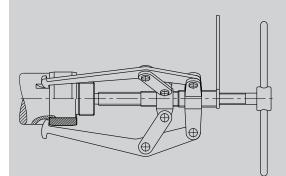
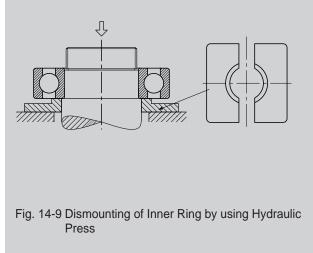
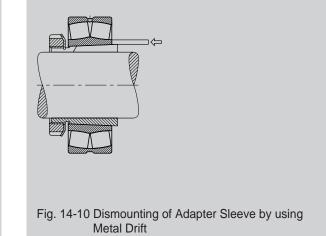


Fig. 14-8 Dismounting of Inner Ring of Cylindrical Roller Bearing by using a Extraction Tool


14-4-2 Dismounting of Tapered Bore Bearings


When the bearings are directly on the tapered seat or an adapter sleeve, the lock nut is loosened first, and then mounting disk is placed before it is driven off by means of a hammer(Refer to Fig. 14-10, 14-11).

Withdrawal sleeve mounted bearings are removed by means of the extraction nut. If difficulty is expected to remove them, bolt holes may be drilled in advance on the circumference, so that bearing can be removed by fastening the bolts(Refer to Fig. 14-12).

The hydraulic nut is applied to facilitate the dismounting of large-size bearings(Refer to Fig. 14-13)

In case that oil grooves and supply holes have been drilled on tapered shaft in advance, or that the sleeve with oil groove and supply hole is used, bearings can be easily removed without damaging the surfaces by using the oil pump, because forcefully injected protects the rubbing surfaces.(Refer to Fig. 14-4, 14-5). However, since the press fit is released abruptly, a stop such as a nut should be provided to control the movement of the bearing.

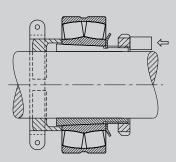


Fig. 14-11 Dismounting of Adapter Sleeve by using Stop Nuts

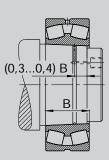


Fig. 14-14 Dismounting of Tapered Shaft by using Hydraulic Pressure

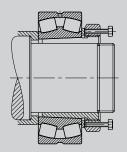


Fig. 14-12 Dismounting of Withdrawal Sleeve by using Bolts

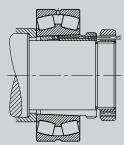


Fig. 14-15 Dismounting of Withdrawal Sleeve by using Hydraulic Pressure

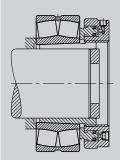
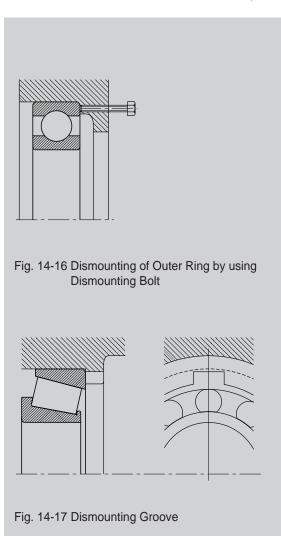


Fig. 14-13 Dismounting of Withdrawal Sleeve by using Hydraulic Nuts

14. Handling of Bearings


14-4-3 Dismounting of Outer Rings

Two methods are widely used to dismount a tightly-fitted bearing outer rings.

First, one can drill several holes for outer ring extraction bolts on the circumference of bearing housing in advance, so as to fasten the bolts uniformly to dismount a ring, as shown on Fig. 14-16. Second, one can make some grooves for dismounting metal piece on the housing lip, and then use hydraulic press or hammer to dismount the ring, as shown on Fig. 14-17.

The other method of cold extraction effect by using dry ice or liquified nitrogen gas is quite efficient in that it requires light extraction force and extraction can be done easily.

However its extraction cost is comparatively

expensive than other methods, so this method is employed only in some special cases.

14-5 Compression and Extraction Forces

Amount of compression or extraction forces required to be applied to tightly fit or extract the bearings by giving the interferences is calculated as follows.

 $F_p ext{ } \cdot P_m \cdot ext{ } \cdot d(\text{or } D) \cdot B$ (Equation14-1)

Where,

- F_p: Compression or extraction force [N]
- P_m : Pressure on tightly fitted surface [N/mm²]
- d : Bearing bore diameter [mm]
- D : Bearing outer diameter [mm]
- B : Width of inner or outer ring [mm] : Sliding friction coefficient

Actual forces required to mount or dismount bearings on the job are much bigger than the figures theoretically obtained by using above equation.

Therefore, the above equation should be used just as a reference, and mounting or dismounting tools should be designed to withstand much stronger forces.

Table 14-1 Sliding Friction Coefficient

Condition	Coefficient()
When mounting inner ring on cylinder shaft	0.12
When dismounting inner ring from cylinder shaft	0.18
When mounting inner ring on tapered shaft or sleeve	0.165
When dismounting inner ring from tapered shaft	0.135
When mounting sleeve on shaft or bearing	0.3
When dismounting sleeve from shaft or bearing	0.33

15. Damage to Bearings and Preventive Measures

15. Damage to Bearings and Preventive Measures

When bearings are used normally and rightfully, they usually can run longer than their theoretical fatigue lives. If that's not the case, bearings can be easily damaged before its life span. It is necessary to find out the exact causes for abnormal damages to a bearing, but it is quite difficult to determine the causes just by examining the damages to the bearing.

Therefore, following points including damaged shape of a bearing have to be analyzed comprehensively to construct the causes, and their appropriate measures to prevent early damages from recurring; operating conditions, surrounding structure, status before and after the damage to the bearing, etc. damage to a bearing are shown on Table 15-1, and typical shape of bearing damages, and their causes and preventive measures are shown on Table 15-2.

Presumed causes depending on the times of

Table 15-1 Occurring Time and Causes for Abnormal Bearing Damages

Occurring Time of Damage	Improper Selection of Bearing	Faulty Design or Fabrication of Surrounding Parts	Improper Mounting of	Improper Lubricant, Lubricating	Improper Seal Intrusion of Moisture or	Bearing Defect
		(Shaft, Housing, et		Method or Amount	Other Foreign Particles	
Immediately after mounting or during initial operation period	•	•	•	•		•
Immediately after bearing dismounting and re-mounting			•	•	•	
Immediately after supplying lubricant				•	•	
Immediately after repairing or replacing shaft, housing, etc.		•	•		•	
Some time after operation begins	•	•	•	•	•	•

Damaged Shape		Causes	Preventive Measures
Flaking (Fig. 15 1,2)	All through circumference at the center of radial bearing raceway.	Narrow clearance	Examine the amount of tight fit interference. Examine the bearing clearance.
	Symmetrically on the circumference of radial bearing raceway.	Poor roundness of shaft or housing Poor precision of divided housing	Re fabrication or re production of sha or housing
	Inclined against circumference of radial bearing raceway. On the raceway of roller bearing and on edges of rolling elements	Improper mounting Bent shaft Eccentricity	Increase shaft rigidity Correction of shaft or housing lip angl to be perpendicular Proper mounting
	Just on parts of inner or outer ring raceway circumference	Excessive load	Replace with larger bearing with large load capacity
	On raceway in interval of a rolling element	Heavy impact during mounting Corrosion during non operation period	Proper mounting Measures to prevent corrosion during non operation period
	Only on one side of radial bearing raceway	Abnormal axial load	Securing of free end considering thermal expansion of shaft
	Early occurrence on combination bearing	Excessive preload	Adjust preload
Scratches (Fig. 15 3,4)	Occurrence on raceway	Insufficient lubricant Grease is too light When starting, too fast acceleration	Insufficient lubricant Grease is too light When starting, too fast acceleration
	Spiral marks on thrust ball bearing raceway	Raceway is not parallel Too fast acceleration	Mount the bearing carefully and precisely Apply an appropriate amount of preload Re select the bearing
	Marks on roller face and shoulder lip	Poor lubrication Excessive axial load	Re examine the lubricant and lubricating method Re select the bearing Take the preventive measures agains thermal expansion
Crack(Fig. 15 5)	Cracks on inner or outer ring	Excessive impact load Excessive interferences Progress from flaking	Take the preventive measures agains impact load Mount the bearing carefully and precisely Re examine the tight fit interferences Take the preventive measures agains flaking
	Cracks on rolling element or lip	Impact during mounting Accidental drop while carrying or handling Progress from flaking	Mount the bearing carefully and precisely Take precautions while carrying or handling Take the preventive measures agains flaking
Damaged cage(Fig. 15 6)	Damaged cage(Fig. 15 6)	Abnormal application of load due to improper mounting Improper lubrication	Mount the bearing carefully and precisely Re examine the lubricant and lubricating method
Indentation Marks(Fig. 15 7,8)	On raceway in interval of a rolling element	Impact load during mounting Excessive load while at rest	Mount the bearing carefully and precisely Re examine the bearing load capacity
	Minute indentation marks on raceway and roller surface	Intrusion of metal particles or sand, etc.	Clean the surrounding before mounting Improve sealing to prevent foreign particle intrusion

Table 15-2 Typical Shape of Bearing Damages, and Their Causes and Preventive Measures

Damaged Shape		Causes	Preventive Measures
Abnormal abrasion (Fig. 15-9)	Abrasion marks on raceway, lip, or cage	Foreign particle intrusion Poor lubrication	Clean the surrounding before mounting Improve sealing to prevent foreign particle intrusion Re-examine the lubricant and lubricating method
	Fretting	Sliding abrasion caused by minute gap	Re-examine the tight-fit interferences Apply grease or equivalent on shaft or housing
	Сгеер	Insufficient interferences	Re-examine the tight-fit interferences
	False brinelling	Vibration while at rest or carrying Shaking movement of small amplitude	Take the measures against vibration Apply preload Change the lubricant to that with a higher viscosity
Seizure (Fig. 15-10)	Discoloring, softening, and seizure of raceway, rolling element, lip surface	Too small clearance Poor lubrication Improper mounting	Re-examine the clearance or tight-fit interferences Re-examine the lubricant and lubricating method Mount the bearing carefully and precisely
Electric corrosion (Fig. 15-11)	Uneven surface on raceway	Seizure due to sparks generated by passing current	Grounding Use insulation grease Use insulation bearing
Rust, Corrosion (Fig. 15-12, 13)	Happens on inside a bearing Happens on tight-fit surfacea	Intrusion of moisture in the air Fretting Intrusion of corrosive material	Take care while storing Take the measures against fretting Take the measures against varnish, gas, etc.

Fig. 15-1 Generation of Flaking on Inner Ring Raceway of Deep Groove Ball Bearing

Fig. 15-2 Generation of Flaking on Inner Ring Raceway of Deep Groove Bearing

15. Damage to Bearings and Preventive Measures

Fig. 15-3 Scratches on Outer Ring Raceway of Tapered Roller Bearing

Fig. 15-4 Scratches on Larger Side Surface of Tapered Roller Bearing

Fig. 15-5 Crack on Outer Ring Raceway of Deep Groove Ball Bearing

Fig. 15-6 Damaged Cage of Tapered Roller Bearing

Fig. 15-7 Indentation Marks on Outer Ring Raceway of Tapered Roller Bearing

Fig. 15-8 Indentation and Flaking on Outer Ring Raceway of Deep Groove Ball Bearing

Fig. 15-9 Creep on Outer Ring Surface of Deep Groove Ball Bearing

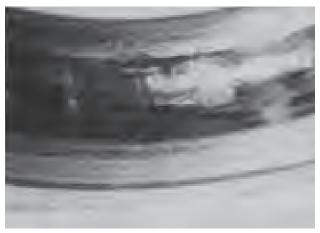


Fig. 15-10 Seizure on Outer Ring Raceway of Deep Groove Ball Bearing

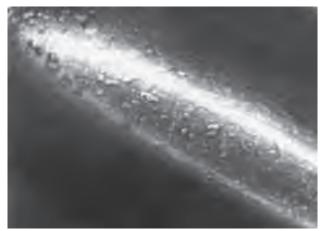


Fig. 15-11 Electric Corrosion on Outer Ring Surface of Deep Groove Ball Bearing

Fig. 15-12 Corrosion on Tapered Roller Bearing

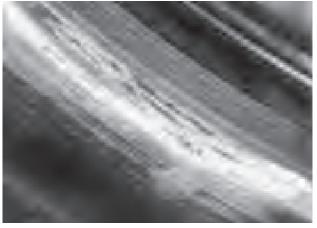


Fig. 15-13. Corrosion on Outer Ring Raceway of Deep Groove Ball Bearing

16. Packages

KBC adapts contents, dimensions and weights of original packages to the customer requirements, specially with regard to easy handling.

The following packing units are used as original packages.

Individual Package "P,L"

Contents: 1 piece

A bearing is wrapped individually in plastic foil first, and then it is put in a small folding paper box, and these are put in a medium-sized box again.

Plastic foil is clear on one side, so that bearing sealing type can be identified, and only a basic number code is printed on foil out of bearing Specification Code. The complete Specification Code is shown only on medium-sized box.

These packages are generally for repair parts or

for retailers.

Roll Package "U"

Contents: Multiples of 5(Except some mediumsized bearings)

They are usually wrapped in 10-piece unit in paper or plastic foil, and then they are put in cardboard(Code R. In case of separately packing inner and outer rings of separable bearings, Code 1) or hard plastic boxes(Paper roll is Code X; Plastic foil roll is Code C; In case of separately packing inner and outer rings of separable bearings, Code is No. 4).

These packages are usually for customers consuming rather large quantity of bearings. The contents of opened packing units should be used as quickly as possible

Fig. 16-1 Individual Package(Paper box)-P

Fig. 16-3 Roll Package(Cardboard box)-U

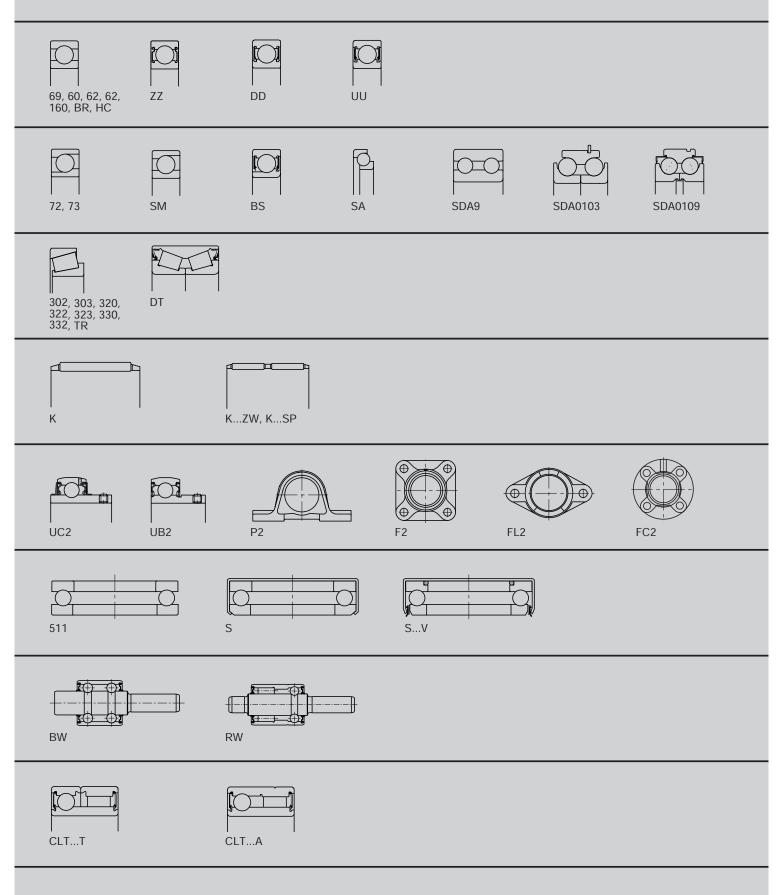
Fig. 16-2 Individual Package(Plastic foil and middle box)-L

Fig. 16-4 Roll Package(Hard plastic box)-C, X

Bulk Package "G, T, Y"

Contents: Differs depending on the sizes of products

In consideration of conserving packing materials, bearings are packed individually in a plastic foil, but not in an individual paper box.


They are put in cardboard boxes(Code G. In case of separately packing inner and outer rings of separable bearings, Code 5) or hard plastic boxes(Code T or Y; In case of separately packing inner and outer rings of separable bearings, Code is No. 2 or 3).

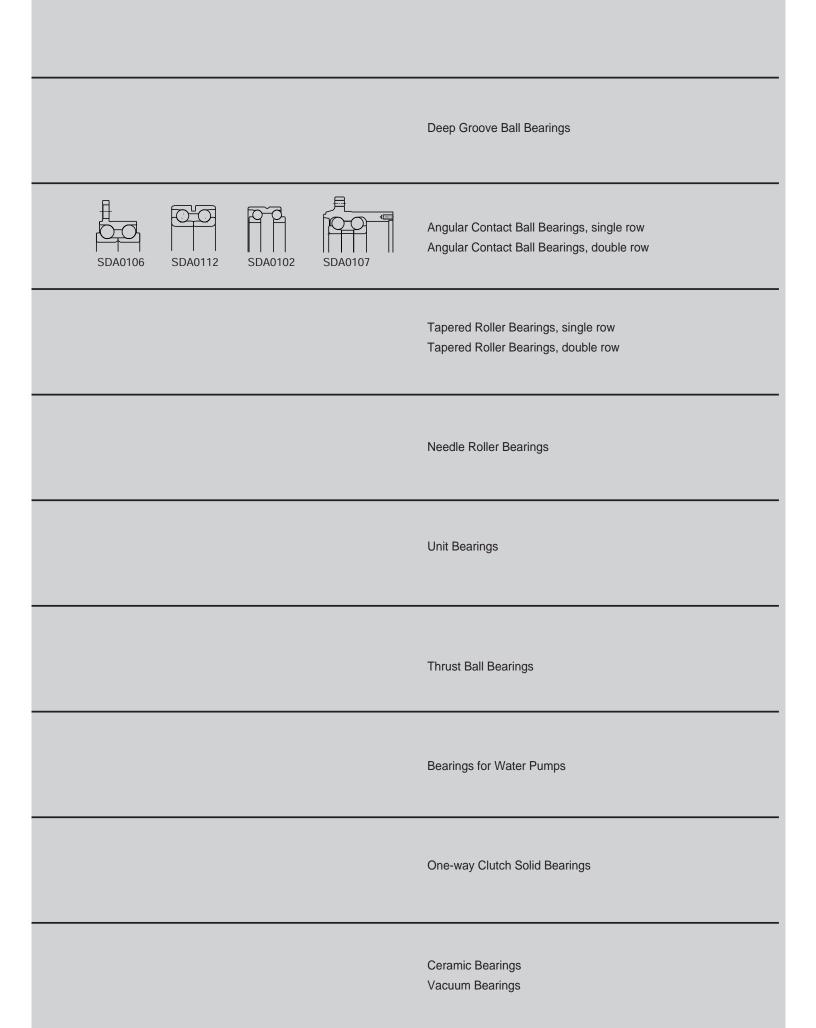

These packages are usually for customers consuming rather large quantity of bearings. The contents of opened packing units should be used as quickly as possible.

Fig. 16-5 Bulk Package(Hard plastic box)-T, Y

Dimension Table

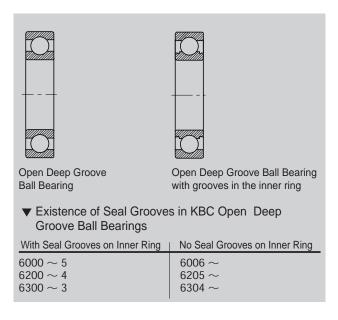
KBC Deep Groove Ball Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Deep Groove Ball Bearings

Standards · Basic Designs · Tolerances · Bearing Clearance · Cages · Alignment


Standards

Single row deep groove ball bearings KS B 2023

Basic Designs

Deep groove ball bearings are available as open design, and sealed design with either non-contact or contact seal. Ava-ilability of various KBC designs makes it possible for the customers to choose right kind of bearing suitable for their specific operating and enviro-nmental conditions.

Sealed bearings have grooves on inner ring for seals, but open type bearings do not have grooves on them as principle. However, Bearings which are supplied as sealed basic design may have grooves in the outer ring for the seals or shields also as open bearings, due to manufacturing reasons.

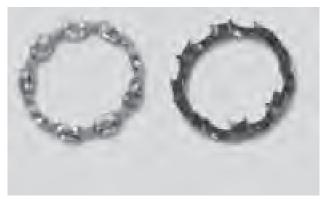
Tolerances

Single row deep groove ball bearings of basic design have normal tolerances.

Bearings with narrow tolerances are supplied on request.

Tolerances: Refer to Table 7-2 Tolerances of Radial Bearings on Page 68.

Bearing Clearances


Single row deep groove ball bearings of basic design have normal clearances(MC3 Clearance for small-sized bearings.) Bearings with an increased bearing clearance are supplied on request.

Radial Clearances: Refer to Table 9-1 Radial Internal Clearances of Single Row Deep Groove Ball Bearings on Page 92, andTable 9-2 Radial internal Clearances of Small Diameter Deep Groove Ball Bearings on Page 92.

Cages

Basic deep groove ball bearings without cage suffix are fitted with a pressed steel cage. Pressed steel cage specially treated to improve abrasionresistance and oil-proof quality are available also on request.

polyamide 66 cages can be used at operating temperatures of up to 120°C over extended periods. If the bearings are lubricated with oil, any additives contained in the oil may reduce the cage service life. Also, aged oil may reduce the cage life at higher temperatures; therefore, the oil change intervals have to be strictly observed

Alignment

The self-aligning capacity of deep groove ball bearings is limited; this calls for well aligned bearing seats. Misalignment impairs the smooth running of the balls, induces additional stress in the bearing and consequently reduces the bearing service life.

KBC Deep Groove Ball Bearings Speed Suitability · Heat Treatment · Sealed Bearings · Equivalent Loads

In order to keep additional stressing within reasonable limits, only minor misalignments depending on the load - are permissible for deep groove ball bearings.

▼ Angle of Misalignment in Angular Minutes					
Bearing Series	Low Loads	High Loads			
62, 63 69, 160, 60	5′10′ 2′ 6′	8'16' 5'10'			

Speed Suitability

Deep groove ball bearings are suitable for high speeds. Permissible speeds of bearings lubricated by grease or oil are listed on the Dimension Tables.

In the cases exceeding normal load conditions(When an applied load to a bearing is less than 8% of dynamic load rating and when axial load is less than 20% of radial load.), contact KBC.

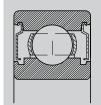
Heat Treatment

KBC deep groove ball bearings are heat-treated in such a way that they can be used at operating temperatures of up to 120° C. If ordinary bearings are used at a temperature above 120° C, their hardness or dimension can be lowered or changed. The special bearings treated for stability even at the temperatures up to 350° C are available on request.

The operating temperatures of KBC deep groove ball bearings, which have been treated for dimensional stability under high temperatures, are shown below.

Care should be taken for sealed bearings and bearings with polyamide cages to observe the operating temperature limits.

Sealed Deep Groove Ball Bearings


In addition to open deep groove ball bearings, KBC supplies as basic designs also deep groove ball bearings with shields(Non-contact steel plate seals) or seals(Contact seals) on both sides. All these bearings are filled at the manufacturer's plant with a high-quality grease, tested to KBC specifications.

Sealed bearings get to be sealed completely by labyrinth formed between seal groove on inner ring and shield bore.

Sealed bearings are divided into two types depending on existence of contact between seal lip and bearing inner ring, namely contact and noncontact types. Non-contact seals, which create small and long labyrinth, have better sealing quality than shield type, although they produce about same torque performances.

Contact seals are excellent sealers, but their torque and permissible speeds are inferior than those of shield or non-contact types.

KBC supplies also other kinds of sealed bearings with seals of various shapes and materials, suitable for all kinds of operational environment of the customers. Contact KBC for details.

ZZ(Z) Shields on Both Sides

DD(D) Rubbing Seals on Both Sides

ZZ1(Z1) Shields on Both Sides(Small bore bearings)

UU(U) Non-rubbing Seals on Both Sides

▼ Operating Temperatures of KBC Deep Groove Ball Bearings, dimensionally stable under high temperatures.

Suffix	Max. Temperature
S0	150°C
S1/SH1/SS1	200°C
SH2/SS2	250°C
SH3	300°C
SH4	350°C

KBC Deep Groove Ball Bearings

Equivalent Loads · Special Bearings · Abutment Dimensions · Prefixes · Suffixes

Equivalent Dynamic Load

P $X \cdot F_r + Y \cdot F_a$

The contact angle of deep groove ball bearings increases with the axial load. Therefore, the factors X and Y depend on F_a/C_0 , as shown on below Table.

▼ Radial Factors and Thrust Factors for Deep Groove Ball Bearings										
F_a/C_0	е	F_a/F_b	r≦e	$F_a/F_r > e$						
		Х	Y	ХҮ						
0.014	0.19	1	0	0.56 2.30						
0.028	0.22	1	0	0.56 1.99						
0.056	0.26	1	0	0.56 1.71						
0.084	0.28	1	0	0.56 1.55						
0.11	0.30	1	0	0.56 1.45						
0.17	0.34	1	0	0.56 1.31						
0.28	0.38	1	0	0.56 1.15						
0.42	0.42	1	0	0.56 1.04						
0.56	0.44	1	0	0.56 1.00						

Equivalent Static Load

$P_0 F_r : F_r$	$\frac{1}{r} \leq 0.8$ for
-----------------	----------------------------

$$P_0 \quad 0.6 \cdot F_r + 0.5 \cdot F_a \qquad \qquad : \ \frac{F_a}{F_r} > 0.8 \ \text{for}$$

Special Bearings

KBC has developed some special deep groove ball bearings, suitable to used under various special and extreme operating conditions.

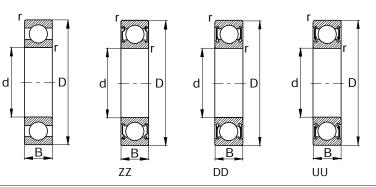
Some of them are; Creep-prevention bearings with two plastic resin bands on outside surface(Prefix EC), ceramic bearings for high-speeds with excellent chemical-resistance, heat-resistance, and vacuum bearings coated with solid lubricant, polymer bearings with solid lubricant, 4-point contact ball bearings restricting axial clearance variations against radial clearance by tight-fits. Contact KBC for details.

Abutment Dimensions

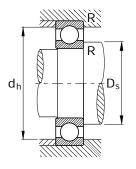
The bearing rings should closely fit the shaft or housing shoulder; they must not be allowed to foul the shoulder fillet radius. Consequently, the maximum fillet radius R of the mating part must be smaller than the minimum corner, r_{min} , of the deep groove ball bearing.

The shoulder of mating parts must be so high that even with maximum bearing corner there is an adequate abutment surface area. The Dimension

Table on the next pages list the maximum fillet radius, R, and the minimum shoulder height of shaft, D_s , and the maximum shoulder diameter of housing, d_h .

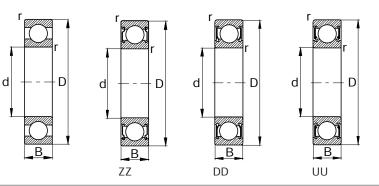

Prefix

- **BR** Basic dimensions(bore diameter, outer diameter, width) and inter designs differ from the standards.
- EC For creep prevention
- HC High-load capacity design

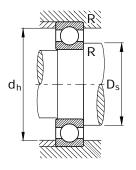

Suffix

- A Inter design differs from the standards.
- F1 Bore diameter differs from the standards.
- F2 Outer diameter differs from the standards.h Width differs from the standards.
- HL Long life, special heat treatment
- PC Glass-fiber reinforced polyamide 66 cage
- SL Pressed steel cage with low temperature nitriding treatment
- ZZ Shields on both sides
- UU Non-rubbing seals on both sides
- DD Rubbing seals on both sides

KBC Deep Groove Ball Bearings Single Row

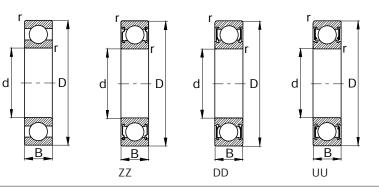


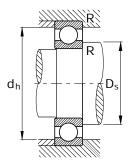
Shaft	Dimens	Dimensions							Abutment Dimensions			
	d mm	D	В	r min			D _s min	d _h max	R max			
8	8 8 8 8	22 22 22 22 22 28	7 7 7 7 9	0.3 0.3 0.3 0.3 0.3			10 10 10 10 10	20 20 20 20 20 26	0.3 0.3 0.3 0.3 0.3			
10	$ \begin{array}{r} 10 \\$	26 26 26 27 30 30 30 30 30 30	8 8 8 11 8 9 9 9 9 9 9	0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6			12 12 12 12 12 12 14 14 14 14 14 14 14	24 24 24 25 26 26 26 26 26 26 26	0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6			
	10 10 10 10	35 35 35 35	11 11 11 11	0.6 0.6 0.6 0.6			14 14 14 14	31 31 31 31 31	0.6 0.6 0.6 0.6			
12	$ \begin{array}{r} 12 \\ $	28 28 28 28 28 32	8 8 8 10	0.3 0.3 0.3 0.3 0.3			14 14 14 14 14 16	26 26 26 26 28 28	0.3 0.3 0.3 0.3 0.3			
	$ \begin{array}{r} 12 \\$	32 32 32 37 37 37 37 37 37	10 10 10 12 12 12 12 12 12	0.6 0.6 0.6 1 1 1 1 1			16 16 16 17 17 17 17 17	28 28 28 32 32 32 32 32 32	0.6 0.6 1 1 1 1 1			
12.7	12.7	32	10	0.6			17	27.5	0.6			
13	13	31	7	0.3			15	29	0.3			
15	15 15 15 15 15 15	32 32 32 32 32 32	9 9 9 9 9	0.3 0.3 0.3 0.3 0.3			17 17 17 17 17 17	30 30 30 30 30 30	0.3 0.3 0.3 0.3 0.3 0.3			



Load Rati	ng			Permissible Speed		Standards	$\underset{\approx}{\text{Weight}}$
Dynamic C		Static C ₀		Grease Lubrication	Oil	Bearing	
 Ν	kgf	Ν	kgf	min ⁻¹		КВС	kg
 3300	336	1370	140	34000	40000	608	0.012
 3300	336	1370	140	34000	40000	608ZZ1	0.012
 3300	336	1370	140	34000		608UUG	0.012
 3300	336	1370	140	28000		608DDG	0.012
 4550	464	1960	200	28000	34000	638ZZ	0.025
 4550	464	1960	200	30000	36000	6000	0.018
 4550	464	1960	200	30000		6000ZZ	0.018
4550	464	1960	200	30000		6000UU	0.018
 4550	464	1960	200	22000		6000DD	0.018
4550	464	1960	200	19000		EC6000DDF2h	0.022
 5100	520	2390	244	24000	30000	6200h	0.023
5100	520	2390	244	24000	30000	6200	0.031
5100	520	2390	244	24000		6200ZZ	0.032
5100	520	2390	244	24000		6200UU	0.032
 5100	520	2390	244	18000		6200DD	0.032
 8100	826	3450	352	22000	26000	6300	0.051
 8100	826	3450	352	22000		6300ZZ	0.053
 8100	826	3450	352	22000		6300UU	0.053
 8100	826	3450	352	17000		6300DD	0.053
 5100	520	2370	242	28000	32000	6001	0.021
 5100	520	2370	242	28000		6001ZZ	0.021
5100	520	2370	242	28000		6001UU	0.021
 5100	520	2370	242	18000		6001DD	0.021
 6800	693	3050	311	22000	28000	6201	0.036
 6800	693	3050	311	22000	20000	6201ZZ	0.038
 6800	693	3050	311	22000		6201UU	0.038
 6800	693	3050	311	17000		6201DD	0.038
 9700	989	4200	428	20000	24000	6301	0.058
 9700	989	4200	428	20000	21000	6301ZZ	0.06
 9700	989	4200	428	20000		6301UU	0.06
9700	989	4200	428	16000		6301DD	0.06
 6800	693	3050	311	22000		6201ZZF1	0.037
 6800	693	3050	311	23000	28000	BR1331	0.066
0000	033	3030	511	23000	20000		0.000
 5600	571	2010	200	24000	20000	6002	0.02
 5600	571	2840	290	24000	28000	6002	0.03
 5600	571	2840	290	24000		6002ZZ	0.032
 5600 5600	<u>571</u> 571	2840 2840	290 290	24000 15000		6002UU 6002DD	0.032 0.032
 5600	571	2840	290	15000		EC6002DD	0.032
 5000	571	2040	290	15000		ECOUUZDD	0.03

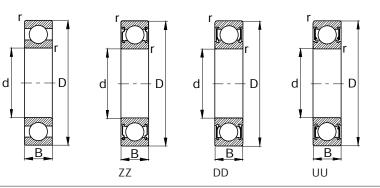
KBC Deep Groove Ball Bearings Single Row

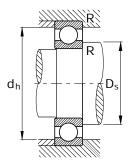

Shaft	Dimensio	ons			Abutmen	Abutment Dimensions			
	d mm	D	В	r min	D _s min	d _h max	R max		
15	15	35	11	0.6	19	31	0.6		
	15	35	11	0.6	19	31	0.6		
	15 15	35 35	11 11	0.6 0.6	<u>19</u> 19	31 31	0.6		
	15	35	11	0.6	19	31	0.6		
	15	40	11	0.6	19	36	0.6		
	15	40	11	0.6	19	36	0.6		
	15	42	13	1	20	37	1		
	<u>15</u> 15	42 42	13 13	1	<u>20</u> 20	37 37	1		
	15	42	13	1	20	37	1		
	15	42	13	1	20	37	1		
	15	42	13	1	20	37	1		
	15	47	14	1	20	42	1		
15.875	15.875	34.925	11	0.6	20	31	0.6		
	15.875	35	11	0.6	20	31	0.6		
	15.875	40	12	0.6	20	36	0.6		
6	16	35	11	0.6	20	31	0.6		
7	17	30	7	0.3	19	28	0.3		
	17	30	7	0.3	19	28	0.3		
	17	30	7	0.3	19	28	0.3		
	17	35	10	0.3	19	33	0.3		
	17	35	10	0.3	19	33	0.3		
	17	35	10	0.3	19	33 33	0.3		
	17	35	10	0.3	19	33	0.3		
	17	40	12	0.6	21	36	0.6		
	17	40	12	0.6	21	36 36	0.6		
	17	40	12	0.6	21	36	0.6		
	17	40	12	0.6	21	36	0.6		
	17	40	12	0.6	21	36	0.6		
	17	42	12	0.6	21	36	0.6		
	17	42	13	1	21	36.5	1		
	17	47	14	1	22 22	42	1		
	17	47	14	1	22	42	1		
	17 17	47 47	14 14	<u>1</u> 1	22 22	42 42	1		
	17	47	17	1	22	41.5	1		


Load Ra	ating			Permissible Speed		Standards	$\overset{\text{Weight}}{\approx}$
Dynami C	С	Static C ₀		Grease Lubrication	Oil	Bearing	
Ν	kgf	N	kgf	min ⁻¹		KBC	kg
7650	780	3700	377	20000	24000	6202	0.044
7650	780	3700	377			6202ZZ	0.046
7650	780	3700	377	20000		6202UU	0.046
7650	780	3700	377	14000		6202DD	0.046
7650	780	3700	377	14000		EC6202DD	0.044
7650	780	3700	377	20000		6202ZZF2	0.048
7650	780	3700	377	20000		6202UUF2	0.048
11400	1160	5450	556	17000	20000	6302	0.081
13300	1360	5900	601	18000	22000	HC6302	0.082
<u>11400</u> 11400	<u> </u>	5450 5450	<u>556</u> 556	<u> </u>		6302ZZ 6302UU	0.083
11400	1160	5450	556	13000		6302DD	0.083
11400	1160	5450	556	13000		EC6302DD	0.083
			070				
13650	1390	6600	673	11900		AT303/15DD	0.132
7650	780	3700	377	14000		99502H	0.04
7650	780	3700	377	14000		6202DDF11	0.04
9550	973	4800	489	12000		6203DDF1	0.069
7650	780	3700	377	14000		6202DDF1	0.04
4000	400	2550	200	24000	20000	6002	0.017
4600 4600	<u>469</u> 469	2550 2550	260 260	24000 24000	28000	6903 6903ZZ	0.017
4600	469	2550	260	15000		6903DD	0.019
6000	612	3250	331	22000	26000	6003	0.041
6000	612	3250	331	22000	20000	6003ZZ	0.041
6000	612	3250	331	22000		6003UU	0.043
6000	612	3250	331	13000		6003DD	0.043
9550	973	4800	489	17000	20000	6203	0.065
9550	973	4800	489	17000		6203ZZ	0.067
9550	973	4800	489	17000		EC6203ZZ	0.067
9550	<u>973</u> 973	<u>4800</u> 4800	489	<u> </u>		6203UU	0.067
9550			489			6203DD	0.067
9550	973	4800	489	12000		6203DDF2	0.071
11400	1160	5450	556	13000		EC6302DDF1	0.072
13600	1390	6600	673	15000	18000	6303	0.11
13600	1390	6600	673	15000		6303ZZ	0.113
13600 13600	1390 1390	6600 6600	673 673	<u>15000</u> 11000		6303UU 6303DD	0.113 0.113
13600	1390	6600	673	11000		6303DDh	0.189

Bearings of different designs can be custom-made on request.

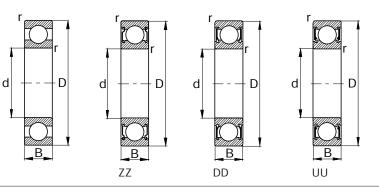
KBC Deep Groove Ball Bearings Single Row

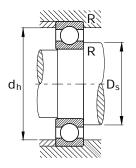

Shaft	Dimensi	ons			Abutment	Abutment Dimensions		
	d mm	D	В	r min	D _s min	d _h max	R max	
17	17	52	15	1.1	24	45	1	
	17	52	18	1	22.5	46.5	1	
19	19	33	7	0.5	22	30	0.5	
	19	35	7	0.3	21	33	0.3	
	19	35.7	7	0.3	21	34	0.3	
19.05	19.05	30	6.35	0.3	21	28	0.3	
	19.05	34.15	6.35	0.3	21	32	0.3	
20	20	35	8	0.5	22	33	0.5	
	20	36	9	0.3	22	34	0.3	
	20	37	9	0.3	22	35	0.3	
	20 20	37 37	9 9	0.3 0.3	22 22	35 35	0.3 0.3	
	20	42	12	0.6	23.5	38.5	0.6	
	20	42	12 12	0.6	23.5	38.5	0.6	
	20 20 20 20	42 42	12	0.6 0.6	23.5 23.5 23.5 23.5 23.5	38.5 38.5 38.5 38.5 38.5	0.6 0.6	
	20	47	14	1	25.5 25.5	41.5	1	
	20 20 20 20 20 20	47	14	1	25.5	41.5	1	
	20	47 47	14 14	1	<u> </u>	41.5 41.5	1	
	20	47	14	1	25.5 25.5 25.5 25.5	41.5	1	
	20	49	16	0.3	22.5	46.5	0.3	
	20 20	52 52	15 15	1.1	27 27	45 45	1	
	20	52	15	1.1	27	45	1	
	20 20	52 52	15 15	1.1 1.1	27 27	45 45	1	
	20	62	16	0.5	24	57.5	0.5	
	20	62	17	1.1	27	55	1	
22	22	42	12	0.6	25.5	39	0.6	
	22 22	50	14	1	27.5	44.5	1	
	22	50	14	1	27.5	44.5	1	
	22	56	15	1.1	29	49	1	


	Load Ratin Dynamic	g	static		Permissible Speed Grease		Standards	Weight $pprox$
	С		C ₀		Lubrication	Oil	Bearing	
-	Ν	kgf	Ν	kgf	min ⁻¹		KBC	kg
_	15900	1620	7850	800	11000		6304DDF11	0.198
	18200	1860	9050	923	11000		BR1752DD	0.174
	4850	494	2860	292	20000	23000	BR1933	0.021
	4550	464	2620	267	19000	23000	BR1935	0.026
-	6000	612	3250	331	19000	23000	BR1936	0.026
	3500	357	2210	225	21000	25000	BR1930	0.017
_	4850	494	2860	292	20000	23000	BR1934	0.024
	4550	464	2620	267	19000	22000	BR2035	0.027
	6350	647	3700	377	19000	22000	6904F2	0.033
=	6350 6350 6350	647 647 647	3700 3700 3700	377 377 377	19000 19000 12000	22000	6904 6904ZZ 6904DD	0.037 0.039 0.039
	9400 9400 9400 9400 9400	958 958 958 958 958	5000 5000 5000 5000 5000	510 510 510 510 510	18000 18000 18000 11000	20000	6004 6004ZZ 6004UU 6004DD	0.067 0.07 0.07 0.07 0.07
≣	12800 15700 12800 12800 12800	1310 1600 1310 1310 1310 1310	6650 7700 6650 6650 6650	678 785 678 678 678 678	15000 15000 15000 15000 11000	18000 18000	6204 HC6204 6204ZZ 6204UU 6204DD	0.104 0.105 0.108 0.108 0.108
	14700	1500	7150	729	11000		BR2049DD	0.13
	15900 15900 15900 15900	1620 1620 1620 1620	7850 7850 7850 7850	800 800 800 800 800	14000 14000 14000 10000	17000	6304 6304ZZ 6304UU 6304DD	0.141 0.145 0.145 0.145 0.145
_	19400	1980	11300	1150	13000	15000	6206/20	0.245
_	20600	2100	11200	1140	8000		6305DDF11	0.288
	9400	958	5000	510	18000	20000	6004/22	0.061
_	12900 12900	1320 1320	6800 6800	693 693	14000 9500	16000	62/22 62/22DD	0.116 0.119
	18500	1890	9350	953	13000	16000	63/22h	0.165

P

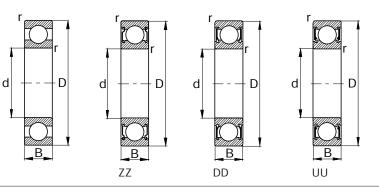
KBC Deep Groove Ball Bearings Single Row

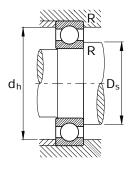

Shaft	Dimens	ions			Abutment Dimensions
	d mm	D	В	r min	D _s d _h R min max max
22	22 22	56 56	16 16	1.1 1.1	29 49 1 29 49 1
24	24	40	8	0.3	26.5 37.5 0.3
25	25	42	9	0.3	27 40 0.3
	25 25 25 25	47 47 47 47	12 12 12 12	0.6 0.6 0.6 0.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	25 25 25 25 25 25	52 52 52 52 52 52	15 15 15 15 15 15	1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	25 25 25 25	62 62 62 62	17 17 17 17 17	1.1 1.1 1.1 1.1 1.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	25 25	63 63	18 18	0.6 0.6	29 59 0.6 29 59 0.6
	25 25	68 68	18 21	0.6	29 64 0.6 29 64 0.6
27	27	58	16	1	32.5 52.5 1
_,	27	68	18	1.1	29.5 61 1
28	28	52	16	0.6	32 48 0.6
	28 28	58 58	16 16	1 1	33.5 52.5 1 33.5 52.5 1
	28	58	16	1	33.5 52.5 1
	28	65	19	2	39 54 2
	28 28	68 68	18 18	1.1 1.1	<u>35 61 1</u> 35 61 1
	28	70	20	0.3	30 68 0.3
	28	72	20	0.3	30 70 0.3
	28	80	21	1.5	37 71 1.5


 Load Ratin	g			Permissible Speed		Standards	Weight \approx
Dynamic C		static C ₀		Grease Lubrication	Oil	Bearing	
Ν	kgf	N	kgf	min ⁻¹		КВС	kg
 18500	1890	9350	953	13000	16000	63/22	0.175
18500	1890	9350	953	9500		63/22DD	0.177
 6700	683	4150	423	16000	19000	BR2440	0.05
 7050	719	4550	464	16000	19000	6905	0.042
 10100	1030	5800	591	15000	18000	6005	0.078
 <u>10100</u> 10100	1030 1030	5800 5800	591 591	<u>15000</u> 15000		6005ZZ 6005UU	0.08
 10100	1030	5800	591	9500		6005DD	0.08
 14000	1430	7900	805	13000	15000	6205	0.126
 14000 14000	1430 1430	7900 7900	805 805	13000 13000		6205ZZ 6205UU	0.13
14000	1430	7900	805	9000		6205DD	0.13
 17700	1800	9350	953	9100		HC6205DD	0.127
 20600 20600	2100 2100	11200 11200	1140 1140	11000 11000	13000	6305 6305ZZ	0.23 0.236
 20600	2100	11200	1140	11000		6305UU	0.236
 20600	2100	11200	1140	8000		6305DD	0.236
23700	2420	12200	1240	12000	14000	B25-63	0.252
 23700	2420	12200	1240			B25-63DD	0.257
 31000	3160	15200	1550	11000	13000	B25-157	0.286
 31000	3160	15200	1550	7700		B25-157DDh	0.312
 16600	1690	95500	973	8000		62/28DDF1	0.192
 26700	2720	14000	1430	7500		63/28DDF11	0.298
 14000	1430	7900	805	8800		BR2852DD	0.133
 16600	1690	9550	973	12000	14000	62/28	0.172
 16600	1690	9550	973	8000		62/28DD	0.174
 17900	1830	9750	994	8200		HC62/28DD	0.173
 26500	2700	13800	1410	7600		BR2865DD	0.256
 26700	2720	14000	1430	10000	13000	63/28	0.281
26700	2720	14000	1430	7500		63/28DD	0.283
 29700	3030	15700	1600	7200		BR2870DD	0.34
 29800	3040	16900	1720	7000		BR2872DD	0.374
 39500	4030	21600	2200	9300	12000	HC6307F11	0.507

Bearings of different designs can be custom-made on request.

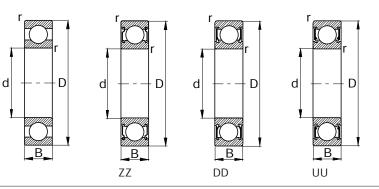
KBC Deep Groove Ball Bearings Single Row

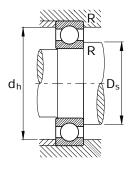

Shaft	Dimens	ions			Abutment	t Dimensions d _h max 53 50 50 50 50 50 50 50 50 57 57 57 57 57 57 57 57 57 57	
	d mm	D	В	r min	D _s min	d _h max	R max
30	30	55	9	0.3	32	53	0.3
	30	55	11.6	1	35	50	1
	30 30 30	55 55 55	13 13 13	1 1 1	35 35 35	50	1 1 1
	30	62	10	0.6	34	58	0.6
	30 30 30 30 30 30	62 62 62 62 62	16 16 16 16 16	1 1 1 1 1	35 35 35 35 35 35 35	57	1 1 1 1 1
	30	62	17	1	35	57	1
	30 30 30 30 30 30	72 72 72 72 72 72 72	19 19 19 19 19 19	1.1 1.1 1.1 1.1 1.1 1.1	37 37 37 37 37 37 37	<u>65</u> 65 65	1 1 1 1 1
	30	75	20	1.1	37	68	1
	30	80	22	1.5	39	71	1.5
32	32	75	20	1.1	39	68	1
	32	90	23	1.5	41	81	1.5
	32	90	25	1.5	41	81	1.5
35	35	62	9	0.3	37	60	0.3
	35 35 35 35	62 62 62 62	14 14 14 14	1 1 1 1	40 40 40 40	57 57 57 57 57	1 1 1 1
	35	66	15	1	40.5	60.5	1
	35	72	16	1.1	41.5	65.5	1
	35 35 35 35	72 72 72 72 72	17 17 17 17 17	1.1 1.1 1.1 1.1	41.5 41.5 41.5 41.5 41.5	65.5 65.5 65.5 65.5	1 1 1 1
	35	72	18.25	1.1	41.5	65.5	1
	35	80	21	1.5	43	72	1.5


	Load Rating	3			Permissible		Standards	Weight
	Dynamic C		Static C ₀		Speed Grease Lubrication	Oil	Bearing	≈
_	Ν	kgf	Ν	kgf	min ⁻¹		КВС	kg
-	11200	1140	7350	749	13000	15000	16006	0.081
_	13200	1350	8300	846	13000		6006UUh1	0.096
_	13200	1350	8300	846	13000	15000	6006	0.113
	13200 13200	1350 1350	8300 8300	<u>846</u> 846	<u>13000</u> 8000		6006ZZ 6006DD	0.117 0.117
	15000	1530	9200	938	11000	13000	68206	0.127
	19400	1980	11300	1150	11000	13000	6206	0.196
_	23400	2390	12900	1320	11000	14000	HC6206	0.197
	<u>19400</u> 19400	<u>1980</u> 1980	11300 11300	<u>1150</u> 1150	<u>11000</u> 11000		6206ZZ 6206UU	0.202
-	19400	1980	11300	1150	7500		6206DD	0.202
			11300		7300			
_	23400	2390	12900	1320	7700		HC6206DDh	0.197
-	26600	2710	15000	1530	9500	12000	6306	0.339
	32500	3310	17300	1760	9900	12000	HC6306	0.34
	26600	2710	15000	1530	9500		6306ZZ	0.328
	26600	2710	15000	1530	9500		6306UU	0.328
_	26600	2710	15000	1530	6700		6306DD	0.328
_	29800	3040	16900	1720	6300		63/32DDF1	0.42
_	39500	4030	21600	2200	6400		HC6307DDF1h	0.51
	29800	3040	16900	1720	6300		63/32DD	0.383
_	40500	4130	23900	2440	5700		6308/32DD	0.702
	47000	4790	26300	2680	5800		HC6308/32DDh	0.713
_	12200	1240	8900	907	11000	13000	16007	0.115
	16000	1630	10300	1050	11000	13000	6007	0.147
	16000	1630	10300	1050	11000		6007ZZ	0.15
	16000	1630	10300	1050	11000		<u>6007UU</u>	0.15
	16000	1630	10300	1050	6700		6007DD	0.15
	18900	1930	11700	1190	7000		BR3566DD	0.2
	25700	2620	15400	1570	9500	11000	6207h2	0.264
_			15400	1570	9500	11000	6207	0.279
-	25700	2620	15400	1370				
	25700 25700	2620 2620	15400	1570	9500		6207ZZ	0.285
	25700 25700	2620 2620	15400 15400	<u>1570</u> 1570	9500 9500		6207UU	0.285 0.285
	25700	2620	15400	1570	9500		6207ZZ 6207UU 6207DD	0.285
	25700 25700	2620 2620	15400 15400	<u>1570</u> 1570	9500 9500	11000	6207UU	0.285 0.285

Bearings of different designs can be custom-made on request.

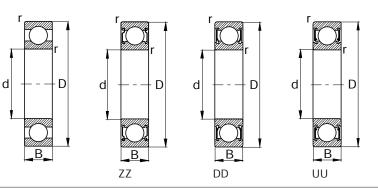
KBC Deep Groove Ball Bearings Single Row

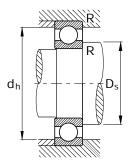

Shaft	Dimens	ions			Abutment	Dimensions	
	d mm	D	В	r min	D _s min	d _h max	R max
35	35 35 35	80 80	21 21	1.5 1.5	43 43	72 72	1.5 1.5
	<u>35</u> 35	80	21	1.5	43 43	72 72	1.5
	35	85	23	0.3	37.5	82.5	0.3
40	40	68	9	0.3	42	66	0.3
	40 40	68 68	15 15	1	45 45	63 63	1
	40 40	68 68	15 15	<u>1</u> 1	45 45	63 63	1
	40 40 40	80 80 80	18 18 18	1.1 1.1 1.1	46.5 46.5 46.5	73.5 73.5 73.5	1 1 1
	40 40 40	80 80	18 18	<u>1.1</u> 1.1	46.5 46.5	73.5 73.5 73.5	1
	40	85	20	1	45.5	79.5	1
	40 40 40 40 40	90 90 90 90 90	23 23 23 23 23 23	1.5 1.5 1.5 1.5 1.5 1.5	48 48 48 48 48 48	82 82 82 82 82 82	1.5 1.5 1.5 1.5 1.5 1.5
	40	90	25	1.5	48	82	1.5
42	42	68	15	1	46.5	63.5	1
43	43	90	25	1.5	52	81	1.5
45	45 45 45 45	75 75 75 75 75	16 16 16 16	1 1 1 1	50 50 50 50 50	70 70 70 70	1 1 1 1
	45	80	16	1	50	75	1
	45 45 45 45	85 85 85 85	19 19 19 19	1.1 1.1 1.1 1.1 1.1	51.5 51.5 51.5 51.5 51.5	78.5 78.5 78.5 78.5 78.5	1 1 1 1
	45 45 45 45	100 100 100 100	25 25 25 25 25	1.5 1.5 1.5 1.5	53 53 53 53 53	92 92 92 92 92	1.5 1.5 1.5 1.5 1.5


	Load Ratin	g			Permissible		Standards	Weight
	Dynamic		Static		Speed Grease	Oil		\approx
	C		C_0		Lubrication	UII	Bearing	
	Ν	kgf	Ν	kgf	min ⁻¹		КВС	kg
			10000	1000				
	33500	3420	19200	1960	8500		6307ZZ	0.459
	<u>33500</u> 33500	3420 3420	<u>19200</u> 19200	<u>1960</u> 1960	<u> </u>		6307UU 6307DD	0.459
	33500	3420	19200	1960	6000		6307DD	0.459
	39500	4030	21600	2200	6100		HC6307DDh1	0.505
	43000	4380	23600	2410	5900		BR3585DD	0.583
	12600	1280	9650	984	10000	12000	16008	0.147
	16800	1710	11500	1170	10000	12000	6008	0.186
	16800	1710	11500	1170	10000		6008ZZ	0.194
	16800	1710	11500	1170	10000		6008UU	0.194
	16800	1710	11500	1170	6000		6008DD	0.194
	29100	2970	17800	1810	8500	10000	6208	0.359
	32500	3310	20000	2040	8400	10000	HC6208	0.36
	29100	2970	17800	1810	8500	10000	6208ZZ	0.369
-	29100	2970	17800	1810	8500		6208UU	0.369
	29100	2970	17800	1810	5600		6208DD	0.369
	36500	3720	22600	2300	6200		HC6209DDF1h	0.483
	30300						HOULOODDI III	
	40500	4130	23900	2440	7500	9000	6308	0.62
	47000	4790	26300	2680	7700	9300	HC6308	0.621
	40500	4130	23900	2440	7500		6308ZZ	0.632
	40500 40500	4130 4130	23900 23900	2440 2440	7500 5300		6308UU 6308DD	0.632 0.632
	40500	4130	23900	2440	5300		030000	0.032
	47000	4790	26300	2680	5400		HC6308DDh	0.668
	16800	1710	11500	1170	10000	12000	6008/42	0.171
	10000	1710	11500	1170	10000	12000	0000/42	0.171
	40500	4130	23900	2440	5300		6308DDF1h	0.641
	40300	4130	23300	2440	3300		03000001111	0.041
	19900	2030	14000	1430	9000	11000	6009	0.236
	19900	2030	14000	1430	9000	11000	6009ZZ	0.249
-	19900	2030	14000	1430	9000		6009UU	0.249
	19900	2030	14000	1430	5300		6009DD	0.249
	27600	2810	17900	1830	8800	10000	6009F2	0.312
	32500	3310	20400	2080	7500	9000	6209	0.413
	<u>32500</u> 32500	<u>3310</u> 3310	20400 20400	2080 2080	7500 7500		6209ZZ 6209UU	0.425
	32500	3310	20400	2080	5300		6209DD	0.425
	53000	5400	32000	3260	6700	8000	6309	0.811
	53000	5400	32000	3260	6700		6309ZZ	0.831
	53000 53000	5400 5400	32000 32000	3260 3260	<u>6700</u> 4800		6309UU 6309DD	0.831 0.831
	53000	5400	32000	3200	4000		020200	0.031

Ø

KBC Deep Groove Ball Bearings Single Row

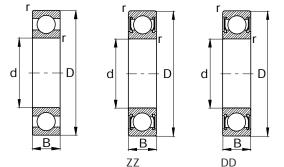

Shaft	Dimens	sions			Abutme	nt Dimensions	
	d mm	D	В	r min	D _s min	d _h max	R max
50	50	80	10	0.6	54	76	0.6
	50 50 50 50	80 80 80 80	16 16 16 16	1 1 1 1	55 55 55 55 55	75 75 75 75 75	1 1 1 1
	50 50 50	90 90 90	20 20 20	1.1 1.1 1.1	56.5 56.5 56.5	83.5 83.5 83.5	1 1 1 1
	50 50 50 50 50 50	90 110 110 110 110 110	20 27 27 27 27 27	1.1 2 2 2 2 2	56.5 59 59 59 59 59	83.5 101 101 101 101 101	1 2 2 2 2 2
55	55 55 55 55	90 90 90 90 90	18 18 18 18 18	1.1 1.1 1.1 1.1 1.1	61.5 61.5 61.5 61.5 61.5	83.5 83.5 83.5 83.5 83.5	- 1 1 1 1
	55	95	17	0.3	57	93	0.3
	55 55 55 55	100 100 100 100	21 21 21 21 21	1.5 1.5 1.5 1.5	63 63 63 63	92 92 92 92 92	1.5 1.5 1.5 1.5
	55 55 55 55	120 120 120 120	29 29 29 29 29	2 2 2 2 2	64 64 64 64	111 111 111 111 111	2 2 2 2
60	60 60 60 60	95 95 95 95	18 18 18 18	1.1 1.1 1.1 1.1 1.1	66.5 66.5 66.5 66.5	88.5 88.5 88.5 88.5 88.5	1 1 1 1
	60 60 60 60	110 110 110 110 110	22 22 22 22 22	1.5 1.5 1.5 1.5	68 68 68 68	102 102 102 102	1.5 1.5 1.5 1.5 1.5
	60 60 60 60	130 130 130 130 130	31 31 31 31 31	2.1 2.1 2.1 2.1 2.1	71 71 71 71 71	119 119 119 119 119	2 2 2 2
65	65 65 65	100 100 100	18 18 18	1.1 1.1 1.1	71.5 71.5 71.5	93.5 93.5 93.5	1 1 1


	Load Ratin	ıg			Permissible Speed		Standards	$\overset{\text{Weight}}{\sim}$
	Dynamic		Static		Grease	Oil		\approx
	C		C_0		Lubrication	OII	Bearing	
	Ũ		0		Labridation		boaring	
_	N	kgf	N	kgf	min ⁻¹		KBC	kg
_	10000	1020	12200	1250	0500	10000	10010	0.24
-	16000	1630	13200	1350	8500	10000	16010	0.24
-	20800	2120	15400	1570	8500	10000	6010	0.256
	20800	2120	15400	1570	8500		6010ZZ	0.263
	20800	2120	15400	1570	8500		6010UU	0.263
_	20800	2120	15400	1570	4800		6010DD	0.263
-	35000	3570	23200	2370	7100	8500	6210	0.451
_	35000	3570	23200	2370	7100	0000	6210ZZ	0.463
-	35000	3570	23200	2370	7100		6210UU	0.463
	35000	3570	23200	2370	4800		6210DD	0.463
-	62000	6320	38000	3870	6000	7500	6310	1.05
-	62000	6320	38000	3870	6000	7300	6310ZZ	1.05
	62000	6320	38000	3870	6000		6310UU	1.07
_	62000	6320	38000	3870	4300		6310DD	1.07
_								
-	31000	3160	22500	2290	7500	9000	6011	0.373
-	31000	3160	22500	2290	7500	0000	6011ZZ	0.384
_	31000	3160	22500	2290	7500		6011UU	0.384
	31000	3160	22500	2290	4500		6011DD	0.384
-	39000	3980	26200	2670	4700		BR5595	0.43
-	43500	4430	29200	2980	6300	7500	6211	0.599
- 1	43500	4430	29200	2980	6300	7300	6211ZZ	0.615
-	43500	4430	29200	2980	6300		6211UU	0.615
_	43500	4430	29200	2980	4300		6211DD	0.615
-	71500	7200	44500	4540	5000	0050	0011	1.05
-	71500 71500	7290 7290	44500 44500	4540 4540	5600 5600	6700	6311 6311ZZ	1.35 1.38
-	71500	7290	44500	4540	5600		6311UU	1.38
-	71500	7290	44500	4540	4000		6311DD	1.38
_								
-	29400	3000	23200	2370	7100	8500	6012	0.403
	29400	3000	23200	2370	7100		6012ZZ	0.412
	29400	3000	23200	2370	7100		6012UU	0.412
	29400	3000	23200	2370	4000		6012DD	0.412
-	52500	5350	36000	3670	5600	7100	6212	0.762
	52500	5350	36000	3670	5600		6212ZZ	0.782
	52500	5350	36000	3670	5600		6212UU	0.782
_	52500	5350	36000	3670	3800		6212DD	0.782
-	82000	8360	52000	5300	5300	6300	6312	1.7
	82000	8360	52000	5300	5300		6312ZZ	1.72
	82000	8360	52000	5300	5300		6312UU	1.72
	82000	8360	52000	5300	3600		6312DD	1.72
	30500	3110	25200	2570	6700	8000	6013	0.43
_	30500	3110	25200	2570	6700		6013ZZ	0.44
	30500	3110	25200	2570	6700		6013UU	0.44

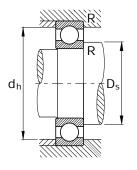
Bearings of different designs can be custom-made on request.

KBC Deep Groove Ball Bearings Single Row

Shaft	Dimens	ions			Abutmer	nt Dimensions	
	d mm	D	В	r min	D _s min	d _h max	R max
65	65	100	18	1.1	71.5	93.5	1
	65 65 65	120 120 120	23 23 23	1.5 1.5 1.5	73 73 73 73	112 112 112	1.5 1.5 1.5
	65 65 65 65	140 140 140 140	33 33 33 33	2.1 2.1 2.1 2.1 2.1	76 76 76 76 76	129 129 129 129 129	2 2 2 2 2
70	70 70 70 70	110 110 110 110 110	20 20 20 20	1.1 1.1 1.1 1.1	76.5 76.5 76.5 76.5 76.5	103.5 103.5 103.5 103.5	1 1 1 1
	70 70 70	125 125 125	24 24 24	1.5 1.5 1.5	78 78 78	117 117 117	1.5 1.5 1.5
	70 70 70 70	150 150 150 150	35 35 35 35	2.1 2.1 2.1 2.1 2.1	81 81 81 81 81	139 139 139 139 139	2 2 2 2 2
75	75 75 75	115 115 115	20 20 20	1.1 1.1 1.1	81.5 81.5 81.5	108.5 108.5 108.5	1 1 1
	75 75 75	130 130 130	25 25 25	1.5 1.5 1.5	83 83 83	122 122 122	1.5 1.5 1.5
	75 75 75	160 160 160	37 37 37	2.1 2.1 2.1	86 86 86	149 149 149	2 2 2
80	80 80 80	125 125 125	22 22 22	1.1 1.1 1.1	86.5 86.5 86.5	118.5 118.5 118.5	1 1 1
	80 80 80	140 140 140	26 26 26	2 2 2	89 89 89	131 131 131	2 2 2
	80 80 80	170 170 170	39 39 39	2.1 2.1 2.1	91 91 91	159 159 159	2 2 2
85	<u>85</u> 85	130 130	22 22	1.1 1.1	<u>91.5</u> 91.5	123.5 123.5	1



Load Ratin	g			Permissible Speed		Standards	$\underset{\approx}{\text{Weight}}$
Dynamic C		Static C ₀		Grease Lubrication	Oil	Bearing	
Ν	kgf	Ν	kgf	min ⁻¹		КВС	kg
 30500	3110	25200	2570	4000		6013DD	0.44
 57000	5010			5000		0010	0.00
 57000 57000	5810 5810	38500 38500	<u>3930</u> 3930	5300 5300	6300	6213 6213ZZ	<u> </u>
 57000	5810	38500	3930	3600		6213DD	1.01
 00500	0.400	50500	0070	4000		0040	0.00
 92500 92500	9430 9430	59500 59500	6070 6070	<u>4800</u> 4800	6000	6313 6313ZZ	2.08 2.13
 92500	9430	59500	6070	4800		6313UU	2.13
 92500	9430	59500	6070	3400		6313DD	2.13
38000	3870	31000	3160	6000	7100	6014	0.598
 <u>38000</u> 38000	<u>3870</u> 3870	<u>31000</u> 31000	<u>3160</u> 3160	<u> </u>		6014ZZ 6014UU	<u>0.615</u> 0.615
 38000	3870	31000	3160	3600		6014DD	0.615
 62000	6320	44000	4490	5000	6300	6214	1.07
 62000 62000	6320 6320	44000 44000	4490 4490	<u>5000</u> 3400		6214ZZ 6214DD	<u> </u>
 02000	0320	44000	4490	3400		021400	1.1
 104000	10600	68000	6930	4500	5300	6314	2.53
 104000	10600	68000	6930	4500		6314ZZ	2.58
 104000 104000	10600 10600	68000 68000	<u>6930</u> 6930	4500 3200		6314UU 6314DD	2.58 2.58
101000	10000	00000	0000	3200		001400	2.00
 39500	4030	33500	3420	5600	6700	6015	0.638
 39500	4030	33500	3420	5600	0700	6015ZZ	0.673
 39500	4030	33500	3420	3400		6015DD	0.673
 66000	6730	49500	5050	4800	5600	6215	1.17
 66000	6730	49500	5050	4800	0000	6215ZZ	1.2
 66000	6730	49500	5050	3200		6215DD	1.2
 113000	11500	77000	7850	4300	5000	6315	3.03
113000	11500	77000	7850	4300	0000	6315ZZ	3.08
 113000	11500	77000	7850	2800		6315DD	3.08
47500	4840	40000	4080	5300	6300	6016	0.854
 47500 47500	4840 4840	40000 40000	4080 4080	5300 3200		6016ZZ 6016DD	0.894
			4000	3200			0.034
77500	7900	58500	5960	4500	5300	6216	1.38
 77500	7900	58500	5960	4500		6216ZZ	1.41
 77500	7900	58500	5960	3000		6216DD	1.41
 123000	12500	86500	8820	4000	4800	6316	3.67
123000	12500	86500	8820	4000		6316ZZ	3.73
 123000	12500	86500	8820	2800		6316DD	3.73
		100	10.7.7				
 49500	5050	43000	4380	5000	6000	6017	0.899
 49500	5050	43000	4380	5000		6017ZZ	0.93


P

Bearings of different designs can be custom-made on request.

KBC Deep Groove Ball Bearings Single Row

					 ZZ		DD
Shaft	Dimens	sions			Abutment	Dimensions	
	d mm	D	В	r min	D _s min	d _h max	R max
35	85	130	22	1.1	91.5	123.5	1
	85 85 85	150 150 150	28 28 28	2 2 2	94 94 94	141 141 141	2 2 2
90	90 90 90	140 140 140	24 24 24	1.5 1.5 1.5	98 98 98	132 132 132	1.5 1.5 1.5

	Load Ratin	a			Permissible		Standards	Weight
	Dynamic C	5	Static C ₀		Speed Grease Lubrication	Oil		≈
							Bearing	
	N	kgf	Ν	kgf	min ⁻¹		KBC	kg
	49500	5050	43000	4380	3000		6017DD	0.93
	84000	8560	62000	6320	4300	5000	6217	1.74
_	84000 84000	8560 8560	62000 62000	6320 6320	4300 2800		6217ZZ 6217DD	1.78 1.78
_	04000	0300	02000	0320	2000		021700	1.70
_	58000	5910	50000	5100	4800	5600	6018 6018ZZ	1.16
-	58000 58000	5910 5910	50000 50000	5100 5100	4800 2800		6018ZZ 6018DD	1.18 1.18
_								
_								
-								
_								
_								
_								
_								
_								
_								
_								
_								
_								
_								

KBC Angular Contact Ball Bearings Single Row

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Angular Contact Ball Bearings Single Row · Standards · Basic Designs · Tolerances · Cages

Since single row angular contact ball bearings have contact angles, they can accommodate radial and thrust loads. Also, when a radial load is applied to it, the axial component force is intrinsically generated at the same time. However, since an axial force can be transmitted only in one direction, it is used in combination with another bearing that can transmit the forces of opposite direction.

Standards

Single row angular contact ball bearings KS B 2024

Basic Design

Single row angular contact ball bearings can be divided into a few types depending on the shapes of inner/outer ring tracks and cage guide methods, namely general type, SM type, and sealed BS type. SA type bearings of special dimensions also can be custom-made on request.

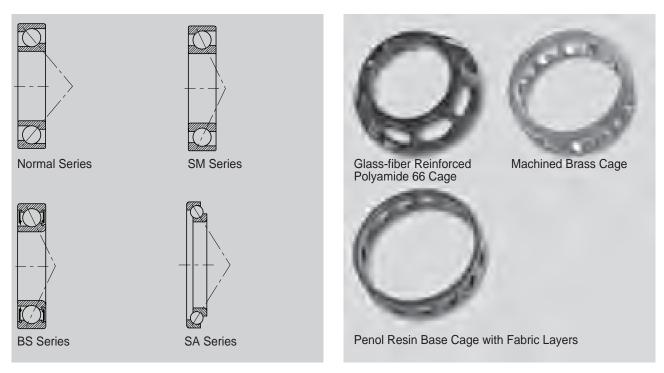
A standard contact angle is 30° (Code A, but its marking is omitted), but the contact angles of 40° (Code B) and 15° (Code C), etc. are also available. The bearings with contact angle of 15° (Code C) are classified as above Class P5, and they are used for high precision and speed, and those with 40° (Code

B) can transmit comparatively heavy axial forces.

Tolerances

Normal angular contact ball bearings are machined to normal tolerances.

The ones with finer tolerances can be custommade on request.


SM and BS types are machined to P5 Class as standard, however, they can be machined up to Class P2 on request. Contact KBC for the details on Class P2 tolerances.

For the tolerances of angular contact ball bearings, see the Table 7-2 Tolerances of Radial Bearings on page

Cages

Most angular contact ball bearings are fitted with a standard cage of glass-fiber reinforced polyamide 66(Suffix TVP). These cages can be used at operating temperatures of up to 120°C over extended periods.

If the bearings are lubricated with oil, any additives contained in the oil may reduce the cage service life. Also, aged oil may reduce the cage life

KBC Angular Contact Ball Bearings Single Row • Speed Suitability

at higher temperatures; therefore, the oil change intervals have to be strictly observed.

Also, there are machined brass cages(Suffix P) and penol resin base cages(Suffix PH) with fabric layers that are suitable for high speed operations, such as spindles and others.

Speed Suitability

Angular contact ball bearings are suitable for high speeds. The permissible speeds listed on the Dimension Tables are the values for one bearing under light load and preload.

The high speeds of the single bearings are not reached if angular contact ball bearings are mounted side by side. The permissible speeds assigned by various preloads and arrangements are shown on the right.

Types and Characteristics of Rearing Arrangements

▼ Permissible Speeds for Various Bearing Arrangements and Preloads

Bearing Arran	gements	/GL	/GM	/GH
\bigcirc	\bigcirc	0.85 · n*	0.75 ∙n*	0.5 ∙n*
\bigcirc	\bigcirc	0.75 ∙n*	0.60 ·n*	0.35 ·n*
$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	0.65 · n*	0.5 ∙n*	0.3 ·n*
$\emptyset \emptyset \Diamond$	\bigcirc	0.65 · n*	0.5 ∙n*	0.3 · n*

^{*} Permissible speeds listed on the Dimension Tables /GL: Light load / GM : Medium load / GH : Heavy load

Drawing	Arrangement Type	Characteristics
	O Arrangment (DB)	 It can transmit radial forces as well as axial forces on both sides. Load capacity of the moment load is big, because the distances of application points of two bearings, a, are long.
a	X Arrangment (DF)	 It can transmit radial forces as well as axial forces on both sides. Load capacity of the moment load is smaller, because the distances of application points of two bearings, a, are shorter than those of O Arrangement. The permissible aligning angle is smaller than that of O Arrangement.
	T Arrangment (DT)	 It can transmit radial forces as well as axial forces on one side. Axial load capacity is larger than other arrangements, because two bearings can transmit the axial forces at the same time.

Single Row • Heat Treatment • Dynamic Load Rating • Equivalent Loads • Static Load Rating

Heat Treatment

KBC single row angular contact ball bearings are heat-treated in such a way that they can be used at operating temperatures of up to 120° C. For the bearings requiring higher operating temp-eratures, contact KBC.

Angular Contact Ball Bearing Arrangements

In the cases of the arrangements with two singlerow angular contact ball bearings, three kinds of arrangements are possible, namely, X Arrangement(Face-to-face arrangement, DF), O Arrangement(Back-to-back arrangement, DB), T Arrangement(In-series Arrangement, DT). Characteristics of each arrangement are shown on Page 156.

Dynamic Load Rating, C, of Arranged Angular Contact Ball Bearings

With two or more angular contact ball bearings mounted side by side, the load rating for the bearing group amount to

C $i^{0.7} \cdot C_{\text{single bearing}}$

Where,

- C: Dynamic load rating of the bearing group
- i: Number of bearings

Consequently, for bearing pairs,

C $1.625 \cdot C_{\text{single bearing}}$

Equivalent Dynamic Load

P $X \cdot F_r + Y \cdot F_a$

Factors, X and Y, are determined by a contact angle and arrangement type, and their values are shown on the Table below.

Static Load Rating, C₀, of Arranged Angular Contact Ball Bearings

 $C_0 \quad i \cdot C_{0 \text{ single bearing}}$

Therefore, in case of double row bearings,

 $C_0 \quad 2 \cdot C_{0 \text{ single bearing}}$

Equivalent Static Load

$$\mathbf{P}_0 \quad \mathbf{X}_0 \cdot \mathbf{F}_r + \mathbf{Y}_0 \cdot \mathbf{F}_a$$

The factors, X_0 and Y_0 , are determined by contact angles and arrangement methods, and their values are shown below.

Nominal Contact Angle				Bearing, ries arran	T Arranger gement)	nent	(Bacl X Arr	O Arrangement (Back-to-back arrangement) X Arrangement (Face-to-face arrangement)			
е		iF_a/C_0	F _a /F _r :	≦ e	$F_a/F_r >$	е	•	≦ e	$F_a/F_r >$	·	
			Х	Y	Х	Υ	Х	Y	Х	Υ	
15°	0.025	0.4	1	0	0.44	1.42	1	1.6	0.72	2.3	
	0.04 0.07	0.42 0.44	1	0 0	0.44 0.44	1.36 1.27	1	1.5 1.4	0.72 0.72	2.2 2.1	
	0.13	0.44	1	0	0.44	1.16	1	1.4	0.72	1.9	
	0.25	0.53	1	0	0.44	1.05	1	1.2	0.72	1.7	
	0.50	0.56	1	0	0.44	1	1	1.1	0.72	1.6	
25°		0.68	1	0	0.41	0.87	1	0.9	0.67	1.41	
30°		0.80	1	0	0.39	0.76	1	0.78	0.63	1.24	
10°		1.14	1	0	0.35	0.57	1	0.55	0.57	0.93	

Ø	
ØQ	

KBC Angular Contact Ball Bearings Single Row • Preload

Nominal Contact Single Bearing, T Arrangement O Arrangement(Back-to-back arrangement), (In-series arrangement) X Arrangement(Face-to-face arrangement) Angle $F_a/F_r \leq s$ $F_a/F_r > s$ S X₀ Y₀ X₀ Y₀ X₀ Y₀ 15° 1.09 1 0 0.5 0.46 1 0.92 25° 1.32 1 0 0.5 0.38 1 0.76 30° 1.52 1 0.5 0.33 1 0.66 0 40° 1.92 1 0 0.5 0.26 1 0.52

Preloads of Arranged Bearings

The average preloads of the high precision angular contact ball bearings of Class P5 or higher, used for main shaft of tooling machines, and others, are shown below. In general, the light-load bearings are used for main shafts of spindle or machining centers, and the medium or heavy-load bearings for main shafts of lathe or others.

▼ Preloads on Arranged Bearings										
Bore Reference Number	SM70C GL Preloads[N]	GM	GH	SM70E GL	GM	GH				
00	35	100	200	55	160	330				
01	35	110	220	60	180	360				
02	40	120	250	70	210	410				
03	50	140	290	80	240	480				
04	65	200	400	110	330	660				
05	75	220	440	120	370	730				
06	95	290	570	150	460	930				
07	110	330	650	180	540	1100				
08	120	350	690	190	570	1150				
09	160	460	930	250	760	1500				
10	160	490	980	270	800	1600				
11	230	680	1350	370	1100	2250				
12	240	710	1400	390	1150	2300				
13	240	720	1450	390	1150	2350				
14	300	910	1800	500	1500	3050				
15	320	950	1900	520	1550	3100				
16	390	1150	2350	640	1950	3850				
17	400	1200	2400	650	1950	3950				
18	480	1450	2900	780	2350	4700				
19	490	1450	2950	800	2400	4800				
20	500	1500	3000	820	2450	4900				

▼ Radial and Axial Factors of Angular Contact Ball Bearings

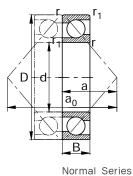
Single Row · Abutment Dimensions · Prefixes · Suffixes

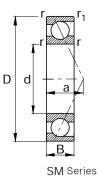
Abutment Dimensions

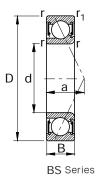
The bearing rings should closely fit the shaft or housing shoulder, they must not be allowed to foul the shoulder fillet radius. Consequently, the maximum fillet radius rg of the mating part must be smaller than the minimum corner rmin of the angular contact ball bearing.

The shoulder of the mating parts must be so high that even with maximum bearing corner, there is an adequate abutment surface. The maximum fillet radius R, the minimum diameters of abutment shoulders of shaft, D_s , and the maximum diameters of abutment shoulders of housing, d_h , are shown on the Dimension Tables.

Prefixes

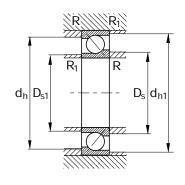

- BS For high speeds. Sealed Type
- SM Design for high speeds
- SA For special dimensions


Suffixes


- **B** Contact angle of 40°
- C Contact angle of 15°
- P High-tension machined brass cage
- PC Glass-fiber reinforced polyamide 66 cage
- PH Penol resin base cage with multi fabric layers
- DB Arrangement O (Back-to-back arrangement)
- DF Arrangement X (Face-to-face arran-gement)
- DT Arrangement T (In-series arrangement)
- /GL Light preload
- /GM Medium preload
- /GH Heavy preload

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

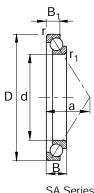
Single Row · Normal Series, SM Series, BS Series

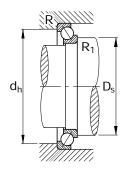


						Norman						D3 certes		
Shaft	Dimens	sions				Single	e of Appl Arranged	l ication Bearing d X Arranged		ent Dimen Side Su		Smalle	in max max 0.5 37.5 0.3 2 42 0.6 4 39.5 0.3 5 42 0.6 5 47 0.6 9 44.5 0.3 0 47 0.6	
	d mm	D	В	r min	r ₁ min	a ≈	$a_0 \approx$	a ₀ ≈	D _s min	d _h max	R max	D _{ş1} min	d _{h1} max	R ₁ max
17	17	40	12	0.6	0.3	17.1	34.3	10.3	22	35	0.6	19.5	37.5	0.3
	17	47	23	1	0.6	19.5	39	11	23	41	1	22	42	0.6
20	20	42	12	0.6	0.3	10.2	20.3	3.7	25	37	0.6	24	39.5	0.3
	20	47	14	1	0.6	20.1	40.2	12.2	26	41	1	25	42	0.6
	20	52	15	1.1	0.6	21.6	43.1	13.1	27	45	1	25	47	0.6
25	25	47	12	0.6	0.3	10.8	21.6	2.4	30	42	0.6	29	44.5	0.3
	25	52	15	1	0.6	22.5	45.1	15.1	31	46	1	30	47	0.6
	25	62	17	1.1	0.6	25.5	51	17	32	55	1	30	57	0.6
	25	80	21	1.5	0.6	25.7			35	70	1.5			
30	<u>30</u> 30	55 55	13 17	1 1 ¹)	0.6 0.5	12.2 14.2	24.4	1.6	36 34	49 49	1 1	34	50	0.6
	30	62	16	1	0.6	26	51.9	19.9	36	56	1	35	57	0.6
35	35	62	18.5	1 ¹)	0.5	15.7			39	56	1			
45	45	100	25	1.5	1.1	40.8	81.6	31.6	54	91	1.5	51	94	1
50	50	110	27	2	1.1	44.8	89.5	35.5	60	100	2	56	104	1

KBC 164

1) A chamfer on one side of inner ring has its own dimensions.


2) The shape of inner ring tracks of normal type bearings listed above is same as that of SM Series bearings.


	g Load Bearing nic	Static C ₀		Arrange Dynami C	ed Bearin c	ng Static C ₀		Permiss Single Grease	b le Spe Bearing Oil	ed Grease	Arrangeo Bearing Oil	Standards Bearing	Weight \approx
Ν	kgf	N	kgf	N	kgf	N	kgf	Lubrication min-1	Lubricatior	1 Lubrication	Lubrication	КВС	kg
9950	1010	5850	565	16100	1650	11000	1130	14000	19000	11000	15000	7203B	0.07
1480	0 1510	8000	820	24000	2450	16000	1640	13000	17000	11000	14000	7303B	0.12
1100	0 1130	6550	665	18000	1840	12000	1220	26000	35000	20000	30000	SM7004CP5	0.07
1330	0 1360	7650	780	21600	2210	15300	1560	12000	16000	9500	13000	7204B	0.11
1730	0 1770	9650	985	28200	2870	19300	1970	11000	15000	9000	12000	7304B	0.15
1460	0 1490	9150	930	21000	2140	14800	1510	22000	30000	18000	26000	SM7005CP5	0.09
1480	0 1510	9400	960	24000	2450	18800	1920	10000	14000	8500	11000	7205B	0.13
4270	0 4350	23400	2380					7000	10000			7405A	0.51
1510 1510		10300 10300		24600	2510	19000	2090	19000 19000	26000	15000	22000	SM7006CP5 BS30-PHAUU	0.12 0.14
2050	0 2090	13500	1380	33500	3400	27000	2760	8500	12000	7100	9500	7206B	0.2
1910	0 1950	13700	1390					17100				BS35-PHAUU	0.19
5850	0 5950	40000	4100	95000	9650	80500	8200	5600	7500	4500	6000	7309B ²)	0.86
6800	0 6950	48000	4900	111000) 11300	96000	9800	5000	6700	4000	5600	7310B ²)	1.11

Bearings of different designs can be custom-made on request.

Single Row SA Series

Dimensi										
	IONS					Distance of Application Points	Abutme	nt Dimensi	ons	
d mm	D	В	B ₁	r min	r ₁ min	a ≈	D _s min	d _h max	R max	R ₁ max
230 230	300 300	<u>33</u> 35	24 25	2.1 2.1	1.1 1.1	93.3 94.2	245 245	285 285	2	1
250	330	38	27	2.1	1	103	265	315	2	1
260	340	38	30	2.21)	1.1	105.9	275	325	2	1
289	355	33	24	2	1	109.7	305	340	2	1
<u> </u>	370 372	33 36	28.5 28	2.1 3.5 ¹)	1.1 1.5	113.5 115.2	315 315	355 357	2	1
	mm 230 230 250 260 289 300	mm 230 300 230 300 250 330 260 340 289 355 300 370	mm 230 300 33 230 300 35 250 330 38 260 340 38 289 355 33 300 370 33	mm 230 300 33 24 230 300 35 25 250 330 38 27 260 340 38 30 289 355 33 24 300 370 33 28.5	min min 230 300 33 24 2.1 230 300 35 25 2.1 250 330 38 27 2.1 260 340 38 30 2.21) 289 355 33 24 2 300 370 33 28.5 2.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

	Rating Lo	ad			Standards	Weight
	Dynamic C	C ₀	Static C	C ₀	Bearing	~
	Ν	kgf	Ν	kgf	КВС	kg
	165000	16900	228000	28600	SA0300h	
-	165000	16900	228000	28600	SA0300	
	205000	20900	281000	28600	SA0330	
-	212000	21500	299000	30400	SA0340	
_	182000	18600	279000	28500	SA0355	
	188000	19200	292000	29700	SA0370	
-	217000	22100	322000	32850	SA0372	
_						
-						
-						
_						
_						
_						
-						
-						

Bearings of different designs can be custom-made on request.

KBC Angular Contact Ball Bearings Double Row

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Angular Contact Ball Bearings Double Row · Basic Designs · Tolerances · Bearing Clearances · Cages · Heat Treatment · Sealed Bearings

The structure of the double row angular contact ball bearings corresponds to a pair of single row angular contact ball bearing in O arrangement, and it has a solid outer ring but its inner ring is either solid or divided into two parts. This bearing can accommodate high radial loads and thrust loads in both directions, and it is parti-cularly suitable for bearing arrangements requiring a rigid axial guidance.

Basic Designs

KBC supplies the double row angular contact ball bearings of special dimensions on request to meet the special demands of customers. Basic designs can be structurally divided into a few groups as follows.

SDA9 Series bearings have special dimensions, and each of their outer and inner rings are unitized. Most of them are produced in sealed type, and some come with snap rings. They have the contact angles of either 20° or 25°.

SDA0 Series bearings are also the special dimension bearings with unitized outer rings, but their inner rings are split. There are two types, flanged or snap ring types. and contact angles of 20°, 30°, or 35° are available.

Other bearings of customers' own specifications can be supplied on request.

Tolerances

Basic double row angular contact ball bearings have normal tolerances.

For exact tolerances, contact KBC.

Tolerances: Refer to Table 7-2 Tolerances of Radial Bearings on Page 68.

Bearing Clearances

Double row angular contact ball bearings requiring special dimensions can be made as required clearances on request, and the axial clearances are listed on the Dimension Tables.

Cages

Most double row angular contact ball bearings are

made from glass-fiber reinforced polyamide 66(Suffix PC). These cages can be used at operating temperatures of up to 120°C over extended periods. If the bearings are lubricated with oil, any additives contained in the oil may reduce the cage

service life. Also, aged oil may reduce the cage life at higher temperatures; therefore, the oil change intervals have to be strictly observed.

Other customized cages can be made on request.

Heat Treatment

KBC double row angular contact ball bearings are heat-treated in such a way that they can be used at operating temperatures of up to 120° C, and special bearings needed to be operated at the temperatures above 120° C are specially heat-treated accordingly.

If bearings with glass-fiber reinforced polyamide 66 cage are used, the temperature limits of application of the cage material have to be observed.

With sealed bearings, the valid limits of application must be observed also.

Sealed Bearings

In addition to open double row angular contact ball bearings, KBC also supplies, as basic designs, angular contact ball bearings with sealed both sides. SDA9 Series bearings with unitized inner ring are usually sealed with contact type seals, and they are filled at the manufacturer's plant with a highquality grease tested to KBC specifications.

Double Row \circ Equivalent Loads

Equivalent Dynamic Loads

The formulae for the equivalent load depend on the contact angle of the bearings.

Angular contact ball bearings with a contact angle of $= 20^{\circ}$

$$\begin{array}{lll} P & F_r+1.09\cdot F_a & \quad : \begin{array}{l} F_a \\ F_r \end{array} \leq 0.57 \mbox{ for} \\ P & 0.67\cdot F_r+1.63\cdot F_a & \quad : \begin{array}{l} F_a \\ F_r \end{array} > 0.57 \mbox{ for} \end{array}$$

Angular contact ball bearings with a contact angle of $= 25^{\circ}$

$$\begin{array}{lll} P & F_r + 0.92 \cdot F_a & : \begin{array}{l} F_a \\ F_r \end{array} \leq 0.68 \mbox{ for} \\ P & 0.67 \cdot F_r + 1.41 \cdot F_a & : \begin{array}{l} F_a \\ F_r \end{array} > 0.68 \mbox{ for} \end{array}$$

Angular contact ball bearings with a contact angle of $= 30^{\circ}$

$$\begin{array}{ll} P & F_r + 0.78 \cdot F_a & \quad : \ \displaystyle \frac{F_a}{F_r} \leq 0.80 \ \mbox{for} \\ \\ P & 0.63 \cdot F_r + 1.24 \cdot F_a & \quad : \ \displaystyle \frac{F_a}{F_r} > 0.80 \ \mbox{for} \end{array}$$

Angular contact ball bearings with a contact angle of $= 35^{\circ}$

$$P \quad F_r + 0.66 \cdot F_a \qquad \qquad : \frac{F_a}{F_r} \leq 0.95 \ \text{for}$$

$$P \quad 0.6 \cdot F_r + 1.07 \cdot F_a \qquad : rac{F_a}{F_r} > 0.95$$
 for

Equivalent Static Load

The radial factor is 1; the thrust factors depend on the contact angle.

Angular contact ball bearings with a contact angle of $= 20^{\circ}$

 $P_0 \quad F_r \! + \! 0.84 \, \cdot \, F_a$

Angular contact ball bearings with a contact angle of $= 25^{\circ}$

$$P_0 F_r + 0.76 \cdot F_a$$

Angular contact ball bearings with a contact angle of $= 30^{\circ}$

$$P_0 \quad F_r + 0.66 \cdot F_a$$

Angular contact ball bearings with a contact angle of $= 35^{\circ}$

$$P_0 F_r + 0.58 \cdot F_a$$

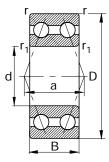
Double Row · Abutment Dimensions · Prefixes

Abutment Dimensions

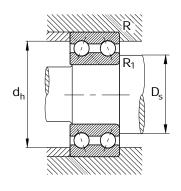
The bearing rings should closely fit the shaft or housing shoulder, and they must not be allowed to foul the shoulder fillet radius. Consequently, the maximum fillet radius rg of the mating part must be smaller than the minimum corner r_{min} of the angular contact ball bearing.

The shoulder of the mating parts must be so high that even with maximum bearing corner, there is an adequate abutment surface. The maximum fillet radius R, the minimum diameters of abutment shoulders of shaft, D_s , and the maximum diameters of abutment shoulders of housing, d_h , are shown on the Dimension Tables.

Prefixes

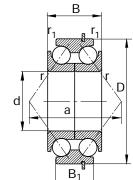

SDA For special dimensions

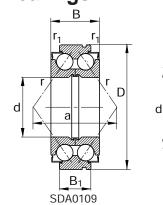
<u>Ø</u>

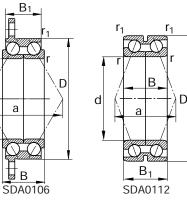

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: <u>https://www.rstbearing.com.cn</u>

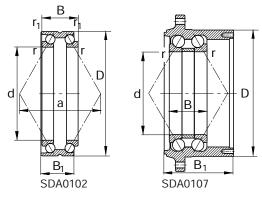
KBC Angular Contact Ball Bearings Double Row · SPA9 Series


Shaft	Dimens	ions					Distance of application	Axial Clearanc	es	Contact
	d mm	D	В	B ₁	r min	r ₁ min	a ≈	min	max	deg
30	30	52	22	22	1	0.6	28	0.02	0.05	25
	30	55	23	23	0.6	0.6	28.8	0.03	0.05	25
5	35	50	20	20	0.3	0.3	30	0.038	0.068	25
8	38	54	54	17	0.5	0.3	28	0.03	0.06	25


 Abutmo				Lood Do	ting			Ctandarda	Woight
Abutme	110			Load Ra		Static		Standards	$\overset{\text{Weight}}{\approx}$
D _s min	d _h max	R max	R ₁ max	Dynamic C		C_0		Bearing	
 mm	Шах	Шах	IIIdA	Ν	kgf	Ν	kgf	КВС	kg
 34	49	1	0.6	17900	1830	13800	1410	SDA9102	
 36	51	0.6	0.6	19700	2010	15600	1590	SDA9101	
 39	48	0.3	0.3	12200	1250	11000	1120	SDA9103	
 42	52	0.5	0.3	11600	1200	11500	1170	SDA9106	


<u>(</u>)

Double Row . **SDA0 Series**


SDA0103

а

Shaft	Dimens	ions				Distance of application	Axial Clearanc	ces	Contact	
	d mm	D	В	B ₁	r min	r ₁ min	a ≈	min	max	deg
38	38	80	34.5	23.9	0.5	0.3	58.3	0.015	0.036	35
43	43	90	35	22.66	0.5	0.3	60.9	0.015	0.045	35
52	52	78	27.2	23	1.1	0.7	51	0	0.02	30
69	69	92	24	24	1.1	1	41.3	0.05	0.08	20
165	165	210	52	47.5	1.1	1.1	82.5	0.1	0.2	30
320	320	456	118.2	217	3.1		282.3	0.12	0.15	30

 Abutment					ting			Standards We \approx			
D _s min mm	d _h max	R max	Dy C N	namic	kgf	Static C ₀ N	kgf	Bearing KBC	kg		
 46	73	0.5	54	000	5510	48450	4940	SDA0103			
 53	82	0.5	59	600	6080	56550	5770	SDA0109			
 56	74	1	43	500	4440	42300	4320	SDA0106			
 76	89	1	31	400	3200	46300	4720	SDA0112			
 170	195	1	11	8000	12000	196000	20000	SDA0102			
 360		3.1	57	6500	58800	1200000	122000	SDA0107			

KBC Tapered Roller Bearings Single Row

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Tapered Roller Bearings Single Row · Standards · Basic Designs · Codes · Alignment

Standards

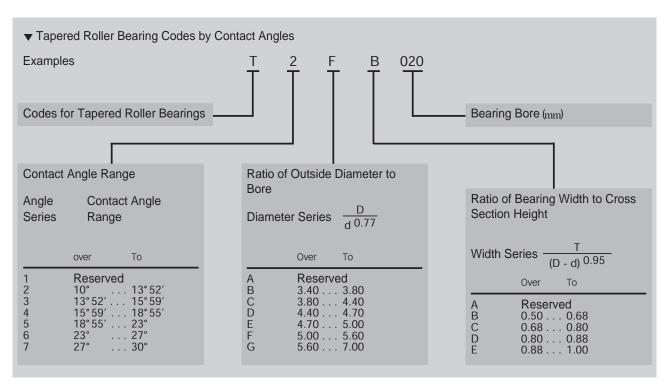
Tapered roller bearingsISO 355 and KS B 2027in metric dimensions

Basic Designs

Tapered roller bearings can transmit radial and axial forces, and since they are split type bearings, their inner and outer rings can be mounted separately. And tapered roller bearings in metric dimensions can be divided into three groups depending on contact angles; Normal contact angles(Smaller than contact angles (About 20°, Code C), and large contact angles(About 28°, code D).

Codes

There are two codes for tapered roller bearings in metric dimensions listed in the Dimension Tables. The codes listed by dimensions are shown on Page 58, and the ones by contact angles are shown below.


Tapered roller bearings in inch dimensions according to AFBMA Specifications are shown on Page 60.

Information on the availability of special tapered roller bearings in both metric and inch dimensions, with or without roller and cage assembly on inner ring, and others, can be supplied on request.

Alignment

The modified line contact between the tapered rollers and the raceways eliminates edge stressing and allows the tapered roller bearings to align.

For single row tapered roller bearings, a maximum angular alignment of 4 angular minutes is admissible at a load ratio $P/C \le 0.2$. If higher loads or greater misalignments have to be accommodated, please contact KBC.

KBC Tapered Roller Bearings

Single Row
Tolerances Bearing Clearances Speeds Suitability Heat Treatment
Cages Equivalent Loads Axial Loads

Tolerances

Tapered roller bearings of the basic designs in metric dimensions have a normal tolerance, and the inch series tapered roller bearings have the tolerances of AFBMA Class 4.

The bearings with an increased precision can be supplied on request.

Tolerances: Refer to Table 7-3 Tolerances of Tapered Roller Bearings in Metric Dimensions on Page 74.

Refer to Table 7-4 Tolerances of Tapered Roller Bearings in inch Dimensions on Page 78.

Bearing Clearances

The axial clearance of tapered roller bearings is set on mounting by adjusting it against another bearing.

Speed Suitability

The permissible speeds for both grease and oil lubrication are shown on the Dimension Tables. In case of oil lubrication, the permissible speeds shown on the Dimension Tables are the values assuming oil sump lubrication.

Depending on various lubricating methods, they can be operated at a higher speed.

Heat Treatment

KBC tapered roller bearings are heat-treated in such a way that they can be used at operating temperatures of up to 120° C. For the bearings required to be used above that temperature, please contact KBC.

Cages

KBC tapered roller bearings have pressed steel cages. The cages in some bearings slightly project laterally; this must be taken into account for mounting(Refer to abutment dimensions in the Dimension Tables.)

Equivalent Dynamic Load

If single row tapered roller bearings are used, the axial reaction forces have to be taken into account(Refer to the Table on Page 35). Y and e are indicated in the Dimension Tables.

Equivalent Static Load

$$\begin{array}{lll} P_0 & F_r & : \mbox{ for } & \frac{F_a}{F_r} \leq & \frac{1}{2 \cdot Y_0} \\ \\ P_0 & 0.5 \cdot F_r \ + Y_0 \cdot \ F_a & : \mbox{ for } & \frac{F_a}{F_r} > & \frac{1}{2 \cdot Y_0} \end{array}$$

If single row tapered roller bearings are used, the axial reaction forces have to be taken into account(Refer to the Table on Page 35). Y_0 is indicated in the Dimension Tables.

Determining the Axial Loads Acting on a Single Bearing

Due to the inclination of the raceways, a radial load induces axial reaction forces in tapered roller bearings, which have to be taken into account in the determination of the equivalent load.

For details, refer to Page 34 on load calculation of angular contact ball bearings and tapered roller bearings.

KBC Tapered Roller Bearings Single Row · Abutment Dimensions · Prefixes · Suffixes

Abutment Dimensions

The cups and cones should closely fit the shaft or housing shoulder; they must not be allowed to foul the shoulder fillet radius. Consequently, the maximum fillet radius of the mating part must be smaller than the minimum corner of the tapered roller bearing.

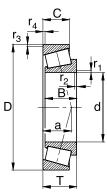
The shoulder of the mating parts must be so high that even with maximum bearing corner, there is an adequate abutment surface area.

The abutment shoulder diameters are indicated in the Dimension Tables.

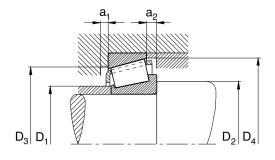
The cages in some bearings slightly project laterally; this must be taken into account for mounting. The abutment dimensions, a_1 and a_2 , are indicated in the Dimension Tables.

Prefixes

TR Changed basic dimensions(Bore, outer diameter, width) from standards.

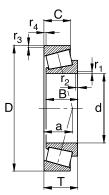

Suffixes

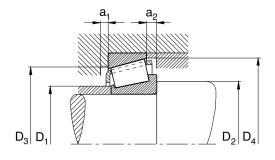
- A Changed internal design from standards
- C Medium contact angles(About 17~24°)
- **D** Increased contact angles(About 24~32°)
- **DX** Inner ring width and mounting width differ from those of a bearing with contact angle D.
- g Bearing made of carburized steel
- HL Special heat-treatment for long life
- J Designs adapted to ISO standards
- F Changed bore diameter from standards
- F2 Changed outer diameter from standards
- h Changed width from standards


沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Tapered Roller Bearings Single Row

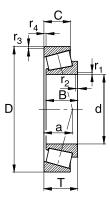

Shaft	Dimensions								Distance of Abutment Dimensions Application Points							
	d mm	D	В	С	Т	r _{1,} r ₂ min	r _{3,} r ₄ min	a ≈	D ₁ max	D ₂ min	D ₃ min	D ₃ max	D ₄ min	a ₁ min	a ₂ min	
7	17	40	12	11	13.25	1	1	9.8	23	23	34	34	38	2	2	
20	20	42	15	12	15	0.6	0.6	10.6	24	28	35	37	40	2	3	
	20 20 20	47 47 47	14 18 18	12 15 15	15.25 19.25 19.25	1 1 1	1 1 1	11.2 12.4 12.4	27 26 26	29 29 29	40 38 38	41 41 41	44 44 44	2 2 2	3 4 4	
	20 20 20	52 52 52	15 16 21	13 12 18	16.25 16.25 22.25	1.5 1.5 1.5	1.5 1.5 1.5	11.4 13.7 13.9	27 27 26	31 32 33	44 42 43	44 44 48	48 50 42	2 2 3	3 3 4	
4	24	41	11.2	8.6	12.5	0.6	0.6	10.8	27	31	35	36	40	2	4	
25	25 25	47 47	15 17	11.5 14	15 17	0.6 0.6	0.6 0.6	11.8 10.9	30 29	33 33	40 41	42 42	45 45	3 3	3.5 3	
	25 25 25 25	52 52 52 52 52	15 18 18 22	13 15 15 18	16.25 19.25 19.25 22	1 1 1 1	1 1 1 1	12.7 13.7 15.8 14.1	31 30 30 29	34 34 34 34	44 42 40 43	46 46 46 46	49 49 50 50	2 2 2 4	3 4 4 4	
	25 25 25 25 25	62 62 62 62 62 62	17 17 17 18.45 24	15 14 13 13 20	18.25 18.25 18.25 19.7 25.25	1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5 1.5	19.8 16.4 19.8 19.8 15.9	34 35 33 33 32	36 36 39 39 38	54 49 46 46 51	54 53 53 53 53	58 59 59 59 59 58	2 3 3 3 3	3 4 5 5 5 5	
8	28	50.292	18.724	10.668	14.224	3.6	1.8	10.8	33	37	44	44	48	3	4	
	28 28	52 52	16 18.5	12 12	16 16	1 3.6	1 1.8	12.5 12.5	33 33	37 37	44 44	46 46	50 50	3 3	4	
	28	57	17	13	17	1.5	1.5	13.7	34	38	49	50	55	3	3	
	28 28	58 58	16 19	12 16	17.25 20.25	1	1	16.9 14	34 34	37 37	48 49	52 52	55 56	2 2	3	
	28 28	62 62	18 18	14 15.75	18 19.75	1	1	15 15.5	40 36	44 42	54 51	56 54	60 59	4	4 6	
	28 28	63 63	21.25 22.25	17.7 17.7	22.25 22.25	1.5 1.5	1.5 1.5	15.4 15.3	36 36	40 40	53 53	54 54	60 60	3	4	
	28 28	68 68	18 18	14 16	19.75 19.75	1.5 2	1.5 2	17.4 14.7	38 39	39 41	57 57	59 59	64 63	2 2	4.5 3	
0	30	55	17	13	17	1	1	13.5	35	39	47	49	53	3	4	


Load Ra	ating · Fac	tor					Permissible	Speed	Standards		Weigh \approx
Dynamic C	2	е	Y	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearings		
N	kgf			N	kgf		min ⁻¹		КВС	ISO 355 KS B 2027	kg
20700	2110	0.35	1.7	20600	2100	0.96	9500	13000	30203J	T2DB017	0.079
25800	2630	0.37	1.6	28300	2890	0.88	9000	12000	32004XJ	T3CC020	0.097
29000	2960	0.35	1.7	29800	3040	0.96	8000	11000	30204J	T2DB020	0.127
37000	3770	0.35	1.7	40000	4080	0.90	8500	11000	32204	1208020	0.127
37000	3770	0.33	1.8	40000	4080	1	8500	11000	32204J	T2DD020	0.16
36000	3670	0.3	2.	34500	3520	1.1	7500	10000	30304J	T2FB020	0.171
32500	3310	0.55	1.1	32000	3260	1.1	7500	10000	30304C	TAFDAAA	0.167
45000	4590	0.3	2	48000	4890	1.1	8000	11000	32304J	T2FD020	0.24
13000	1330	0.5	1.2	15000	1530	0.66	8000	11000	TR244113		0.11
27500 31500	2800 3210	0.43	<u>1.4</u> 2.1	34200 40500	3490 4130	0.77	8000 8000	11000 11000	32005XJ 33005J	T4CC025 T2CE025	0.116
32000 38000	3260 3870	0.38	1.6 1.5	35000 44000	3570 4490	0.88 0.85	7100 7500	10000 10000	30205J 32205	T3CC025	0.156
35000	3570	0.53	1.1	42000	4280	0.62	7100	9500	32205C		0.189
47000	4790	0.39	1.7	57000	5810	0.94	7500	10000	33205J	T2DE025	0.221
47500	4840	0.3	2	46500	4740	1.1	6300	8500	30305J	T2FD025	0.269
42500	4330	0.55	1.1	45000	4590	0.6	6000	8500	30305C		0.275
<u>38000</u> 39000	3870 3980	0.81	0.74	41500 41500	4230 4230	0.41	6000 6000	8000 8000	30305D 30305DX		0.254
60000	6120	0.3	2	64500	6580	1.1	6300	8500	32305J	T2FD025	0.375
07400	2700	0.07	1.0	24600	2520	0.00	7100	0500	TD205044		0 1 0 0
27400	2790	0.37	1.6	34600	3530	0.89	7100	9500	TR285014		0.122
33000	3360	0.43	1.4	40500	4130	0.77	7100	9500	320/28XJ	T4CC028	0.146
33900	3460	0.43	1.4	40600	4140	0.77	7100	9500	TR285216		0.149
42000	4280	0.43	1.4	48800	4980	0.77	6300	8500	TR285717		0.202
36500	3720	0.64	0.94	41000	4180	0.52	6300	8500	302/28C		0.199
44500	4540	0.37	1.6	52000	5300	0.89	6300	9000	322/28		0.242
42500	4330	0.45	1.3	56000	5710	0.73	6000	8000	32007XJF1		0.274
48600	4960	0.49	1.3	56600	5770	0.68	6000	8000	TR286220		0.282
59800	6100	0.33	1.8	65700	6700	0.99	6000	8000	TR286322		0.295
59800	6100	0.33	1.8	65700	6700	0.99	6000	8000	TR286322h		0.299
52500	5350	0.52	1.2	53500	5460	0.64	5600	7500	303/28C		0.335
53000	5400	0.32	1.9	53500	5460	1	5600	7500	TR286819		0.336
35500	3620	0.43	1.4	44500	4540	0.77	6700	9000	32006XJ	T4CC030	0.172

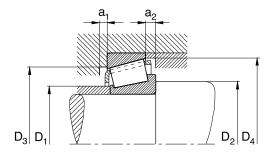
Bearings of different designs can be custom-made on request.

KBC Tapered Roller Bearings Single Row

Shaft	Dimen	isions						Distance of Application Points	Abutm	ent Dim	ensions				
	d mm	D	В	С	Т	r _{1,} r ₂ min	r _{3,} r ₄ min	a ≈	D ₁ max	D ₂ min	D ₃ min	D ₃ max	D ₄ min	a ₁ min	a ₂ min
0	30 30 30 30 30	62 62 62 62 62	16 17 17.7 20 20	14 14 13.3 17 16	17.25 17.25 17.7 21.25 21.25	1 1.5 1 1 1	1 1.5 1 1 1	13.8 13.2 16.2 15.4 18.1	37 37 37 36 35	39 40 43 39 39	52 53 50 51 48	56 54 52 56 56	58 59 59 59 59 59	2 3 4 2 2	3 3 3 4 5
	30 30 30 30 30	72 72 72 72 72 72	19 18.92 19 19 27	16 3 15.879 14 14 23	20.75 5 19 20.75 20.75 28.75	1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5	15.3 15.3 18.3 23.3 19.3	40 40 38 39 38	41 41 41 39 43	62 62 59 56 59	63 63 63 63 62	67 67 68 68 67	3 3 3 3 3	4.5 3 6.5 6.5 5.5
2	<u>32</u> 32	65 65	17 21	15 18	18.25 22.25	1 1	1 1	14.7 15.8	39 38	41 41	56 54	59 59	61 61	3 3	<u>3</u> 4
5	35	62	18	14	18	1	1	15	40	44	54	56	60	4	4
	35 35 35	72 72 72	17 23 23	15 18 19	18.25 24.25 24.25	1.5 1.5 1.5	1.5 1.5 1.5	15 20.6 17.9	43 42 42	46 46 46	62 58 61	63 63 63	68 69 68	3 3 3	3 6 5
	35 35 35 35 35 35 35	80 80 80 80 80 80	21 21 21 21 31 31	18 18 16 15 25 24	22.75 22.75 22.75 22.75 32.75 32.75	2 2 2 2 2 2 2 2	1.5 1.5 1.5 1.5 1.5 1.5 1.5	16.7 16.8 20.3 25.8 21.1 23.7	45 46 47 51 49 49	49 50 44 44 43 44	68 69 65 62 66 61	73 72 71 71 71 71 71 71	75 76 75 77 75 75 75	2 3 3 3 3 3 3	6.5 6.5 7.5 7.5 8.5
0	40 40	68 68	19 19	14.5 14.5	19 19	1 1	1 1	17.4 17.4	45 47	49 51	60 58	62 60	66 66	4 2	4.5 5
	40	72	15	11.5	15.5	1	1	14.1	46	50	63	64	68	3	3.5
	40	75	26	20.5	26	1.5	1.5	18.4	49	54	64	66	77	2.5	6
	40 40	80 80	18 23	16 19	19.75 24.75	1.5 1.5	1.5 1.5	16.9 19	48 48	51 51	69 68	71 71	75 76	3 3	3.5 5.5
	40 40 40 40	90 90 90 90	23 23 23 33	20 17 17 27	25.25 25.25 25.25 35.25	2 2 2 2	1.5 2 1.5 1.5	19.4 28.9 29.8 23.4	52 48 50 50	52 57 56 54	76 70 70 73	81 79 81 81	84 87 88 84	3 3 3 3	5 8 8 8
5	45	75	20	15.5	20	1	1	16.4	51	54	67	69	73	4	4.5
	45 45	85 85	19 23	16 19	20.75 24.75	1.5 1.5	1.5 1.5	18.2 20.1	53 53	56 56	74 73	76 76	81 81	3 3	4.5 5.5
	45	95	35	30	36	2.5	2.5	23.8	56	63	78	80	90	4	5.5

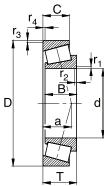


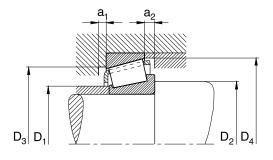
Load Rating	g · Factor						Permissible	Speed	Standards		Weight $pprox$
Dynamic C		е	Y	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearings	100.055	
Ν	kgf			Ν	kgf		min ⁻¹		КВС	ISO 355 KS B 2027	kg
40000	4000	0.00	1.0	47500	40.40	0.00		0000	000001	TODDOOO	0.00
43000 45500	4380	0.38	1.6	47500 32000	4840	0.88	6000 6000	8000 8000	30206J TR306217	T3DB030	0.23
42500	4640 4330	0.36 0.55	<u>1.7</u> 1.1	32000	3260 3260	0.92	6000	8000	TR306217		0.23
55500	5660	0.35	1.6	65500	6680	0.88	6000	8500	32206J	T3DC030	0.22
50500	5150	0.55	1.1	59000	6020	0.6	5600	7500	32206C	100000	0.29
60000	6120	0.32	1.9	61000	6220	1	5300	7500	30306J	T2FB030	0.40
59000	6020	0.32	1.9	61000	6220	1	5300	7500	30306Jh		0.38
57500	5860	0.55	1.1	56500	5760	0.6	5300	7100	30306C		0.38
52000	5300	0.83	0.73	56500	5760	0.4	5000	7100	30306DJ	T7FB030	0.39
75500	7700	0.32	1.9	84000	8570	1	5600	7500	32306J	T2FD030	0.56
47500	4840	0.37	1.6	54000	5510	0.88	5600	8000	302/32		0.270
55000	5610	0.37	1.6	65500	6680	0.88	6000	8000	322/32		0.33
10500	1000	0.45	1.0	50000	5340	0.70	5000		000071/1		
42500	4330	0.45	1.3	56000	5710	0.73	5600	8000	32007XJ	T4CC035	0.22
55000	5610	0.37	1.6	61000	6220	0.88	5300	7100	30207J	T3DB03 5	0.33
59500	6070	0.55	1.1	71500	7290	0.6	5000	6700	32207C		0.44
70500	7190	0.38	1.6	84000	8570	0.88	5300	7100	32207J	T3DC035	0.45
77000	7850	0.32	1.9	80000	8160	1	4800	6300	30307J	T2FB035	0.52
67800	6910	0.67	0.9	68100	6940	0.49	4800	6300	30307		0.52
68500 63000	6980 6420	0.55 0.83	1.1 0.73	71500 69500	7290 7090	0.6	4800 4300	6300 6000	30307C 30307DJ	T7FB035	0.51
96500	9840	0.32	1.9	111000	11300	1	5000	6700	32307J	T2FE035	0.76
87500	8920	0.47	1.3	110000	11200	0.7	4800	6300	32307C		0.78
51500	5250	0.38	1.6	67000	6830	0.87	5300	7100	32008XJ	T3CD040	0.27
50500	5150	0.38	1.6	67000	6830	0.87	5300	7100	32008XJh		0.33
48000	4890	0.4	1.5	54000	5510	0.82	5000	6800	TR407215		0.25
80000	8160	0.35	1.7	104000	10600	0.93	5000	6800	33108		0.50
64000	6530	0.38	1.6	71000	7240	0.88	4800	6300	30208J	T3DB040	0.43
76500	7800	0.38	1.6	91500	9330	0.88	4800	6300	32208J	T3DC040	0.54
96000	9790	0.35	1.7	109000	11100	0.96	4300	5600	30308J	T2FB040	0.75
81500 81500	8310 8310	0.81 0.83	0.74 0.73	92000 92000	9380 9380	0.41	3800 3800	5300 5300	30308D 30308DJ	T7FB040	0.712
118000	12000	0.35	1.7	147000	15000	0.96	4300	6000	32308J	T2FD040	1.05
57000	5810	0.39	1.5	78000	7950	0.84	4500	6300	32009XJ	T3CC045	0.35
70500	7190	0.41	1.5	82500	8410	0.81	4300	6000	30209J	T3DB045	0.48
79000	8090	0.41	1.5	95500	9740	0.81	4300	6000	32209J	T3DC045	0.60
138000	14100	0.32	1.8	172000	17500	1	4000	5600	TR459536		1.21


P

Bearings of different designs can be custom-made on request.

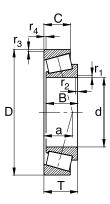
KBC Tapered Roller Bearings Single Row

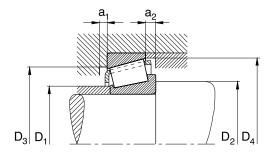

Shaft	Dimen	sions						Distance of Application Points	Abutm	ient Dim	ensions				
	d mm	D	В	С	Т	r _{1,} r ₂ min	r _{3,} r ₄ min	a ≈	D ₁ max	D ₂ min	D ₃ min	D ₃ max	D ₄ min	a ₁ min	a ₂ min
45	45 45 45 45	100 100 100 100	25 25 25 36	22 18 18 30	27.25 27.25 27.25 38.25	2 2 2 2	1.5 1.5 1.5 1.5	21.1 31.8 31.5 25	58 55 57 56	57 60 61 59	86 78 79 82	91 91 91 91	94 96 97 95	3 3 3 3	5 9 9 8
50	50	80	20	15.5	20	1	1	17.6	56	59	71	74	78	4	4.5
	50 50	90 90	20 23	17 19	21.75 24.75	1.5 1.5	1.5 1.5	19.6 21	58 57	61 61	79 78	81 81	87 87	3 3	4.5 5.5
	50 50 50 50	110 110 110 110 110	27 27 27 40	23 19 19 33	29.25 29.25 29.25 42.25	2.5 2.5 2.5 2.5	2 2 2 2	23 34.4 34.2 27.9	65 62 62 62	65 70 70 68	95 87 87 91	100 100 100 100	104 106 106 104	3 3 3 3	6 10 10 9
	50	114.3	44.45	34.925	44.45	3.5	3.3	32.1	62	75	88	94	108	3	9
55	55	90	23	17.5	23	1.5	1.5	19.7	62	66	80	81	88	4	5.5
	55 55 55	100 100 100	21 25 31	18 21 24.5	22.75 26.75 32	2 2 2	1.5 1.5 2	21.2 22.7 24.9	64 63 65	67 67 72	89 87 85	91 91 90	96 97 97	4 4 4	4.5 5.5 8
	55 55 55	120 120 120	29 29 43	25 21 35	31.5 31.5 45.5	2.5 2.5 2.5	2 2 2	25.1 38.1 30.9	71 67 67	70 75 73	104 94 99	110 110 110	113 115 113	4 4 4	6.5 10.5 10.5
60	60 60	95 95	23 27	17.5 21	23 27	1.5 1.5	1.5 1.5	20.9 20	66 66	71 71	85 85	86 86	93 93	4 5	5.5 6
	60 60	110 110	22 28	19 24	23.75 29.75	2	1.5 1.5	22 24.6	69 68	72 72	96 95	101 101	105 106	4	4.5 5.5
	60 60 60	130 130 130	31 31 46	26 22 37	33.5 33.5 48.5	3 3 3	2.5 2.5 2.5	27.1 40.7 32.7	77 74 74	78 84 81	112 103 107	118 118 118	122 125 122	4 4 4	7.5 11.5 11.5
65	65	100	26	21	26	1.5	1.5	21.8	72	74	89	91	96	5	6
	65 65 65	120 120 120	23 31 31	20 27 27	24.75 32.75 32.75	2 2 2	1.5 1.5 1.5	24.4 27.3 27.2	78 75 75	77 77 77	106 104 104	111 111 111	115 117 117	4 4 4	4.5 5.5 5.5
	65	130	48	39	51	3.5	3.5	34.2	77	90	106	111	120	4	11.5
	65 65 65	140 140 140	33 33 48	28 23 39	36 36 51	3 3 3	2.5 2.5 2.5	29.4 43.6 34.4	83 80 80	83 89 86	121 111 116	128 128 128	132 134 132	4 4 4	8 13 12


Load Rat	ing · Fact	or					Permissib	le Speed	Standards		$\overset{ ext{Weigh}}{pprox}$
Dynamic C		е	Y	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearings		
Ν	kgf			Ν	kgf		min ⁻¹		КВС	ISO 355 KS B 2027	kg
110000	11200	0.35	1.7	129000	13200	0.96	3800	5300	30309J	T2FB045	1.01
81500	8310	0.81	0.74	90000	9180	0.41	3400	4800	30309D	121 2010	0.95
92000	9380	0.83	0.73	106000	10800	0.4	3400	4800	30309DJ	T7FB045	0.955
140000	14300	0.35	1.7	174000	17700	0.96	3800	5300	32309J	T2FD045	1.41
62000	6320	0.42	1.4	89500	9130	0.78	4300	6000	32010XJ	T3CC050	0.379
77000	7850	0.42	1.4	92500	9430	0.79	4000	5300	30210J	T3DB050	0.56
88000	8970	0.42	1.4	110000	11200	0.79	4000	5300	32210J	T3DC050	0.642
107000	10000	0.05	1 7	147000	15000	0.00	2402		20240	TAEDASA	1.00
127000 103000	12900 10500	0.35 0.81	<u>1.7</u> 0.74	147000 117000	15000 11900	0.96	3400	4800	30310J 30310D	T2FB050	1.28
110000	11200	0.81	0.74	130000	13300	0.41	3200 3200	4300 4300	30310D 30310DJ	T7FB050	1.25 1.25
185000	18900	0.35	1.7	235000	24000	0.96	3600	4800	32310J	T2FD050	1.88
189000	19300	0.44	1.4	235000	24000	0.76	3600	4800	TR5011444		2.244
103000	10000	0.11	1.7	233000	24000	0.70	3000	4000	1103011444		2.277
79500	8110	0.41	1.5	119000	12100	0.81	3800	5300	32011XJ	T3CC055	0.567
96000	9790	0.41	1.5	115000	11700	0.81	3600	5000	30211J	T3DB055	0.733
108000	11000	0.41	1.5	138000	14100	0.81	3600	5000	32211J	T3DC055	0.857
125000	12700	0.41	1.5	163000	16600	0.81	3600	5000	TR5510032		1.052
146000	14900	0.35	1.7	170000	17300	0.96	3200	4300	30311J	T2FB055	1.62
129000	13200	0.83	0.73	153000	15600	0.4	2800	4000	30311DJ	T7FB055	1.57
200000	20400	0.35	1.7	257000	26200	0.96	3200	4300	32311J	T2FD055	2.39
84500	8620	0.43	1.4	128000	13100	0.77	3600	5000	32012XJ	T4CC060	0.607
98500	10000	0.33	1.8	159000	16200	1	3600	5000	33012J	T2CE060	0.713
105000	10700	0.44	4 5	105000	10700	0.01	0.400	4500	000401	TOFRAGA	0.007
<u>105000</u> 129000	10700 13200	0.41	<u>1.5</u> 1.5	<u>125000</u> 167000	12700 17000	<u>0.81</u> 0.81	3400 3400	4500 4500	30212J 32212J	T3EB060 T3EC060	<u>0.927</u> 1.18
123000	13200	0.41	1.5	107000	17000	0.01	3400	4300	JLLILJ	1320000	1.10
172000	17500	0.35	1.7	204000	20800	0.96	3000	4000	30312J	T2FB060	2.03
147000	15000	0.83	0.73	175000	17800	0.4	2600	3800	30312DJ	T7FB060	1.98
230000	23500	0.35	1.7	299000	30500	0.96	3000	4000	32312J	T2FD060	2.96
89500	9130	0.34	1.8	140000	14300	0.97	3400	4500	33013		0.732
123000	12500	0.41	1.5	154000	15700	0.81	3000	4000	30213J	T3EB065	1.18
133000	13600	0.41	1.5	168000	17100	0.81	3000	4000	32213	1320003	1.18
154000	15700	0.41	1.5	198000	20200	0.81	3000	4000	32213J	T3EC065	1.55
251000	25600	0.35	1.7	219000	22300	0.94	2800	3800	TR6513051		3.036
202000		0.25	17			0.06	2600			TOCDOCE	
203000 170000	20700 17300	0.35 0.83	<u>1.7</u> 0.73	238000 203000	24300 20700	0.96	2600 2400	3600 3400	30313J 30313DJ	T2GB065 T7GB065	<u>2.5</u> 2.42
259000	26400	0.35	1.7	335000	34200	0.96	2800	3800	32313J	T2GD065	3.6

Bearings of different designs can be custom-made on request.

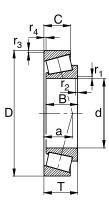
KBC Tapered Roller Bearings Single Row

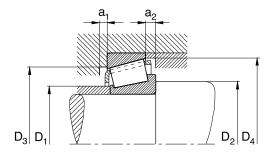

														-	ł
naft	Dimen	sions						Distance of Application Points	Abutm	ient Dim	ensions				
	d mm	D	В	С	Т	r _{1,} r ₂ min	r _{3,} r ₄ min	a ≈	D ₁ max	D ₂ min	D ₃ min	D ₃ max	D ₄ min	a ₁ min	a ₂ min
)	70 70	125 125	24 31	21 27	26.25 33.25	2	1.5 1.5	25.6 28.6	81 80	82 82	110 108	116 116	120 121	4	5 6
	70 70	150 150	35 51	30 42	38 54	3 3	2.5 2.5	30.8 21	89 86	88 91	132 124	138 138	142 142	4	8 12
5	75	130	31	27	33.25	2	1.5	29.8	84	87	113	121	127	4	6
5	<u>85</u> 85	150 150	28 36	24 30	30.5 38.5	2.5 2.5	2 2	30.3 33.7	97 96	100 100	133 131	140 140	143 144	5 5	6.5 8.5
90	90	140	32	24	32	2	1.5	29.8	99	102	124	131	136	6	8
	90	150	36	30	38.5	2.5	2	34.5	103	113	130	132	145	4	8
	90	160	40	34	42.5	2.5	2	36.1	102	114	135	145	153	4	6.5
95	95 95 		40 43	34 37	42.5 45.5	4 3	2.5 2.5	36.4 39.3	<u>110</u> 108		137 147	<u>139</u> 158	155 163	4 5	10 8.5


	Load Rat	ing · Fact	or					Permissib	le Speed	Standards		$\underset{\approx}{\text{Weight}}$
	Dynamic C		е	Y	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearings		~
	Ν	kgf			Ν	kgf		min ⁻¹		КВС	ISO 355 KS B 2027	kg
	130000 153000	13300 15600	0.42	1.4 1.4	160000 203000	16300 20700	0.79 0.79	2800 2800	4000 4000	30214J 32214J	T3EB070 T3EC070	1.3 1.64
	225000 299000	22900 30500	0.35 0.35	1.7 1.7	272000 385000	27700 39300	0.96 0.96	2400 2600	3400 3400	30314J 32314J	T2GB070 T2GD070	3.03 4.34
	163000	16600	0.44	1.4	216000	22000	0.76	2800	3800	32215J	T4DC075	1.72
	184000 222000	18800 22600	0.42	1.4 1.4	233000 305000	23800 31100	0.79 0.79	2400 2400	3200 3200	30217J 32217J	T3EB085 T3EC085	2.12 2.63
	173000	17600	0.42	1.4	273000	27800	0.78	2400	3200	32018XJ	T3CC090	1.78
	203000	20700	0.42	1.4	288000	29400	0.79	2400	3200	TR9015038		2.549
_	265000	27000	0.42	1.4	366000	37300	0.78	2400	3200	32218J	T3FC090	3.312
	247000 286000	25200 29200	0.42	1.4 1.4	363000 395000	37000 40300	0.79 0.79	2400 2200	3200 2800	TR9516042 32219J	T3FC095	3.309 4.21

KBC Tapered Roller Bearings

Single Row · Inch Dimensions

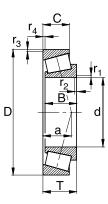

Shaft	Dimensi	ons						Distance of Application Points	Abutme	nt Dimens	sions			
	d mm	D	В	С	Т	r _{1,} r ₂ min	r _{3,} r ₄ min	a ≈	D ₁ max	D ₂ min	D ₃ min	D ₄ min	a ₁ min	a ₂ min
17.462	17.462	39.878	14.605	10.668	13.843	1.3	1.3	8.7	21.5	23	34	37	2	3
19.05	19.05	45.237	16.637	12.065	15.494	1.3	1.3	9.5	23.5	25	39.5	41.5	2	4
21.43	21.43	50.005	18.288	13.970	17.526	1.3	1.3	11.1	25.5	27.5	44	46	2	4
21.986	21.986	45.237	16.637	12.065	15.494	1.3	1.3	10.3	26	27.5	39.5	42	2	4
25.4	25.4	57.15	17.462	13.495	17.462	1.3	1.5	12.6	30.5	32.5	51	53	2	3.5
26.988	26.988	50.292	14.732	10.668	14.224	3.5	1.3	10.9	31	37.5	44.5	47	2.5	4
27	27	61.973	17	13.6	16.7	0.3	0.5	14.3	41	46	54	62	3.5	2
27.487	27.487	57.175	19.355	15.875	19.845	2.5	1.5	14.2	33	37	53	54	2	6
28.575	28.575 28.575	64.292 73.025	21.433 22.225	16.67 17.462	21.433 22.225	1.5 0.8	1.5 3.3	18.1 26	37 37	45 37.5	50 62	71 63	2.5 2	5 5
29	29	50.292	14.732	10.668	14.224	3.5	1.3	10.8	33	39.5	44.5	48	3.5	3.5
30.162	30.162 30.162	64.292 68.262	21.433 22.225	16.67 17.462	21.433 22.225	1.5 2.3	1.5 1.5	18.2 19.5	38 39.5	41 43.5	54 58	61 65	2.5 2	5.5 5
31.75	<u>31.75</u> 31.75	59.131 62	16.764 19.05	11.811 14.288	15.875 18.161	3.6 4.8	<u>1.3</u> 1.3	12.6 13.1	38 36.5	42 42.5	51 55	56 58	4 4.5	4 3.5
33.338	33.338	68.262	22.225	17.462	22.225	0.8	1.5	19.5	41	49	53	65	0.55	1.1
34.925	34.925 34.925 34.925 34.925 34.925 34.925 34.925 34.925 34.925	65.088 65.088 68.262 69.012 72.233 73.025 76.2 76.2	18.28818.28820.63819.58325.424.60828.57528.575	13.9717.01815.87515.87519.84219.0523.0223.812	20.638 19.845 25.4 23.812 29.37	4.8 4.8 3.5 3.5 2.3 1.5 3.5 1.5 1.5	1.3 1.5 2.3 1.3 2.3 0.8 3.3 3.3	14.5 17.6 15.2 15.7 20.9 15.8 23.9 21.8	40 40 40 42.5 40.5 44.5 43.5	46 46 46 48.5 43 53 46	58 58 59 60 62 64	61 63 63 69 68 73 72	3 2 3 3.5 3.5 2 2	4 5.5 4 4.5 4.5 6 5.5 6
34.988	34.988 34.988	59.131 59.974	16.764 16.764	11.938 11.938	15.875 15.875	1.5 1.1	1.3 1.3	13.4 13.4	39 39	45.5 45.5	52 52	<u>56</u> 57	3	4.5 4.5


Loa	d Ra	ting \cdot Fac	tor					Permissib	le Speed	Standards	Weight \approx
Dyn C	namic		е	Y	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearings	~
Ν		kgf			Ν	kgf		min ⁻¹		КВС	kg
225	500	2290	0.29	2.1	22500	2290	1.2	10000	13000	LM11749/LM11710	0.083
285	500	2910	0.30	2	28900	2950	1.1	9000	12000	LM11949/LM11910	0.125
390	000	3980	0.28	2.2	40500	4130	1.2	8000	11000	LM12649/LM12610	0.174
296	600	3020	0.31	2	34000	3470	1.1	8000	11000	LM12749/LM12710	0.122
395	500	4030	0.35	1.7	45500	4640	0.95	6700	9000	15578/15520	0.221
273	300	2780	0.37	1.6	31500	3210	0.88	7100	10000	L44649/L44610	0.12
323	300	3290	0.44	1.4	44000	4490	0.74	6200	8000	LM78349TF1/LM78310A	0.253
456	600	4650	0.35	1.7	49300	5030	0.95	6300	8500	TR275720	0.245
524 550		5340 5610	0.55 0.45	1.1 1.3	65900 65500	6720 6680	0.6 0.73	5300 5300	7100 7100	M86647/M86610 02872/02820	0.287 0.481
275	500	2800	0.37	1.6	34500	3520	0.89	7100	9500	L45449/L45410	0.115
515 555		5250 5660	0.55 0.55	1.1 1.1	66000 70500	6730 7190	0.6 0.6	5600 5300	8000 7500	M86649/M86610 M88043/M88010	0.339
349 435		3560 4440	0.41 0.35	1.5 1.7	41700 50500	4250 5150	0.8 0.94	6300 6000	8500 8000	LM67048/LM67010 15123/15245	0.189 0.246
554	100	5650	0.55	1.1	70700	7210	0.6	5300	7500	M88048/M88010	0.325
465 465 480 465 655 700 785 815	500 500 500 500 500	4740 4740 4890 4740 6680 7140 8000 8310	0.38 0.38 0.36 0.38 0.55 0.29 0.55 0.4	1.6 1.7 1.6 1.1 2.1 1.1 1.5	57500 57500 57500 57500 86000 86000 106000 98000	5860 5860 5860 5860 8770 8770 10800 9990	0.88 0.88 0.91 0.86 0.6 1.1 0.6 0.82	5600 5600 5600 5000 5300 4800 5000	7500 7500 7500 7500 7100 7100 6700 6700	LM48548/LM48510 LM48548/LM48511 14585/14525 14138A/14276 HM88649/HM88610 25877/25821 HM89446/HM89410 31594/31520	0.269 0.28 0.296 0.329 0.495 0.473 0.657 0.639
340 340		3470 3470	0.42	1.4 1.4	46000 46000	4690 4690	0.79 0.79	6000 6000	8000 8000	L68149/L68110 L68149/L68111	0.173

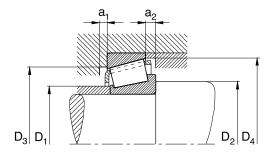
KBC Tapered Roller Bearings

Single Row · Inch Dimensions

Shaft	Dimensi	ons						Distance of Application Points	Abutmer	nt Dimens	sions			
	d mm	D	В	С	Т	r _{1,} r ₂ min	r _{3,} r ₄ min	a ≈	D ₁ max	D ₂ min	D ₃ min	D ₄ min	a ₁ min	a ₂ min
36.512	36.512 36.512	76.2 79.375	28.575 28.829	23.02 22.664	29.37 29.37	3.5 3.5	3.3 3.3	23.9 23.6	44.5 44	54 55	62 66	73 75	2 2.5	5 6
38	38	63	17	13.5	17	4.75	1.3	14.6	42.5	49	56	60	2.5	3.5
38.1	38.1 38.1 38.1 38.1 38.1 38.1	65.088 65.088 69.012 69.012 76.2	16.75 21.139 19.05 19.05 25.654	12.5 13.97 15.083 15.083 19.05	16.5 18.034 19.05 19.05 23.812	0.8 4.75 3.5 2 4.3	1.3 1.3 0.8 2.3 3.3	13 13.7 16.1 16.1 16.2	44 46 43 43 43.5	48 48 49.5 46.5 52	60 57 62 61 66	62 62 65 65 70	3 3.5 2 2 4	3 4 4.5 4 4
40.988	40.988	67.975	18	13.5	17.5	1.5	1.6	13.9	45	52	61	65	3.5	4
41.275	41.275 41.275 41.275	73.025 73.431 76.2	17.462 19.812 23.02	12.7 14.732 20.638	16.667 19.558 25.4	3.5 3.5 3.5	1.5 0.8 2.3	13.9 16.3 20.6	46 46.5 47	53 53 54	66 67 66	69 70 72	3.5 3 2	4 5 4
42.862	42.862	76.992	17.145	11.908	17.462	1.5	1.5	17.5	48.5	51	68	73	3.5	6.5
42.875	42.875	82.931	25.4	22.225	26.988	3.5	2.3	20.8	49	55	72	77	2	6
45.23	45.23 45.23	79.985 80	20.638 19	15.08 16	19.842 20	2.03 1.5	1.3 1.5	15.9 18	52 53	57 58	68 71	74 77	4 2	5 6
45.242	45.242	73.431	19.812	15.748	19.558	3.5	0.8	14.9	50	56	68	70	2.5	3.5
45.987	45.987	74.976	18	14	18	3.6	1.6	15.9	52	57	66	72	3	4.5
50	50 50	82 93.264	21.5 30.302	17 23.812	21.5 30.162	3 3.6	0.5 3.2	16.1 22	55 53	60 59	76 82	78 88	4 2	5 6.5
52.388		85 92.075	20 25.4	15 19.845	20 24.608	1.5 3.5	1.5 0.8	17.7 20.4	59 58	64 65	79 83	82 87	3 2	5.5 4
57.15	57.15 57.15		18.258 30.048		18.258 30.162	1.5 3.5	1.5 3.3	17.3 26	62 66	65 72	79 99	83 106	4 4.5	3.5 14
60	60	95	24	19	24	5	2.5	21	66	75	85	91	4	4
60.325	60.325 60.325	100 101.6	25.4 25.4	19.845 19.845		3.5 3.5	3.3 3.3	23.1 23.1	67 67	73 73	89 90	96 97	4.5 2	12.5 5.5



Load Rat	ing · Fact	or					Permissib	le Speed	Standards	$\overset{ ext{Weight}}{pprox}$
Dynamic C		е	Y	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearings	~
Ν	kgf			Ν	kgf		min⁻¹		КВС	kg
 78500 87000	8000 8870	0.55 0.55	1.1 1.1	106000 119000	10800 12100	0.6 0.6	4800 4800	6700 6700	HM89449/HM89410 HM89249/HM89210	0.637 1.02
 38000	3870	0.42	1.4	51500	5250	0.79	5600	7500	JL69349/JL69310	0.203
41500 42500 48000 48000 74000	4230 4330 4890 4890 7550	0.33 0.33 0.4 0.4 0.30	1.8 1.8 1.5 1.5 2	52000 55600 61500 61500 86000	5300 5670 6270 6270 8770	1 0.99 0.82 0.82 1.1	5300 5300 5300 5300 5300 5300	7100 7500 7100 7100 7100 7100	TR386516 38KW01Cg5 13685/13620 13687/13621 2776/2720	0.216 0.241 0.296 0.297 0.49
 43000	4380	0.35	1.7	57500	5860	0.95	5300	7100	LM300849/LM300811	0.242
45500 55500 67000	4640 5660 6830	0.35 0.4 0.39	1.7 1.5 1.5	55000 69000 84000	5610 7040 8570	0.94 0.83 0.84	4800 4800 4800	6700 6700 6700	18590/18520 LM501349/LM501310 24780/24721	0.285 0.334 0.468
 45000	4590	0.51	1.2	56100	5720	0.65	4600	6300	12168/12303	0.31
 75500	7700	0.33	1.8	100000	10200	0.99	4500	6000	25577/25523	0.629
 61000 53000	6220 5400	0.37 0.43	1.6 1.4	79500 39000	8110 3980	0.9 0.77	4500 4300	6000 6000	17887/17831 TR458020	0.41 1.17
 55000	5610	0.31	2	77000	7850	1.1	4800	6300	LM102949/LM102910	0.315
 51800	5280	0.4	1.5	71300	7270	0.82	4500	6000	LM503349/LM503310	0.305
 70500 104000	7190 10600	0.31 0.34	2 1.8	95500 138000	9740 14100	1.1 0.97	4300 4100	5600 5200	JLM104948/JLM104910 3780F1/3720	0.435 0.576
61000 82000	6220 8360	0.4 0.38	1.5 1.6	78000 112000	7950 11400	0.82 0.87	3800 4000	5300 5300	TR528520 28584/28521	0.392 0.682
58300 118000	5940 12000	0.39 0.4	1.5 1.5	94000 173000	9580 17600	0.85 0.82	4000 3200	5300 4300	L507949/L507910 3979/3920	0.38 1.376
82500	8410	0.4	1.5	123000	12500	0.82	3600	5000	JLM508748/JLM508710	0.63
91000 85000	9280 8670	0.42	1.4	135000 135000	13800 13800	0.87 0.87	3400 3400	4800 4800	28985/28921 S28985/S28920	0.770


Bearings of different designs can be custom-made on request.

KBC Tapered Roller Bearings

Single Row · Inch Dimensions

Shaft	Dimensio	ons						Distance of Application Points	Abutme	nt Dimen	sions			
	d mm	D	В	С	Т	r _{1,} r ₂ min	r _{3,} r ₄ min	a ≈	D ₁ max	D ₂ min	D ₃ min	D ₄ min	a ₁ min	a ₂ min
63.5	63.5	112.712	30.048	23.812	30.162	3.5	3.3	26	71	77	99	106	4.5	14
65	65	105	23	18.5	24	3	1	23.7	71	77	96	101	3.5	7
66.675	66.675 66.675 66.675	110 112.712 112.712		18.824 23.812 23.812	22 30.162 30.162	3.5 3.5 5.5	1.3 3.3 3.3	21.4 26 26	73 74 74	79 80 84	101 99 99	104 106 106	6.5 4 4.5	6.5 6 14
68.262	68.262 68.262	110 136.525	21.996 41.275	18.824 31.75	22 41.275	2.3 3.5	1.3 3.3	21.4 30.7	74 82	78 86	101 121	104 129	5 9.5	3 18
69.85	69.85	146.05	39.688	25.4	41.275	3.5	3.3	45	82	95	124	138	4.5	13
82.55	82.55 82.55	133.35 139.992	33.338 36.098	26.195 28.575	33.338 36.512	3.5 3.5	3.3 3.3	29.4 31.2	90 91	97 98	119 125	128 133	6 10.5	7 16
85.725	85.725	152.4	36.322	30.162	39.688	3.5	3.3	37.1	98	104	135	144	2	6.5
88.9	88.9	152.4	36.322	30.162	39.688	6.4	3.3	37.1	98	104	135	144	4.5	18
92.075	92.075	152.4	38.5	30.162	39.688	6.4	3.3	35.3	101	113	135	144	4	9.5

	Load Rat	ting · Fact	or					Permissib	le Speed	Standards	Weight \approx
	Dynamic C		е	Y	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearings	~
	N	kgf			N	kgf		min ⁻¹		КВС	kg
	118000	12000	0.4	1.5	173000	17600	0.82	3200	4300	3982/3920	1.22
	88500	9020	0.45	1.32	123000	12500	0.73	3200	4300	JLM710949/JLM710910	0.72
	83500 118000 118000	8510 12000 12000	0.4 0.4 0.4	1.5 1.5 1.5	114000 173000 173000	11600 17600 17600	0.82 0.82 0.82	3200 3200 3200	4300 4300 4300	395S/394A 3984/3920 3994/3920	0.787 1.166 1.16
	83500 229000	8510 23400	0.40 0.36	1.5 1.7	114000 298000	11600 30400	0.82 0.92	3200 2600	4300 3600	399A/394A H414245/H414210	0.76 2.746
	198000	20200	0.78	0.77	235000	24000	0.42	2600	3400	H913849/H913810	2.85
	154000 175000	15700 17800	0.4	1.5 1.5	238000 260000	24300 26500	0.82	2600 2600	3600 3400	47686/47620 580/572	1.69 2.178
	182000	18600	0.44	1.4	283000	28900	0.75	2200	3200	596/592A	2.91
	182000	18600	0.44	1.4	283000	28900	0.75	2200	3200	593A/592A	2.79
	201000	20500	0.44	1.4	314000	32000	0.75	2200	3200	598AS/592A	2.805
_											

Bearings of different designs can be custom-made on request.

KBC Tapered Roller Bearings Double Row

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

Basic Designs

A double row tapered roller bearing is assembled with two inner ring parts of single row tapered roller bearing in back-to-back arrangement on the unitized outer ring. Since the inner clearance is set for the bearing itself by design, its operation as well as its mounting can be carried out uniformly without much adjustment, and this is why it is used for automotive hubs and others to maintain optimum performance considering their sizes and functions.

These bearings can be divided into two groups, one with seals and the other without seals.

Tolerances

Tapered roller bearings of the basic designs in metric dimensions have a normal tolerance, but the bearing precisions can be increased on request.

Bearing Clearances

Because axial clearances of double row tapered roller bearings vary depending on tight-fits of mating parts, shaft or housing, and temperature variation during operation, their values are determined precisely in advance to provide optimum operation.

Axial clearances for KBC double row tapered roller bearings are set accordingly in such a way that will provide optimum performances under such mounting and operating conditions, and the clearances can be adjusted on request.

Speed Suitability

The permissible speeds for both grease and oil lubrication are shown on the Dimension Tables. In case of oil lubrication, the permissible speeds shown on the Dimension Tables are the values assuming oil sump lubrication. Depending on various lubricating methods, they can be operated at a higher speed.

Heat Treatment

KBC double row separable tapered roller bearings without seals are heat-treated in such a way that they can be used at operating temperatures of up to 120° C or above over extended periods. However, for those with seals, the operating temperatures are restricted by the temperature limit of used seal materials, and, for example, in case of contact seals made of NBR, it can be used at operating temperatures of up to 100 °C. For the bearings required to be used at higher temperatures, please contact KBC.

Cages

KBC double row tapered roller bearings have glass-fiber reinforced polyamide 66 cages as a basic design, and some cages are made from pressed steel.

Equivalent Dynamic Load

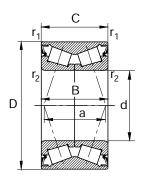
$$\begin{array}{lll} P & F_r + Y_3 \cdot F_a & : \mbox{ for } & F_a \\ P & 0.67 \cdot F_r + Y_2 \cdot F_a & : \mbox{ for } & F_a \\ F_r & > e \end{array}$$

The values of $Y_{\rm 2}$ and $Y_{\rm 3}$ are listed in the Dimension Tables.

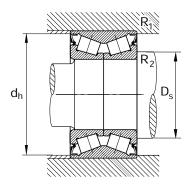
Equivalent Static Load

$$P_0 \quad F_r + Y_0 \boldsymbol{\cdot} F_a$$

The values of \mathbf{Y}_0 are listed in the Dimension Tables.


Prefixes

DT Double row tapered roller bearing



KBC Tapered Roller Bearings Double Row

Shaft	Dimens	sions					Distance of Appliction Points	Abutme	nt Dimens	ions	
	d mm	D	В	С	r ₁ min	r ₂ min	a ≈	D _s min	d _h max	R ₁ max	R ₂ max
40	40	80	45	44	0.3	2.6	36.2	52	74	0.3	2.6
42	42	76	39	39	0.5	3.8	40	55	72	0.5	3.8
45	45	75	32	23	0.8	1.5	41.9	55	71	0.8	1.5
49	49	84	48	48	0.5	2.3	43	61	78	0.5	2.3

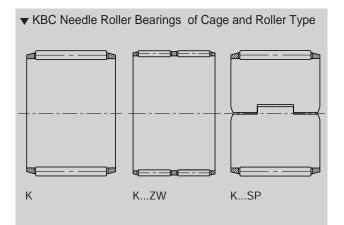
	Load Rat	ting · Fact	or						Pemissib	eSpeed	Standards	Weight
	Dynamic C		е	Y ₂	Y ₃	Static C ₀		Y ₀	Grease Lubrication	Oil Lubrication	Bearing	~
	N	kgf				Ν	kgf		min⁻¹		КВС	kg
	110000	11200	0.4	2.53	1.7	160000	16300	1.66	5000	7100	DT408044	1.01
	98300	10000	0.58	1.75	1.17	139000	14200	1.15	4800	6300	DT427639	0.75
	61300	6250	0.64	1.58	1.06	88000	8970	1.03	4500	6200	DT457532	0.5
	107900	11200	0.46	2.19	1.47	171400	17500	1.44	4000	5600	DT498448	1.09
_												
-												

KBC Needle Roller Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Needle Roller Bearings Basic Designs · Cages · Surrounding Structure Designs · Equivalent Loads · Prefixes · Suffixes


The primary feature of needle roller bearings is their high load carrying capacity in spite of a low section height, thus meeting the requirements of lightweight constructions as regards high capacity in a restricted mounting space.

Needle roller bearings can be largely divided into a few groups depending on their shapes; cage and roller types, shell types, and solid types.

Basic Designs

KBC needle roller bearings of cage and roller type are either single row or double row, and the rollers are manufactured in accordance with ISO 6193.

Also, for the bearings impossible to assemble because of the abutment shapes, the bearings with cage(Suffix SP) attached with connecting parts are available.

Cages

Cages of KBC needle roller bearings are generally made from glass-fiber reinforced polyamide 66.

These cages can be used at operating temperatures of up to 120°C over extended periods. If the bearings are lubricated with oil, any additives contained in the oil may reduce the cage service life. Also, aged oil may reduce the cage life at higher temperatures; therefore, the oil change intervals have to be strictly observed.

Surrounding Structure Design

Because KBC needle roller bearings of cage and roller type are mounted and rotated between shaft and housing, the rigidity of both shaft and housing should be determined in the same range as that of needle roller bearings.

Following Table shows the recommendations for machining bearing seats.

▼ Recommended Mac Housing	hining Values for	Shaft and
Kinds	Shaft	Housing
Dimension Tolerances	j5(js5)	G6
Circularity ¹)	IT3	IT3
Cylindricity ¹)	IT3	IT3
Roughness Class ²)	N5	N6
Hardness	HRC58~64 Hardened layer is required up to proper required up to proper	HRC58~64 Hardened layer is

1) Refer to Appendix 12 for the IT tolerance values.

2) Refer to Table 11-2 on Page 100 for roughness class.

Equivalent Dynamic Load

Needle roller bearings can accommodate only radial loads.

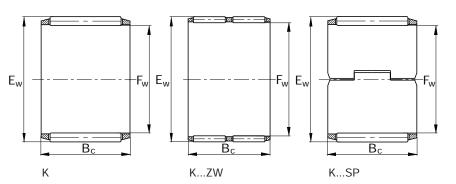
P F_r

Equivalent Static Load

Needle roller bearings can accommodate only radial loads.

 $P_0 F_r$

Prefixes


K Needle roller bearings of cage and roller type

Suffixes

- h Width dimensions differ from the standards.
- PC Glass-fiber reinforced polyamide 66 cage
- SP Cages with connecting parts
- $\mathbf{Z}\mathbf{W}$ Double row

KBC Needle Roller Bearings

Cage and Roller Type

Shaft	Dimen	sions		Load Ra	ting · Fac	tor		Pemissib	le Speed	Standards	$\underset{\approx}{\text{Weight}}$
	F _W	E _W	B _C	Dynamic C		Static C ₀		Grease Lubricatic	Oil n Lubrication	Bearing	~
	mm			N	kgf	Ν	kgf	min-1		КВС	kg
20	20	24	10	9100	929	12800	1310	13000	20000	K202410PC	0.005
	20	30	19	28200	2880	30400	3100	13000	20000	K203019PC	0.029
25	<u>25</u> 25	30 30	24 26	21400 21700	2180 2210	34900 36600	3560 3740	11000 11000	16000 16000	K253024PCSP K253026ZWPCSP	0.016 0.016
26	26	30	31	12400	1270	20500	2090	10000	15000	K263031ZWPCSP	0.015
28	28	32	13	11200	1140	18500	1890	9500	14000	K283213PCSP	0.007
30	<u>30</u> 30	35 35	25 32	23300 28300	2380 2890	41300 53100	4210 5420	8500 8500	13000 13000	K303525PCSP K303532ZWPCSP	0.019 0.024
33	<u>33</u> 33	37 37	22 26	18900 20100	1930 2050	39000 42000	3980 4290	8500 8500	13000 13000	K333722PCSP K333726ZWPCSP	0.014 0.024
37	37	42	27	28000	2860	57000	5820	7500	11000	K374227PCSP	0.025
38	<u>38</u> 38	42 42	24 28	21600 23000	2200 2350	47600 51000	4860 5200	7500 7500	11000 11000	K384224ZWPCSP K384228ZWPCSP	0.016 0.019
	38	43	29	30100	3070	62200	6350	7500	11000	K384329ZWPCSP	0.028
42	42	47	19	22700	2320	44800	4570	6500	9500	K424719PCSP	0.02
43	43	48	31	34000	3470	75800	7740	6500	9500	K434831ZWPC	0.033
47	47	52	34	39500	4030	97000	9900	5500	8500	K475234ZWPC	0.042

KBC Unit Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

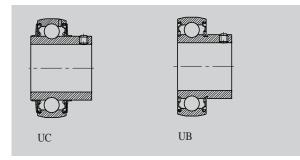
Web: https://www.rstbearing.com.cn

KBC Unit Bearings Standards • Basic Designs • Plummer Block Housing • Flanged Housing

Unit bearings are preferably used for applications calling for simplicity of design and assembly.

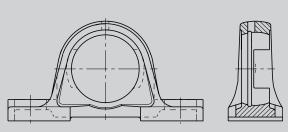
KBC programme includes unit bearings and the suitable plummer block housings and flanged housings.

Unit bearings are used almost exclusively as locating bearings. Therefore, they are particularly suitable for supporting short shafts and for applications where only minor thermal expansions are likely to occur. Minor expansions of the shaft are compensated for by the axial clearance of the bearings.

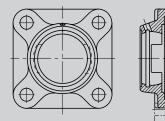

Standards

Unit ball bearing	KS B 2049
Unit ball bearing housing	KS B 2050

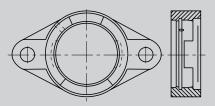
Basic Designs


Unit bearings of UC and UB Series can be fitted into different housings.

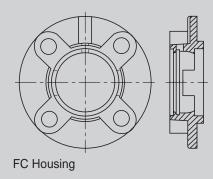
They are fastened on the shaft by means of two threaded pins(See tightening torque and wrench openings indicated in the Table below.). The flinger rings protect UC Series bearings from coarse contaminants.


▼ Tightening Torque and Wrench Openings for the Threaded Pins of UC and UB Series Bearings
 Bearing Series
 Bore Reference Number
 UC, UB Series
 04 05 06 07 08 09 10 11 12 13
 Tightening Torque 6 6 6 12 12 12 23 23 23 23 (Nm)
 Wrench Opening 3 3 3 4 4 4 5 5 5 5 5

Grey-cast Iron Plummer Block Housing



P Housing


Pressed Steel Plummer Block Housing

F Housing

FL Housing

KBC Unit Bearings

Lubrication • Alignment • Tolerances • Bearing Clearances • Operating Temperature • Speed Suitability • Equivalent Loads

Lubrication

KBC unit bearings require no maintenance, and the standard grease filling will generally last for the whole bearing life. It is possible to relubricate through lubrication nipples.

The bearings have one lubricating hole in the outer ring.

Alignment

KBC bearings can compensate for static misalignments of up to 5° out of the center position. The angular misalignment of bearings which are relubricated must not exceed 2° as otherwise the lubricating hole in the outer ring will be covered and no longer accessible.

Tolerances

Basically, KBC unit bearings are machined to the normal tolerance class of radial bearings as shown on Page 66. However, since the bearing bore is loosely fitted to the shaft, and fastened by means of set screws, the tolerance range becomes comparatively bigger. The following Table shows the tolerances of bore diameters.

Bearing Clearance

KBC unit bearings have the radial clearances of deep groove ball bearings as shown on Page 92. Unit bearings with a higher precision can be supplied on request.

Operating Temperature

KBC unit bearings are filled with a specially tested quality grease. The maximum operating temperature is 100° C and the lower temperature limit is -30° C.

Speed Suitability

The speeds attainable with KBC unit bearings are determined primarily by the bearing seat on the shaft. The speeds reached with relatively rough shafts and loose fits are low. Higher speeds are reached with tighter fits and more accurately machined shafts. The following Table lists the attainable speeds for various shaft tolerances.

▼ Tolerances of	Bore Dia	meter			
		Unit : mn	n		
UC, UB Series	Over To	10 18	18 30	30 50	50 80
		Toleran	ces: n	n	
Deviation of the mean bore diameter	$\Delta_{\rm dmp}$	+18 0	+21 0	+25 0	+30 0

▼ Atta	ainable	Speeds					
Bore Reference	Shaft	Shaft Tole	erance				
Number		m7,k7	j7	h7	h8	h9	h10
_	mm	Speed	: min-1				
04 05 06 07	20 25 30 35	10000 9000 7500 6300	8000 7200 6000 5000	5000 4500 3800 3200	3600 3100 2600 2200	1200 1100 900 750	800 720 600 500
08 09 10 11 12 13	40 45 50 55 60 65	5600 5300 4800 4300 4000 3700	4500 4300 3800 3400 3200 3000	2800 2600 2400 2200 2000 1800	1900 1800 1700 1500 1400 1300	670 630 580 520 480 440	450 430 380 340 320 290

KBC Unit Bearings Equivalent Loads

Equivalent Dynamic Load

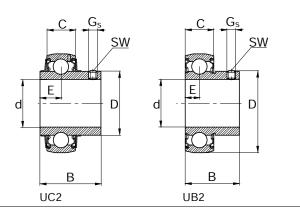
P $X \cdot F_r + Y \cdot F_a$

The contact angles of deep groove ball bearings increase as their axial loads increase. Therefore, factors, X and Y, depend on F_a/C_o , as shown below.

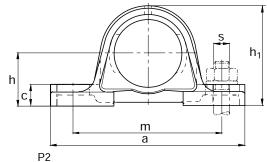
▼ Radia	I and Axia	l Facto	rs of Un	it Bearings	
F_a/C_0	е	F _a /F	r ≦ e	F _a /F _r 2	> e
		Х	Y	Х	Υ
0.014	0.19	1	0	0.56	2.30
0.028	0.22	1	0	0.56	1.99
0.056	0.26	1	0	0.56	1.71
0.084	0.28	1	0	0.56	1.55
0.11	0.30	1	0	0.56	1.45
0.17	0.34	1	0	0.56	1.31
0.28	0.38	1	0	0.56	1.15
0.42	0.42	1	0	0.56	1.04
0.56	0.44	1	0	0.56	1.00

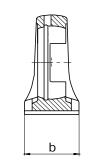
Equivalent Static Load

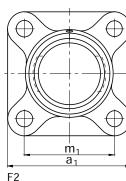
$$\begin{array}{ll} P_0 & F_r & \quad : \mbox{for} & \frac{F_a}{F_r} \leq 0.8 \\ P_0 & 0.6 \cdot F_r + 0.5 \cdot F_a & \quad : \mbox{for} & \frac{F_a}{F_r} > 0.8 \end{array}$$

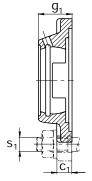

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn


KBC Unit Bearings


UC2, UB2 Series


P2, F2 Grey-cast Plummer Block Housing and Flanged Housing



Shaft	Dimen	sions													
	Bearin d mm	gs D	С	В	E	G _S KS B 1028	SW	P Hou a mm	sing b	С	h	h ₁	m	F Hous a ₁	
20	20 20	47 47	16 14	31 25	12.7 7	M6x0.75 M6x0.75	3 3	127 127	38 38	15 15	33.3 33.3	65 65	95 95	86 86	12 12
25	25 25	52 52	17 15	34 27	14.3 7.5	M6x0.75 M6x0.75	3 3	140 140	38 38	16 16	36.5 36.5	71 71	105 105	95 95	14 14
25.4	25.4	52	17	34	14.3	M6x0.75	3	140	38	16	36.5	71	105	95	14
30	30	62	19	38.1	15.9	M6x0.75	3	165	48	18	42.9	84	121	108	14
35	35	72	20	42.9	17.5	M8x1	4	167	48	19	47.6	94	127	117	16
40	40	80	21	49.2	19	M8x1	4	184	54	19	49.2	100	137	130	16
45	45	85	22	49.2	19	M8x1	4	190	54	20	54	108	146	137	18
50	50	90	23	51.6	19	M10x1.25	5	206	60	22	57.2	114	159	143	18
55	55	100	24	55.6	22.2	M10x1.25	5	219	60	22	63.5	126	171	162	20
60	60	110	27	65.1	25.4	M10x1.25	5	241	70	25	69.8	138	184	175	20
65	65	120	28	65.1	25.4	M10x1.25	5	265	70	27	76.2	150	203	187	20

	P2							·	F2					
			Fasten	ing Bolt	Load Ra	ating			Code			Weigh \approx	t	
	F Hous g ₁ mm	ing m ₁	PHousin S	g FHousing S ₁	Dynamic C N	kgf	Static C ₀ N	kgf	Bearing KBC	P Housin; KBC	g F Housi KBC		g UCP Unit	UCF Unit
	05.5			1410						5004				
	25.5 25.5	64 64	M10 M10	M10 M10	12800 12800	1310 1310	6650 6650	678 678	UC204 UB204	P204 P204	F204 F204	0.16 0.15	0.68 0.67	0.62 0.61
	27 27	70 70	M10 M10	M10 M10	14000 14000	1430 1430	6650 7900	678 806	UC205 UB205	P205 P205	F205 F205	0.19 0.17	0.82 0.8	0.83 0.81
· · · · · · · · · · · · · · · · · · ·	27	70	M10	M10	14000	1430	7900	806	UC205-1	16 P205	F205	0.18	0.81	0.82
	31	83	M14	M10	19400	1980	11300	1150	UC206	P206	F206	0.31	1.36	1.14
	34	92	M14	M12	25700	2620	15400	1570	UC207	P207	F207	0.48	1.73	1.47
	36	102	M14	M14	29100	2970	17800	1820	UC208	P208	F208	0.62	2.1	2
	38	105	M14	M14	32500	3310	20400	2080	UC209	P209	F209	0.67	2.3	2.4
	40	111	M16	M14	35000	3570	23200	2370	UC210	P210	F210	0.78	2.7	2.6
	43	130	M16	M16	43500	4440	29200	2980	UC211	P211	F211	1.03	3.4	3.6
	48	143	M16	M16	52500	5350	36000	3670	UC212	P212	F212	1.45	4.8	4.8
	50	149	M20	M16	57000	5810	38500	3930	UC213	P213	F213	1.71	5.7	5.8
				-										
				_										
				_										
				_										
				_										
				_										

Bearings and housings of other designs can be supplied on request. Machining dimensions may change without notice.

KBC Thrust Ball Bearings Single Direction

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Thrust Ball Bearings

Single Direction · Basic Designs · Tolerances · Cages · Axial Loads · Abutment Dimensions • Prefixes • Suffixes Basic Designs

Basic Designs

Separable thrust ball bearing consists of fixed ring, revolving ring, rolling element, and cage. These bearings can transmit only axial loads, and they are mainly used for low and medium speeds. King-pin thrust ball bearings are non-separable bearings, and they are manufactured to have no cages so as to accommodate as many balls as possible, and their steel design holds the fixed ring and revolving ring together permanently, and some of them are attached, depending on operating conditions, with sealing device, such as rubber seal or O-ring.

Tolerances

Thrust ball bearings as basic designs are machined to normal tolerances. Bearings with higher precisions(Suffixes P6 or P5) can be supplied on request.

Precision: Tolerances of Thrust Ball Bearings on Page 80.

Cages

Thrust ball bearings of basic designs are equipped with the pressed steel cages(No assigned suffix). Some thrust ball bearings(Suffix V) are manufactured to have no cages so as to acco-mmodate as many balls as possible.

Minimum Axial Load, High Speeds

At high speeds, bearing kinematics is affected by the inertia forces of the balls, if the axial load does not reach a certain minimum value.

If the external axial load is too low, the bearings

Thrust Ball Bearing, Single Direction

must be preloaded, e.g. by means of springs.

Equivalent Dynamic Load

Thrust ball bearings can accommodate only axial loads.

P F_a

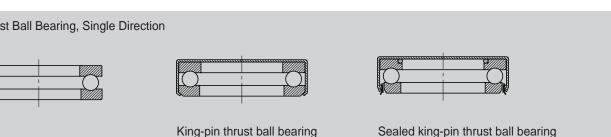
Equivalent Static Load

Thrust ball bearings can accommodate only axial loads.

 P_0 F_a

Abutment Dimensions

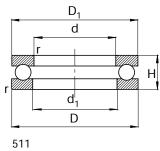
The bearing washers should closely fit the shaft or housing shoulder, they must not be allowed to foul the shoulder fillet radius. Consequently, the maximum fillet radius $r_g\ \text{of the mating}\ \ \text{part must be}$ smaller than the minimum corner rmin of the thrust ball bearing.

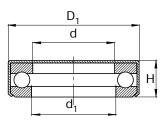

The shoulder of the mating parts must be so high that even with maximum bearing corner, there is an adequate abutment surface. The maximum fillet radius R, the minimum diameters of abutment shoulders of shaft, D_s, and the maximum diameters of abutment shoulders of housing, dh, are shown on the Dimension Tables.

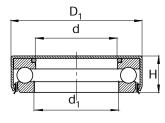
Prefixes

S Bearings with steel cover

Suffixes

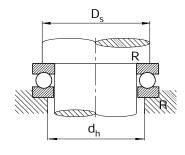

- TAG King-pin thrust ball bearing
- V Bearing with no cage




511

King-pin thrust ball bearing

KBC Thrust Ball Bearings Single Direction



King-pin thrust ball bearing

Sealed king-pin thrust ball bearing

Dimensio	ons					Abutme	Abutment Dimensions			
d mm	D	н	d ₁	D ₁	r min	D _s	d _h	R		
17	30	9	18	30	0.3	22	25	0.3		
20	35	10	21	35	0.3	26	29	0.3		
28	-	15.8	28.5	51.6	_	_	-			
<u>30</u> 30	47	11 17	32 30.5	47 51.6	0.6	37	40	0.6		
35	52	12	37	52	0.6	42	45	0.6		
35.1	-	18	35.8	62.8	-	-	-			
40 40	60	13 13.8	42 41	60 61.6	0.6	48	52	0.6		
	70		52	70	0.6	58	62	0.6		
	d mm 17 20 28 30 30 35 35.1 40 40	mm 17 30 20 35 28 - 30 47 30 - 30 - 35 52 35.1 - 40 60 40 -	d D H mm 17 30 9 17 30 9 20 35 10 28 - 15.8 30 47 11 30 - 17 35 52 12 35.1 - 18 40 60 13 40 - 13.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dDHd1D1mm173091830173091830203510213528-15.828.551.6304711324730-1730.551.6355212375235.1-1835.862.8406013426040-13.84161.6	dDH d_1 D_1 r_{min} 1730918300.320351021350.328-15.828.551.6-30471132470.630-1730.551.6-35521237520.635.1-1835.862.8-40601342600.640-13.84161.6-	d D H d1 D1 rmin Ds 17 30 9 18 30 0.3 22 20 35 10 21 35 0.3 26 28 - 15.8 28.5 51.6 - - 30 47 11 32 47 0.6 37 30 - 17 30.5 51.6 - - 35 52 12 37 52 0.6 42 35.1 - 18 35.8 62.8 - - 40 60 13 42 60 0.6 48 40 - 13.8 41 61.6 - -	d mmD HH d1D1 P1r minDsdh1730918300.3222520351021350.3262928-15.828.551.630471132470.6374030-1730.551.635521237520.6424535.1-1835.862.840601342600.6485240-13.84161.6	d D H d1 D1 rmin Ds dn R 17 30 9 18 30 0.3 22 25 0.3 20 35 10 21 35 0.3 26 29 0.3 28 - 15.8 28.5 51.6 - - - 30 47 11 32 47 0.6 37 40 0.6 30 - 17 30.5 51.6 - - - - 30 47 11 32 47 0.6 37 40 0.6 30 - 17 30.5 51.6 - - - - 35 52 12 37 52 0.6 42 45 0.6 35.1 - 18 35.8 62.8 - - - - 40 60 13 42 60 0.6 48 52 0.6 40 - 13.8 41 61.6 - - - -	

Dynamic							\approx
Dynamic C		Static C ₀		Grease Lubrication	Oil Lubrication		Bearings
N	kgf	Ν	kgf	min⁻¹		КВС	kg
11400	1160	19500	1990	6000	9000	51103	0.025
15100	1540	26600	2710	5300	8000	51104	0.037
21300	2350	46300	4720	3600	-	28TAG12A	0.055
20600	2100	42000	4280	4300	6700	51106	0.064
23000	2350	46300	4720	3400	_	S305117V	0.075
22100	2250	49500	5050	4000	6000	51107	0.081
24700	2520	55600	5670	2800	_	S356217V	0.098
27100	2760	63000	6420	3600	5300	51108	0.120
27100	2760	63000	6420	2500	_	S51108-1	0.135
29000	2960	75500	7700	3200	4800	51110	0.513
	11400 15100 21300 20600 23000 22100 24700 27100 27100	11400 1160 15100 1540 21300 2350 20600 2100 23000 2350 22100 2250 24700 2520 27100 2760 27100 2760	11400 1160 19500 15100 1540 26600 21300 2350 46300 20600 2100 42000 23000 2350 46300 22100 2250 49500 24700 2520 55600 27100 2760 63000 27100 2760 63000	11400 1160 19500 1990 15100 1540 26600 2710 21300 2350 46300 4720 20600 2100 42000 4280 23000 2350 46300 4720 22100 2250 49500 5050 24700 2520 55600 5670 27100 2760 63000 6420 27100 2760 63000 6420	11400 1160 19500 1990 6000 15100 1540 26600 2710 5300 21300 2350 46300 4720 3600 20600 2100 42000 4280 4300 23000 2350 46300 4720 3400 22100 2250 49500 5050 4000 24700 2520 55600 5670 2800 27100 2760 63000 6420 3600 27100 2760 63000 6420 2500	11400 1160 19500 1990 6000 9000 15100 1540 26600 2710 5300 8000 21300 2350 46300 4720 3600 - 20600 2100 42000 4280 4300 6700 23000 2350 46300 4720 3400 - 22100 2250 49500 5050 4000 6000 24700 2520 55600 5670 2800 - 27100 2760 63000 6420 3600 5300 27100 2760 63000 6420 2500 -	11400 1160 19500 1990 6000 9000 51103 15100 1540 26600 2710 5300 8000 51104 21300 2350 46300 4720 3600 - 28TAG12A 20600 2100 42000 4280 4300 6700 51106 23000 2350 46300 4720 3400 - S305117V 22100 2250 49500 5050 4000 6000 51107 24700 2520 55600 5670 2800 - S356217V 27100 2760 63000 6420 3600 5300 51108 27100 2760 63000 6420 2500 - S51108-1

KBC Water Pump Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

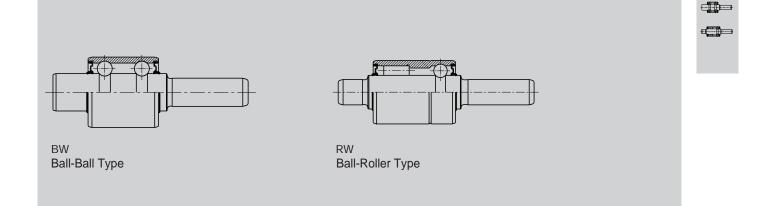
Web: https://www.rstbearing.com.cn

KBC Water Pump Bearings Standards

Water pump bearings are originally known to be the solid shaft bearing, but, because they are mainly used for automotive water pumps, they are usually called as water pump bearings as a matter of convenience. In general, they have a structure unitized with double row bearing, and also with unitized bearing inner ring and shaft. Therefore their structure allows them to be comparatively smaller and lighter than others.

When a water pump bearing is mounted, impeller for supplying cooling water is attached on one end of the shaft, and a driving pulley on the other end.

Standards

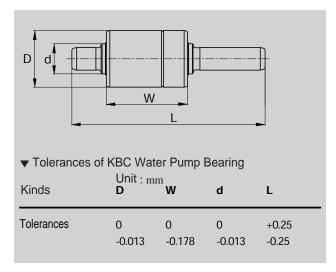

In case of water pump bearings, because they are designed and machined to meet the specifications and conditions required for automotive water pumps, all design specifications are basically set to comply with customers' requirements.

Basic Designs

Water pump bearings are non-separable sealed bearings, and they can be divided into two types depending on the kinds their rolling elements, ballball type and ball roller type.

Because the load capacity of ball-roller type water pump bearings is a lot higher than that of ball-ball type, they are suitable to be used when they have to support fan couplings, or when they have to transmit high belt loads, or off-set loads. KBC water pump bearings have the designs with following features, so as to provide the excellent durability.

- Surface hardened shaft for better resistance against bending fatigue.
- Long roller with high load support capacity.
- Plastic cage with excellent lubrication and abrasive-resistance.
- High-quality grease exclusively for water pump bearings with long service life and high waterresistance.
- Seal with tighter sealing quality and protection against grease leakage.


KBC Water Pump Bearings

Tolerances · Bearing Clearances · Cages · Seals · Tight-Fits

Tolerances

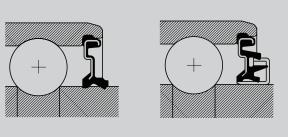
In case of water pump bearings, because they are designed and machined to meet the specifications and conditions required for automotive water pumps, all tolerances are basically set to comply with customers' requirements.

One example of the tolerances for KBC water pump bearings is shown below for reference only, and they can be changed on customers' requirements and different precision classes. Therefore, it is necessary to contact and consult KBC before placing an order.

Bearing Clearances

Radial clearances of KBC standard water pump bearings are shown below.

The bearings with different clearances can be supplied on request.


Cages	
-------	--

Cages of KBC water pump bearings are generally made from glass-fiber reinforced polyamide 66.

These cages can be used at operating temperatures of up to 120° C over extended periods. When required to use KBC standard water pump bearings under higher operating temperatures, please contact KBC in advance.

Seals

Seals of water pump bearings have the structures as shown below, and they are classified depending on the number and shape of seal lips, 2-LIP or 4-LIP.

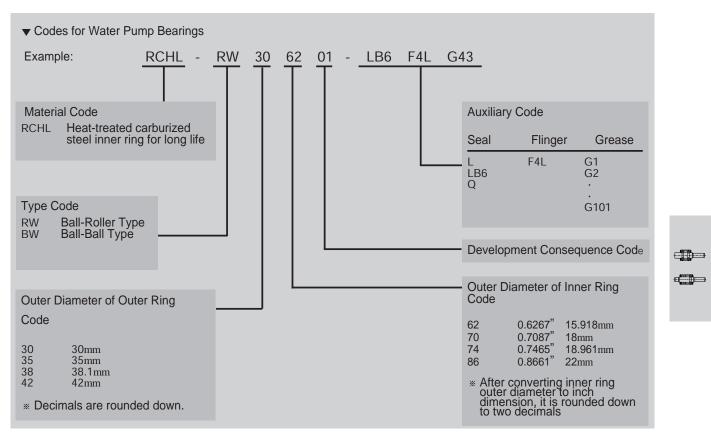
2-LIP Seal

4-LIP Seal

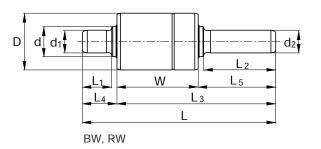
Tight-Fits of Housing

Bearing housing has to be properly tight-fitted to maintain bearing's own basic properties. Deviation or quality let-down of housing bore diameter, circularity and inclination, may cause early breakdown of the bearing.

Recommended housing tight-fit conditions are listed below.


▼ Radial Clearances of KBC Water Pump Bearing								
Outer Diameter	Unit : mm Ball Min	Max	Roller Min	Max				
30	0.015	0.03	0.015	0.03				
35	0.012	0.027	0.01	0.025				
38.1	0.01	0.03	0.01	0.03				
42	0.012	0.022	0.015	0.035				

KBC Water Pump Bearings Codes


Outer Diameter of Outer Ring	Housing Bore	
[mm]	Cast Iron Housing	Aluminum Alloy Housing
30 35	R6	U6
38.1 42	R7	U7
The roundness of housing bore shoul The taper of tapered face should not When a housing made of different ma	exceed a taper ratio of 0.0005.	

Codes

Codes for water pump bearings are assigned as follows.

KBC Water Pump Bearings

Housing	Dimensions										
	D	W	L	d	d ₁	d ₂	L ₁	L ₂	L ₃	L_4	L_5
	mm										
30	30	23	79.8	15.918	15.918	12		38.3	64.3	15.5	41.3
	30	27	81.75	15.918	15.918	12.038		34.9	64.51	17.24	37.51
	30	30	83.5	15.918	15.918	12		34.5	67	16.5	37
	30	36	87.5	15.918	15.918	12		34.25	74	13.5	38
	30	38.894	68.39	15.918	15.918	15.918			43.394	24.996	4.5
	30 30	38.894 38.894	92.5 103	15.918 15.918	<u>12</u> 15.918	12 12	14	34.5 43	76 86.5	16.5 16.5	37.106 47.606
	30	38.894	109.65	15.918	12	12	14.2	51.65	93.15	16.5	54.256
35	35	36	90.2	18	18	12.038		36.1	74.7	15.5	38.7
	35	38.894	92.5	18	15.918	12	14	34.5	76	16.5	37.106
	35	38.894	95	18	12	12	15	36	77.5	17.5	38.606
	35 35	38.894 38.894	100.4 103.2	18 18	15.918 15.918	12 12	14 24.9	42.4 35.3	83.9 76.8	16.5 26.4	45.006 37.906
38.1	38.1	53.975	80.6	18.961	18.961	18.961		3	56.975	23.625	3
42	42	46	110.5	22	19	12	22.6	39	86.9	23.6	40.9
	42	46	142	22	22	16		49	101	41	55

Load Ra Ball Dynamic C	U	Static C _o		Roller Dynamic C		Static C ₀		Standards	Weight ≈ Bearings
N	kgf	N	kgf	N	kgf	N	kgf	КВС	kg
6600	673	2700	276	11900	1210	10200	1040	RW306212	0.152
6600 ¹)	673 ¹)	2700 ¹)	276 ¹)					BW306201	0.159
6600	673	2700	276	11900	1210	10200	1040	RW306213	0.174
6600	673	2700	276	18200	1860	17500	1790	RW306211	0.2
6600 6600 6600 6600	673 673 673 673	2700 2700 2700 2700	276 276 276 276	18200 18200 18200 18200	1860 1860 1860 1860	17500 17500 17500 17500	1790 1790 1790 1790 1790	RW306206 RW306201 RW306203 RW306202	0.2 0.204 0.225 0.218
8100	827	3400	347	22000	2250	20600	2100	RW357005	0.265
8100 8100 8100 8100	827 827 827 827 827	3400 3400 3400 3400	347 347 347 347 347	22000 22000 22000 22000	2250 2250 2250 2250	20600 20600 20600 20600	2100 2100 2100 2100	RW357002 RW357004 RW357001 RW357003	0.273 0.265 0.28 0.29
9750	995	4200	429	24500	2500	22700	2320	RW387401A	0.4
11600 11600	1180 1180	5100 5100	520 520	26000 26000	2650 2650	25100 25100	2560 2560	RW428601 RW428602	0.458 0.59

KBC One Way Clutch Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC One Way Clutch Bearings Basic Designs · Tolerances · Cages and Springs · Equivalent Loads

KBC one way clutch bearings have the structure unitizing both deep groove ball bearing, which can transmit both radial and axial loads, and the one way clutch roller bearing, which can control the single direction revolution, and they are mainly used for the driving gears of automatic washing machines.

Basic Designs

There are two types of one way clutch bearings, one with both unitized inner and outer rings, and the other with outer ring whose ball and clutch sections can be separated. In case of separable outer ring type, the outer diameter of deep groove ball bearing is set smaller than that of clutch in consideration of tight-fit conditions with housing, and its inner clearance is also set to be large accordingly.

A roller in the clutch always sticks closely with inner ring track surface and cam-shaped outer ring track surface by means of the spring on the pocket wall. This restricts inner ring to revolve in one direction, but allows sliding revolution with roller in the other direction. These bearings are supplied in sealed type, and both contact type seals and noncontact type seals are available. Also, for easy identification of the revolving direction, the different colors are painted on both ball and clutch sections in addition to outer ring groove at the manufacturer' s plant.

Tolerances

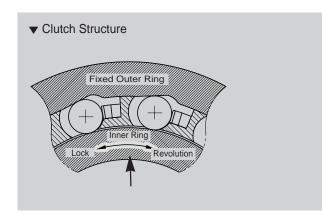
One way clutch bearings are mac-hined to the normal tolerances of radial bearings, and the outer diameter of ball bearing is machined to the low limit for clutch outer diameter in minus values.

Cages and Springs

Cages of both ball and clutch sections of these bearings are generally made from glass-fiber reinforced polyamide 66.

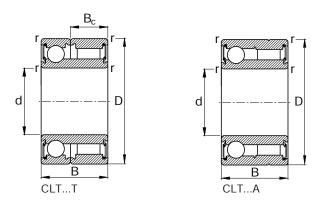
These cages can be used at operating temperatures of up to 120° C over extended periods.

S-shaped springs are made from stainless spring steel(STS304-CSP), and they play an important role of sticking roller between outer ring cam and inner ring in the clutch. Therefore springs are made to sufficiently withstand the repeated loads accordingly.

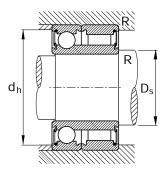

Equivalent Dynamic Loads

P
$$\mathbf{X} \cdot \mathbf{F}_r + \mathbf{Y} \cdot \mathbf{F}_a$$

For the factors, X and Y, please refer to the Table, Radial and Thrust Factors for Deep Groove Ball Bearings on Page 134.


Equivalent Static Load

P ₀	F _r	: for $\frac{F_a}{F_r} \leq 0.8$
P ₀	$0.6 \cdot F_r \! + \! 0.5 \cdot F_a$: for $\frac{F_a}{F_r} > 0.8$



pi

KBC One Way Clutch Bearings

Shaft	Dimensi	ions					Abutme	nt Dimensio	ns	
	d mm	D	В	B _C	r min		D _s min	d _h max	R max	
25	25	47	25	14	0.6		28	43.5	0.6	
	25	47	25		0.6		28	43.5	0.6	

	Load Rat	ting				Locking Torque	Standards	$\underset{\approx}{\text{Weight}}$
	Dynamic C		Static C ₀					∼ Bearing
							1/00	
-	N	kgf	N	kgf	N∙m	kgf∙cm	KBC	kg
_	10100	1030	5800	592	58.8	600	CLT05T ¹)	0.17
	10100	1030	5800	592	58.8	600	CLT05A	0.17
-								
-								
_								

KBC Ceramic Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Ceramic Bearings Material Characteristics · Basic Designs · Tolerances · Prefixes · Suffixes

Because KBC ceramic bearings are made of fine ceramic, which has excellent properties of corrosion-proof, heat-resistance, magnetism-proof, and insulation, they can be used where steel bearing can't be used for various reasons, providing excellent performances. Also, they have excellent lubrication and vacuum-resistance properties, which make them an excellent choice for clean room equipments and high-vacuum room equipments. And they are not affected by electromagnetism at all.

Characteristics of Ceramic Materials

Ceramic for KBC ceramic bearings is made from high purity nitro-silicon by means of high temperature static water pressure pressing. This material has low density and high tensile strength, and their excellent performances have been proven over and over again.

Comparisons with steel bearings are shown below.

Basic Designs

KBC ceramic bearings can be largely divided into 3 types, depending on their uses.

In case of bearings for high temperature use and corrosion-proof property, ceramic inner/outer rings and rolling elements are used, but with steel cage(STS304) for high temperature use, and with fluorine resin(PTFE) cage for corrosion proof

property. The bearings for high temperature use can be used at operating tem-peratures of up to 500°C over extended periods.

By utilizing its light weight, ceramic is also used to make rolling elements for high speed bearings, which reduce centrifugal forces of revolving bearings drastically. And cages are usually made from glass-fiber reinforced polyamide 66 or from penol resin base with fabric layers.

KBC also supplies insulation bearings made of ceramic on outer ring surface and width surface of bearings.

Ceramic materials and cages of these ceramic bearings can be altered to suit their operating conditions, and KBC provides customer services to select the most suitable and economical bearings for their uses.

Prefixes

- CB Inner/outer rings and rolling elements made of ceramic
- HB Rolling elements made of ceramic

Suffixes

- SU Stainless steel cage
- PT Fluorine resin cage

Kinds	Ceramic (Nitro-silicon)	Bearing Steel	Merits of Ceramic Material	Photegraphy of Ceramic Tissue
Heat-resistance(°C)	800	120	Possible to use under high temperature	× 3,000
Density(g/m ³)	3.2	7.8	Advantageous in high speeds	
Hardness(HV)	1800	750	Excellent abrasion-resistance	
Friction(no lubrication)	Small	Large	Possible to use without lubrication	
Magnetism	Not influenced	Strong influence	Smooth operation under strong magnetic field.	
Modulus of elasticity(kgf/mm ²) Insulation Corrosion-resistance		21000 Conductor Poor	Small contact deformation (Strong rigidity) Can be used where high voltage or current electricity is flowing. Can be mounted where corrosion problem exists	

▼ Comparisons between Ceramic and Steel Bearings

223 **KBC**

KBC Vacuum Bearings

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

KBC Vacuum Bearings Material Characteristics • Basic Designs • Lubrication • Tolerances

KBC vacuum bearings are coated with solid lubricant in vacuum, and they can be used for bearings required to be used in a vacuum environment, where ordinary bearings with ordinary lubricants can not be used. All the parts including inner/outer rings are made of stainless steel.

All of inner/outer rings, balls, and retainers of KBC vacuum bearings are coated with solid lubricant, and they provide excellent lubrication and durability in a vacuum operational environment.

KBC vacuum bearings are custom-made and supplied on request.

Material Characteristics

Both rings and rolling elements are made of martensite stainless steel (STS440C).

The martensite steels have the highest hardness values even among all kinds of stainless steels, and they also allow minimum amount of emissive gases. They are an excellent corrosion proof and radiation proof material, and they can be used under the wide range of operating temperatures ($300 \sim 400^{\circ}$ C under light loads).

For cages and shields, austenite stainless steels(STS304) are usually used.

Basic Designs

KBC vacuum bearings can be largely divided into 3 groups depending on their uses, namely, for clean, for extra high-quality clean, and for high temperatures.

The operating environment for vacuum bearings usually involves light loads and low speeds, and their inner/outer rings and rolling elements are usually made of martensite stainless steels, and their cages of austenite stainless steels.

Vacuum bearings for average clean can be used in the environment where free particles(About Class 100) do not cause that much of a problem, and those for extra high-quality clean can be used in the environment where even smaller particles cause serious problems, and those for high temperatures can be used under the operating temperature of up to 400° C.

Depending on the specific operating environments and conditions, these solid lubricants and coating methods for these vacuum bearings can be revised on request. It is necessary to consult KBC to choose appropriate bearings that will suit the customers' distinct environment and purposes.

Lubrication

For materials for solid lubricants to be coated, silver(Ag), molybdenum disulfide(MoS_2), or PTFE are the usual choices. and they are coated by means of sputtering or ion-plating.

They each have distinct characteristics, so it is important to choose a proper solid lubricant for coating. And it is also possible to use different kinds of solid lubricants for different parts of bearings in combination. For example, different solid lubricants can be applied on each of raceway surface of inner/outer rings, balls, and others, so as to obtain maximum efficiency under the specific unusual operating environment.

Tolerances

KBC vacuum bearings of basic designs are machined to normal tolerances. The ones with finer tolerances can be custom-made on request.

For the exact tolerances of vacuum bearings, please contact KBC.

Prefixes

SA Bearings for special operating environment

Suffixes

SC<u>XY</u>

X: Coating materials

- B Pb
- G Ag
- $M MoS_2$
- P PTFE
- U Au
- Y: Coating Parts
- Inner ring Inner/outer rings
- 2 Outer ring
- 3 Inner/outer rings and rolling elements
- 4 Rolling elements
- 5 Inner/outer rings, rolling elements, and cages

Ceramic Bearing vacuum bearing

C bea

Appendix

1. Conversion Table for International System of Units(SI Units)	228
2. Comparison Table for SI, CGS and Engineering Units	229
3. Codes for Multiples of 10 for SI Units	229
4. Conversion Table for Inch-mm	230
5. Conversion Table for °C – °F	231
6. Conversion Table for kg-lb	232
7. Conversion Table for N-kgf	233
8. Viscosity Conversion Table	234
9. Hardness Conversion Table	235
10. Tolerances for Shafts	236
11. Tolerances for Housing Holes	238
12. IT Classes for Basic Tolerances	240
13. Physical/Mechanical Characteristics of Metals	241

Appendix 1. Conversion Table for International System of Units(SI Units)

kinds	SI Units	Non-SI Units	Conversion Factor from SI Units	Kinds	SI Units	Non-SI units	Conversion Factor from SI Units
Angle	rad	° , ,,	180/ 10800/ 648000/	Pressure	Pa (N/m ²)	kgf/m ² mH2O mmHg	1/9.80665 1/(9.80665×10 ³) 760/(1.01325×10 ⁵)
Length	m m ²	Å	10 ⁶ 10 ¹⁰ 10 ⁻²			Torr bar atm	760/(1.013 25 × 10 ⁵) 10 ⁻⁵ 760/(1.013 25 × 10 ⁵)
Volume	m ³	ha I, L dl, dL	$ \begin{array}{c} 10^{-4} \\ 10^{3} \\ 10^{4} \end{array} $	Work	J (N ∘ m)	erg cal _{lT} kgf ∙ m	10 ⁷ 1/4.1868 1/9.80665
Time	S	min h	1/60 1/3 600	Power Work	W	kW ⋅ h PS ⋅ h kgf ⋅ m/s	$1/(3.6 \times 10^{6})$ $\approx 3.77672 \times 10^{-7}$ $1/9.80665$
Frequeency	Hz	d s ⁻¹	1/86 400 1	Ratio	(J/s)	kcal/h PS	1/1.163 ≈1/735.4988
Revolutions Acceleration	s ⁻¹ m/s	rpm km/h kn	60 3 600/1 000 3 600/1 852	Viscosity Index Kinematic,	Pa ∘ s m²/s	P St	10 10 ⁴ 10 ⁶
Acceleration	m/s ²	Gal G	10 ² 1/9.80665	Viscosity Index Temperature Difference Electric Current	K	°C A	10 ⁵ 주 ¹)참조
Weight Force	kg N	t kgf	10 ⁻³ 1/9.80665	Electric Voltage	V	(W/A)	1
		tf dyn	1/(9.80665 × 10 ³) 10 ⁵	Force of Magnetic Field Density of Magnetic Speed	A/m T	Oe Gs	4 /10 ³
Torque, Force Moment	N ∘ m	kgf∙m	1/9.80665	Electric Resistance	Ω	(V/A)	10 ⁹
Stress	Pa (N/m ²)	kgf ∙ m ² kgf ∙ mm ²	$1/(9.80665 \times 10^4)$ $1/(9.80665 \times 10^6)$				

Annotations

1) : Temperature conversion from T K to X[°]C is done by using the formula, X = T - 273.15, but in case of temperature differences, $\Delta \gamma = \Delta x$.

Conversion Example 1N = 1/9.806 65kgf

2. Comparison Table for SI CGS and Engineering Units

System	Length	Mass	Time	Temperature	Acceleration	n Force	Stress	Pressure	Work	Power
SI	m	kg	s	к	m/s ²	N	Ра	Ра	J	W
CGS System	ст	g	S	°C	Gal	dyn	dyn/cm ²	dyn/cm ²	erg	erg/s
Engineering Units	m	kgf∙s²/m	S	°C	m/s ²	kgf	kgf/m ²	kgf/m ²	kgf∙m	kgf∙m/s

3. Codes for Multiples of 10 for SI Units

Multiples of 10	Name	Code	Multiples of 10	Name	Code
10 ¹⁸	Exa	E	10 ¹	Deci	d
10 ¹⁵	Peta	P	10 ²	Centi	c
10 ¹²	Tera	Т	10 ³	Milli	m
10 ⁹	Giga	G	10 ⁶	Micro	μ
10 ⁶	Mega	М	10 ⁹	Nano	n
10 ³	Kilo	k	10 ¹²	Pico	р
10 ²	Hecto	h	10 ¹⁵	Femto	f
10 ¹	Deca	da	10 ¹⁸	Ato	а

Appendix 4. Conversion Table for Inch-mm

											. 1″=	25.4mm
inch		0	1	2	3	4	5	6	7	8	9	10
Fractions	s Decimals	mm										
0	0.000000	0.000	25.400	50.800	76.200	101.600	127.000	152.400	177.800	203.200	228.600	254.000
1/64	0.015625	0.397	25.797	51.197	76.597	101.997	127.397	152.797	178.197	203.597	228.997	254.397
1/32	0.031250	0.794	26.194	51.594	76.994	102.394	127.794	153.194	178.594	203.994	229.394	254.794
3/64	0.046875	1.191	26.591	51.991	77.391	102.791	128.191	153.591	178.991	204.391	229.791	255.191
1/16	0.062500	1.588	26.988	52.388	77.788	103.188	128.588	153.988	179.388	204.788	230.188	255.588
5/64	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184	230.584	255.984
3/32	0.093750	2.381	27.781	53.181	78.581	103.981	129.381	154.781	180.181	205.581	230.981	256.381
7/64	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.579	205.978	231.378	256.778
1/8	0.125000	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375	231.775	257.175
9/64	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772	232.172	257.572
5/32	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169	232.569	257.969
11/64	0.171875	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566	232.966	258.366
7/32	0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962	233.362	258.762
	0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359	233.759	259.159
	0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756	234.156	259.556
	0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153	234.553	259.953
9/32	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550	234.950	260.350
	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947	235.347	260.747
	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744	261.144
	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141	261.541
11/32	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138	236.538	261.938
	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534	236.934	262.334
	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931	237.331	262.731
	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328	237.728	263.128
13/32	0.375000	9.525	34.925	60.325	87.725	111.125	136.525	161.925	187.325	212.725	238.125	263.525
	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122	238.522	263.922
	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519	238.919	264.319
	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916	239.316	264.716
15/32	0.437500	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312	239.712	265.112
	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109	265.509
	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506	265.906
	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903	266.303
17/32	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900	241.300	266.700
	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297	241.697	267.097
	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694	242.094	267.494
	0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091	242.491	267.891
19/32	0.562500	14.288	39.688	65.088	90.488	115.888	141.288	166.688	192.088	217.488	242.888	268.288
	0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884	243.284	268.684
	0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281	243.681	269.081
	0.609375	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678	244.078	269.478
21/32	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075	244.475	269.875
	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472	244.872	270.272
	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869	245.269	270.669
	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266	245.666	271.066
45/64 23/32	0.687500 0.703125 0.718750 0.734375	17.462 17.859 18.256 18.653	42.862 43.259 43.656 44.053	68.262 68.659 69.056 69.453	93.662 94.059 94.456 94.853	119.062 119.459 119.856 120.253	144.462 144.859 145.256 145.653	169.862 170.259 170.656 171.053	195.262 195.659 196.056 196.453	220.662 221.059 221.456 221.853	246.062 246.459 246.856 247.253	271.462 271.859 272.256 272.653
25/32 51/64	0.750000 0.765625 0.781250 0.796875	19.050 19.447 19.844 20.241	44.450 44.847 45.244 45.641	69.850 70.247 70.644 71.041	95.250 95.647 96.044 96.441	120.650 121.047 121.444 121.841	146.050 146.447 146.844 147.241	171.450 171.847 172.244 172.641	196.850 197.247 197.644 198.041	222.250 222.647 223.044 223.441	247.650 248.047 248.444 248.841	273.050 273.447 273.844 274.241
53/64 27/32	0.812500 0.828125 0.843750 0.859375	20.638 21.034 21.431 21.828	46.038 46.434 46.831 47.228	71.438 71.834 72.231 72.628	96.838 97.234 97.631 98.028	122.238 122.634 123.031 123.428	147.638 148.034 148.431 148.828	173.038 173.434 173.831 174.228	198.438 198.834 199.231 199.628	223.838 224.234 224.631 225.028	249.238 249.634 250.031 250.428	274.638 275.034 275.431 275.828
29/32 59/64	0.875000 0.890625 0.906250 0.921875	22.225 22.622 23.019 23.416	47.625 48.022 48.419 48.816	73.025 73.422 73.819 74.216	98.425 98.822 99.219 99.616	123.825 124.222 124.619 125.016	149.225 149.622 150.019 150.416	174.625 175.022 175.419 175.816	200.025 200.422 200.819 201.216	225.425 225.822 226.219 226.616	250.825 251.222 251.619 252.016	276.225 276.622 277.019 277.416
61/64 31/32	0.937500 0.953125 0.968750 0.984375	23.812 24.209 24.606 25.003	49.212 49.609 50.006 50.403	74.612 75.009 75.406 75.803	100.012 100.409 100.806 101.203	125.412 125.809 126.206 126.603	150.812 151.209 151.606 152.003	176.212 176.609 177.006 177.403	201.612 202.009 202.406 202.803	227.012 227.409 227.806 228.203	252.412 252.809 253.206 253.603	277.812 278.209 278.606 279.003

5. Conversion Table for $^\circ\!\mathrm{C}$ - $^\circ\!\mathrm{F}$

0°C 32°F 0°F -17.8°C

°C		°F	°C		°F	°C		°F	°C		°F
-73 3	-100	-148.0	0.0	32	89.6	21.7	71	159.8	43.3	110	230
-62.2	-80	-112.0	0.6	33	91.4	22.2	72	161.6	46.1	115	239
-51.1	-60	-76.0	1.1	34	93.2	22.8	73	163.4	48.9	120	248
-40.0	-40	-40.0	1.7	35	95.0	23.3	74	165.2	51.7	125	257
-34.4	-30	-22.0	2.2	36	96.8	23.9	75	167.0	54.4	130	266
-28.9	-20	-4.0	2.8	37	98.6	24.4	76	168.8	57.2	135	275
-23.3	-10	14.0	3.3	38	100.4	25.0	77	170.6	60.0	140	284
-17.8	0	32.0	3.9	39	102.2	25.6	78	172.4	65.6	150	302
-17.2	1	33.8	4.4	40	104.0	26.1	79	174.2	71.1	160	320
-16.7	2	35.6	5.0	41	105.8	26.7	80	176.0	76.7	170	338
-16.1	3	37.4	5.6	42	107.6	27.2	81	177.8	82.2	180	356
-15.6	4	39.2	6.1	43	109.4	27.8	82	179.6	87.8	10	374
-15.0	5	41.0	6.7	44	111.2	28.3	83	181.4	93.3	200	392
-14.4	6	42.8	7.2	45	113.0	28.9	84	183.2	98.9	210	410
-13.9	7	44.6	7.8	46	114.8	29.4	85	185.0	104.4	220	428
-13.3	8	46.4	8.3	47	116.6	30.0	86	186.8	110.0	230	446
-12.8	9	48.2	8.9	48	118.4	30.6	87	188.6	115.6	240	464
-12.2	10	50.0	9.4	49	120.2	31.1	88	190.4	121.1	250	482
-11.7	11	51.8	10.0	50	122.0	31.7	89	192.2	148.9	300	572
-11.1	12	53.6	10.6	51	123.8	32.2	90	194.0	176.7	350	662
-10.6	13	55.4	11.1	52	125.6	32.8	91	195.8	204	400	752
-10.0	14	57.2	11.7	53	127.4	33.3	92	197.6	232	450	842
-9.4	15	59.0	12.2	54	129.2	33.9	93	199.4	260	500	932
-8.9	16	60.8	12.8	55	131.0	34.4	94	201.2	288	550	1022
-8.3	17	62.6	13.3	56	132.8	35.0	95	203.0	316	600	1112
-7.8	18	64.4	13.9	57	134.6	35.6	96	204.8	343	650	1202
-7.2	19	66.2	14.4	58	136.4	36.1	97	206.6	371	700	1292
-6.7	20	68.0	15.0	59	138.2	36.7	98	208.4	399	750	1382
-6.1	21	69.8	15.6	60	140.0	37.2	99	210.2	427	800	1472
-5.6	22	71.6	16.1	61	141.8	37.8	100	212.0	454	850	1562
-5.0	23	73.4	16.7	62	143.6	38.3	101	213.8	482	900	1652
-4.4	24	75.2	17.2	63	145.4	38.9	102	215.6	510	950	1742
-3.9	25	77.0	17.8	64	147.2	39.4	103	217.4	538	1000	1832
-3.3	26	78.8	18.3	65	149.0	40.0	104	219.2	593	1100	2012
-2.8	27	80.6	18.9	66	150.8	40.6	105	221.0	649	1200	2192
-2.2	28	82.4	19.4	67	152.6	41.1	106	222.8	704	1300	2372
-1.7	29	84.2	20.0	68	154.4	41.7	107	224.6	760	1400	2552
-1.1	30	86.0	20.6	69	156.2	42.2	108	226.4	816	1500	2732
-0.6	31	87.8	21.1	70	158.0	42.8	109	228.2	871	1600	2912

 $C = \frac{5}{9} (F-32)$ $F = 32 + \frac{9}{5}C$

Appendix 6. Conversion Table for kg-lb

1kg=2.2046226lb 1lb=0.45359237kg

kg		lb	kg		lb	kg		lb
0.454	1	2.205	15.422	34	74.957	30.391	67	147.71
0.907	2	4.409	15.876	35	77.162	30.844	68	149.91
1.361	3	6.614	16.329	36	79.366	31.298	69	152.12
1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
2.268	5	11.023	17.237	38	83.776	32.205	71	156.53
2.722	6	13.228	17.690	39	85.980	32.659	72	158.73
3.175	7	15.432	18.144	40	88.185	33.112	73	160.94
3.629	8	17.637	18.597	41	90.390	33.566	74	163.14
4.082	9	19.842	19.051	42	92.594	34.019	75	165.35
4.536	10	22.046	19.504	43	94.799	34.473	76	167.55
4.990	11	24.251	19.958	44	97.003	34.927	77	169.76
5.443	12	26.455	20.412	45	99.208	35.380	78	171.96
5.897	13	28.660	20.865	46	101.41	35.834	79	174.17
6.350	14	30.865	21.319	47	103.62	36.287	80	176.37
6.804	15	33.069	21.772	48	105.82	36.741	81	178.57
7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
9.979	22	48.502	24.948	55	121.25	39.916	88	194.01
10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
11.340	25	55.116	26.308	58	127.87	41.277	91	200.62
11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
14.515	32	70.548	29.484	65	143.30	44.452	98	216.05
14.969	33	72.753	29.937	66	145.51	44.906	99	218.26

7. Conversion Table for N-kgf

1N = 0.1019716kgf 1kgf = 9.80665N

Ν		kgf	N		kgf	Ν		kgf
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498
	-							
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558
137.29	14	1.4276	460.91	47	4.7927	784.53	80	8.1577
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617
166.71	10	1.7335	480.53	49 50	5.0986	804.15 813.95	82	8.4636
176.52	17	1.8355	490.33 500.14	50 51	5.2006	823.76	84	8.5656
186.33	10	1.9375	509.95	52	5.3025	833.57	85	8.6676
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696
100.10	20	2.0001	010.70	00	0.1010	010.07		0.7000
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095

Appendix 8. Viscosity Conversion Table

 $1 \text{mm}^2/\text{s} = 1 \text{cSt}$

Kinematic	Boit SUS		NO 1 R		Angler E	Kinematic	Boit SUS		NO 1 R		Angler E
(mm²/s)	(sec)		(sec)		(deg)	(mm²/s)	(Sec)		(Sec)		(deg)
	100°F	210°F	50°C	100°C			100°F	210°F	50°C	100°C	
2	32.6	32.8	30.8	31.2	1.14	35	163	164	144	147	4.70
3	36.0	36.3	33.3	33.7	1.22	36	168	170	148	151	4.83
4	39.1	39.4	35.9	36.5	1.31	37	172	173	153	155	4.96
5	42.3	42.6	38.5	39.1	1.40	38	177	178	156	159	5.08
6	45.5	45.8	41.1	41.7	1.48	39	181	183	160	164	5.21
7	48.7	49.0	43.7	44.3	1.56	40	186	187	164	168	5.34
8	52.0	52.4	46.3	47.0	1.65	41	190	192	168	172	5.47
9	55.4	55.8	49.1	50.0	1.75	42	195	196	172	176	5.59
10	58.8	59.2	52.1	52.9	1.84	43	199	201	176	180	5.72
11	62.3	62.7	55.1	56.0	1.93	44	204	205	180	185	5.85
12	65.9	66.4	58.2	59.1	2.02	45	208	210	184	189	5.98
13	69.6	70.1	61.4	62.3	2.12	46	213	215	188	193	6.11
14	73.4	73.9	64.7	65.6	2.22	47	218	219	193	197	6.24
15	77.2	77.7	68.0	69.1	2.32	48	222	224	197	202	6.37
16	81.1	81.7	71.5	72.6	2.43	49	227	228	201	206	6.50
17	85.1	85.7	75.0	76.1	2.54	50	231	233	205	210	6.63
18	89.2	89.8	78.6	79.7	2.64	55	254	256	225	231	7.24
19	93.3	94.0	82.1	83.6	2.76	60	277	279	245	252	7.90
20	97.5	98.2	85.8	87.4	2.87	65	300	302	266	273	8.55
21	102	102	89.5	91.3	2.98	70	323	326	286	294	9.21
22	106	107	93.3	95.1	3.10	75	346	349	306	315	9.89
23	110	111	97.1	98.9	3.22	80	371	373	326	336	10.5
24	115	115	101	103	3.34	85	394	397	347	357	11.2
25	119	120	105	107	3.46	90	417	420	367	378	11.8
26	123	124	109	111	3.58	95	440	443	387	399	12.5
27	128	129	112	115	3.70	100	464	467	408	420	13.2
28	132	133	116	119	3.82	120	556	560	490	504	15.8
29	137	138	120	123	3.95	140	649	653	571	588	18.4
30	141	142	124	127	4.07	160	742	747	653	672	21.1
31	145	146	128	131	4.20	180	834	840	734	757	23.7
32	150	150	132	135	4.32	200	927	933	816	841	26.3
33	154	155	136	139	4.45	250	1 159	1 167	1 020	1 051	32.9
34	159	160	140	143	4.57	300	1 391	1 400	1 224	1 241	39.5

9. Hardness Conversion Table

Rockwell Hardness	Vickers Hardness	Brinner Hardr	ness	Rockwell Har	dness	Shore Hardness
C Scale (150 kgf)		Standard Ball	Tungsten Carbide Ball	A Scale (60 kgf)	B Scale (100 kgf)	
68 67 66 65 64	940 900 865 832 800	- - - -	- - 739 722	85.6 85.0 84.5 83.9 83.4		97 95 92 91 88
63 62 61 60 59	772 746 720 697 674	- - - -	705 688 670 654 634	82.8 82.3 81.8 81.2 80.7		87 85 83 81 80
58 57 56 55 54	653 633 613 595 577	- - - -	615 595 577 560 543	80.1 79.6 79.0 78.5 78.0	-	78 76 75 74 72
53	560	-	525	77.4	-	71
52	544	500	512	76.8		69
51	528	487	496	76.3		68
50	513	475	481	75.9		67
49	498	464	469	72.5		66
48	484	451	455	74.7		64
47	471	442	443	74.1		63
46	458	432	432	73.6		62
45	446	421	421	73.1		60
44	434	409	409	72.5		58
43	423	400	400	72.0		57
42	412	390	390	71.5		56
41	402	381	381	70.9		55
40	392	371	371	70.4		54
39	382	362	362	69.9		52
38 37 36 35 34	372 363 354 345 336	353 344 336 327 319	353 344 336 327 319	69.4 68.9 68.4 67.9 67.4	- (109.0) (108.5) (108.0)	51 50 49 48 47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	-	96.7	33
(16)	222	212	212		95.5	32
(14)	213	203	203		93.9	31
(12)	204	194	194		92.3	29
(10) (8) (6) (4) (2) (0)	196 188 180 173 166 160	187 179 171 165 158 152	187 179 171 165 158 152	- - - -	90.7 89.5 87.1 85.5 83.5 81.7	28 27 26 25 24 24 24

Appendix 10. Tolerances for Shafts

Nominal Diameter		Bearings													
Over	То	Δ_{dmp})	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
3	6	0 -8	-30 -38	-20 -28	-10 -18	-4 -9	-4 -12	0 -5	0 -8	0 -12	0 -18	0 -30	0 -48	± 2.5	±4
6	10	0 -8	-40 -49	-25 -34	-13 -22	-5 -11	-5 -14	0 -6	0 -9	0 -15	0 -22	0 -36	0 -58	±3	±4.5
10	18	0 -8	-50 -61	-32 -43	-16 -27	-6 -14	-6 -17	0 -8	0 -11	0 -18	0 -27	0 -43	0 -70	± 4	± 5.5
18	30	0 -10	-65 -78	-40 -53	-20 -33	-7 -16	-7 -20	0 _9	0 -13	0 -21	0 -33	0 -52	0 -84	± 4.5	±6.5
30	50	0 -12	-80 -96	-50 -66	-25 -41	-9 -20	-9 -25	0 _11	0 -16	0 -25	0 -39	0 -62	0 -100	± 5.5	±8
50	80	0 -15	-100 -119	-60 -79	-30 -49	-10 -23	-10 -29	0 -13	0 -19	0 -30	0 -46	0 -74	0 -120	± 6.5	±9.5
80	120	0 -20	-120 -142	-72 -94	-36 -58	-12 -27	-12 -34	0 -15	0 -22	0 -35	0 -54	0 -87	0 -140	± 7.5	±11
120	180	0 -25	-145 -170	-85 -110	-43 -68	-14 -32	-14 -39	0 -18	0 -25	0 -40	0 -63	0 -100	0 -160	±9	±12.5
180	250	0 -30	-170 -199	-100 -129	-50 -79	-15 -35	-15 -44	0 -20	0 -29	0 -46	0 -72	0 -115	0 -185	±10	±14.5
250	315	0 -35	-190 -222	-110 -142	-56 -88	-17 -40	-17 -49	0 -23	0 -32	0 -52	0 -81	0 -130	0 -210	±11.5	±16
315	400	0 -40	-210 -246	-125 -161	-62 -98	-18 -43	-18 -54	0 -25	0 -36	0 -57	0 -89	0 -140	0 -230	±12.5	±18
400	500	0 -45	-230 -270	-135 -175	-68 -108	-20 -47	-20 -60	0 -27	0 -40	0 -63	0 -97	0 -155	0 -250	±13.5	±20
500	630	0 -50	-260 -304	-145 -189	-76 -120	-	-22 -66	-	0 -44	0 -70	0 -110	0 -175	0 -280	-	±22
630	800	0 -75	-290 -340	-160 -210	-80 -130	-	-24 -74	-	0 -50	0 -80	0 -125	0 -200	0 -320	-	±25
800	1 000	0 -100	-320 -376	-170 -226	-86 -142	-	-26 -82	-	0 -56	0 -90	0 -140	0 -230	0 -360	-	±28
1 000	1 250	0 -125	-350 -416	-195 -261	-98 -164	-	-28 -94	-	0 -66	0 -105	0 -165	0 -260	0 -420	-	±33
1 250	1 600	0 -160	-390 -468	-220 -298	–110 –188	-	-30 -108	-	0 -78	0 -125	0 -195	0 -310	0 -500	-	±39
1 600	2 000	0 -200	-430 -522	-240 -332	-120 -212	-	-32 -124	-	0 -92	0 -150	0 -230	0 -370	0 -600	-	±46
1): Avei	age oute	r diameter	toleranc	es on th	e plane	(Tolerar	nce Clas	s O)							

Unit µm

													nic µiii
j5	j6	j7	k5	k6	k7	m5	m6	n6	p6	r6	r7	Nominal S Diameter	
												Over	То
+3 -2	+6 -2	+8 -4	+6 +1	+9 +1	+13 +1	+9 +4	+12 +4	+16 +8	+20 +12	+23 +15	+27 +15	3	6
 +4	+7	+10	+7	+10	+16	+12	+15	+19	+24	+28	+34	6	10
 <u>-2</u> +5	<u>-2</u> +8	<u>-5</u> +12	+1+9	+1 +12	+1 +19	+6 +15	+6 +18	+10 +23	+15 +29	+19 +34	+19 +41	10	18
 <u>-3</u> +5	<u>-3</u> +9	<u>-6</u> +13	+1 +11	+1 +15	+1 +23	+7 +17	+7 +21	+12 +28	+18 +35	+23 +41	+23 +49	-	
-4	-4	-8	+2	+2	+2	+8	+8	+15	+22	+28	+28	18	30
+6 -5	+11 -5	+15 -10	+13+2	+18 +2	+27 +2	+20 +9	+25 +9	+33 +17	+42 +26	+50 +34	+59 +34	30	50
+6	+12	+18	+15	+21	+32	+24	+30	+39	+51	+60 +41	+71 +41	50	65
-7	-7	-12	+13	+2	+32 +2	+11	+11	+33	+31	+41 +62 +43	+73 +43	65	80
 +6	+13	+20	+18	+25	+38	+28	+35	+45	+59	+73 +51	+86 +51	80	100
-9	-9	-15	+3	+3	+3	+13	+13	+23	+37	+76 +54	+89 +54	100	120
										+88 +63	+103 +63	120	140
+7 –11	+14 -11	+22 -18	+21	+28 +3	+43 +3	+33 +15	+40 +15	+52 +27	+68 +43	+90+65	+105 +65	140	160
-11	-11	-10	+3	+3	+3	+15	+15	+27	+43	+03 +93 +68	+108 +68	160	180
 										+00 +106 +77	+123 +77	180	200
+7	+16	+25	+24	+33	+50	+37	+46	+60	+79	+109	+126	200	225
-13	-13	-21	+4	+4	+4	+17	+17	+31	+50	+80 +113	+80 +130	225	250
 			07			10				+84 +126	+84 +146	250	280
+7 -16	+16 –16	+26 -26	+27 +4	+36 +4	+56 +4	+43 +20	+52 +20	+66 +34	+88 +56	<u>+94</u> +130	+94 +150	280	315
 	10					10		70		+98 +144	+98 +165	315	355
+7 -18	+18 –18	+29 -28	+29 +4	+40 +4	+61 +4	+46 +21	+57 +21	+73 +37	+98 +62	+108 +150 +114	+108 +171	355	400
 +7	. 20	+31	+32	. 45	. 60	. 50	. 62	. 90	. 100	+166	+114 +189	400	450
-20	+20 -20	-32	+5	+45 +5	+68 +5	+50 +23	+63 +23	+80 +40	+108 +68	+126 +172 +132	+126 +195 +132	450	500
				. 4.4	. 70		. 70	. 00	. 100	+194	+220	500	560
-	-	-	-	+44 0	+70 0	-	+70 +26	+88 +44	+122 +78	+150 +199	+150 +225	560	630
 								100	100	+155 +225	+155 +255	630	710
-	-	-	-	+50 0	+80 0	-	+80 +30	+100 +50	+138 +88	+175 +235	+175 +265	710	800
 										+185 +266	+185 +300	800	900
-	-	-	-	+56 0	+90 0	-	+90 +34	+112 +56	+156 +100	+210 +276	+210 +310	900	1000
 										+220 +316	+220 +355	1000	1 1 2 0
-	-	-	-	+66 0	+105 0	-	+106 +40	+132 +66	+186 +120	+250 +326	+250 +365	1 1 1 2 0	1250
										+260 +378	+260 +425	1 2 5 0	1400
-	-	-	-	+78 0	+125 0	-	+126 +48	+156 +78	+218 +140	+300 +408	+300 +455	1400	1 600
										+330 +462	+330 +520		
-	-	-	-	+92 0	+150 0	-	+150 +58	+184 +92	+262 +170	+370 +492	+370 +550	1600	1800
				J			.00	.02		+400	+400	1800	2000

Appendix 11. Tolerances for Housing Holes

Nominal Diameter Over		Bearing Δ_{Dmp} 1)	E6	F6	F7	G6	G7	H6	H7	H8	J6	J7	JS6	JS7
10	18	0 -8	+ 43 + 32	+27 +16	+34 +16	+17 +6	+24 +6	+11 0	+18 0	+27 0	+6 -5	+10 -8	±5.5	±9
18	30	0 -9	+53 +40	+33 +20	+41 +20	+20 +7	+28 +7	+13 0	+21 0	+33 0	+8 -5	+12 -9	±6.5	±10
30	50	0 -11	+66 +50	+41 +25	+50 +25	+25 +9	+34 +9	+16 0	+25 0	+39 0	+10 -6	+14 -11	±8	±12
50	80	0 -13	+79 +60	+49 +30	+60 +30	+29 +10	+40 +10	+19 0	+30 0	+46 0	+13 -6	+18 -12	±9.5	±15
80	120	0 -15	+94 +72	+58 +36	+71 +36	+34 +12	+47 +12	+22 0	+35 0	+54 0	+16 -6	+22 -13	±11	±17
120 150	150 180	0 - 18 0 - 25	+110 +85	+68 +43	+83 +43	+39 +14	+54 +14	+25 0	+40 0	+63 0	+18 -7	+26 -14	±12.5	±20
180	250	0 - 30	+129 +100	+79 +50	+96 +50	+44 +15	+61 +15	+29 0	+46 0	+72 0	+22 -7	+30 -16	±14.5	±23
250	315	0 -35	+142 +110	+88 +56	+108 +56	+49 +17	+69 +17	+32 0	+52 0	+81 0	+25 -7	+36 -16	±16	±26
315	400	0 -40	+161 +125	+98 +62	+119 +62	+54 +18	+75 +18	+36 0	+57 0	+89 0	+29 -7	+39 -18	±18	±28
400	500	0 -45	+175 +135	+108 +68	+131 +68	+60 +20	+83 +20	+40 0	+63 0	+97 0	+33 -7	+43 -20	±20	±31
500	630	0 -50	+189 +145	+120 +76	+146 +76	+66 +22	+92 +22	+44 0	+70 0	+110 0	-	-	±22	±35
630	800	0 -75	+210 +160	+130 +80	+160 +80	+74 +24	+104 +24	+50 0	+80 0	+125 0	-	-	±25	±40
800	1 000	0 -100	+226 +170	+142 +86	+176 +86	+82 +26	+116 +26	+56 0	+90 0	+140 0	-	-	±28	±45
1 000	1 250	0 -125	+261 +195	+164 +98	+203 +98	+94 +28	+133 +28	+66 0	+105 0	+165 0	-	-	±33	±52
1 250	1 600	0 -160	+298 +220	+188 +110	+235 +110	+108 +30	+155 +30	+78 0	+125 0	+195 0	-	-	±39	±62
1 600	2 000	0 -200	+332 +240	+212 +120	+270 +120	+124 +32	+182 +32	+92 0	+150 0	+230 0	-	-	±46	±75
2000	2 500	0 -250	+370 +260	+240 +130	+305 +130	+144 +34	+209 +34	+110 0	+175 0	+280 0	-	-	±55	±87
1): Aver	age oute	r diameter	tolerance	s on the	plane(Tol	erance Cl	ass O)				I			

U	nit	μm
~		

К5													nott
		K6	K7	M5	M6	M7	N5	N6	N7	P6	P7	Nominal S Diameter(Over	mm) To
+2 -6		+2 -9	+6 -12	-4 -12	-4 -15	0 -18	-9 -17	-9 -20	-5 -23	-15 -26	-11 -29	10	18
+1 -8		+2 -11	+6 -15	-5 -14	-4 -17	0 -21	-12 -21	-11 -24	-7 -28	-18 -31	-14 -35	18	30
+2 -9		+3 -13	+7 –18	-5 -16	-4 -20	0 -25	-13 -24	-12 -28	-8 -33	-21 -37	-17 -42	30	50
+3 -1(C	+4 -15	+9 -21	-6 -19	-5 -24	0 -30	-15 -28	-14 -33	-9 -39	-26 -45	-21 -51	50	80
+2 -13	3	+4 -18	+10 -25	-8 -23	-6 -28	0 -35	-18 -33	-16 -38	-10 -45	-30 -52	-24 -59	80	120
+3 -15	5	+4 -21	+ 12 -28	-9 -27	-8 -33	0 -40	-21 -39	-20 -45	-12 -52	-36 -61	-28 -68	120	180
+2 -18	8	+5 -24	+13 -33	-11 -31	-8 -37	0 -46	-25 -45	-22 -51	-14 -60	-41 -70	-33 -79	180	250
+3 -20	C	+5 -27	+16 -36	-13 -36	-9 -41	0 -52	-27 -50	-25 -57	-14 -66	-47 -79	-36 -88	250	315
+3 -22	2	+7 -29	+17 -40	-14 -39	-10 -46	0 -57	-30 -55	-26 -62	-16 -73	-51 -87	-41 -98	315	400
+2 -25	5	+8 -32	+18 -45	-16 -43	-10 -50	0 -63	-33 -60	-27 -67	-17 -80	-55 -95	-45 -108	400	500
-		0 -44	0 -70	-	-26 -70	-26 -96	-	-44 -88	-44 -114	-78 -122	-78 -148	500	630
-		0 -50	0 -80	-	-30 -80	-30 -110	-	-50 -100	-50 -130	-88 -138	-88 -168	630	800
-		0 -56	0 -90	-	-34 -90	-34 -124	-	-56 -112	-56 -146	-100 -156	-100 -190	800	1000
-		0 -66	0 -105	-	-40 -106	-40 -145	-	-66 -132	-66 -171	-120 -186	-120 -225	1 000	1 250
-		0 -78	0 -125	-	-48 -126	-48 -173	-	- 78 -156	-78 -203	-140 -218	-140 -265	1 250	1 600
-		0 -92	0 -150	-	-58 -150	-58 -208	-	-92 -184	-92 -242	-170 -262	-170 -320	1 600	2 000
-		0 –110	0 -175	-	-68 -178	-68 -243	-	-110 -220	–110 –285	–195 –305	-195 -370	2 000	2 500

Appendix 12. IT Classes for Basic Tolerances

	Nomi	nal Di	mensio	ons n	nm																
Over To	1 3	3 6	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500	500 630	630 800	800 1000	1000 1250	1250 1600	1600 2000	2000 2500	2500 3150
	Unit	m																			
IT0	0.5	0.6	0.6	0.8	1	1	1.2	1.5	2	3	4	5	6								
IT1	0.8	1	1	1.2	1.5	1.5	2	2.5	3.5	4.5	6	7	8								
IT2	1.2	1.5	1.5	2	2.5	2.5	3	4	5	7	8	9	10								
IT3	2	2.5	2.5	3	4	4	5	6	8	10	12	13	15								
IT4	3	4	4	5	6	7	8	10	12	14	16	18	20								
IT5	4	5	6	8	9	11	13	15	18	20	23	25	27	29	32	36	42	50	60	70	86
IT6	6	8	9	11	13	16	19	22	25	29	32	36	40	44	50	56	66	78	92	110	135
IT7	10	12	15	18	21	25	30	35	40	46	52	57	63	70	80	90	105	125	150	175	210
IT8	14	18	22	27	33	39	46	54	63	72	81	89	97	110	125	140	165	195	230	280	330
IT9	25	30	36	43	52	62	74	87	100	115	130	140	155	175	200	230	260	310	370	440	540
IT10	40	48	58	70	84	100	120	140	160	185	210	230	250	280	320	360	420	500	600	700	860
IT11	60	75	90	110	130	160	190	220	250	290	320	360	400	440	500	560	660	780	920	1100	1350
IT12	100	120	150	180	210	250	300	350	400	460	520	570	630	700	800	900	1050	1250	1500	1750	2100

13. Physical/Mechanical Characteristics of Metals

Material	Specific Gravity	Linear Expansion Coefficient (0~100°C)	Hardness (Brinnel)	Final Modulus ofElasticity(MPa) {kgf/mm ² }	Tensile Strength(MPa) {kgf/mm ² }	Yield Point (MPa) {kgf/mm ² }	Elongation (%)
Bearing Steel(Hardened)	7.83	12.5×10 ⁶	650~740	208 000 {21 200}	1 570~1 960 {160~200}	-	-
Martensite Stainless Steel SUS 440C	7.68	10.1×10 ⁶	580	200 000 {20 400}	1 960 {200}	1 860 {190}	-
Mild Steel (C=0.12~0.20%)	7.86	11.6×10 ⁶	100~130	206 000 {21 000}	373~471 {38~48}	216~294 {22~30}	24~36
(C=0.12~0.20%)	7.84	11.3×10 ⁶	160~200	206 000 {21 000}	539~686 {55~70}	333~451 {34~46}	14~26
Austenite Stainless Steel SUS 304C	8.03	16.3×10 ⁶	150	193 000 {19 700}	588 {60}	245 {25}	60
Grey Cast Iron FC 20	7.3	10.4×10 ⁶	140~200	98 100	167~265 {17~27}	-	-
Spherulitic graphite cast iron FCD 20	7.0	11.7×10 ⁶	Same or below 201	{10 000}	Same or below 302 {40}	-	Same or below 12
Aluminium	2.69	23.7×10 ⁶	15~26	70 600 {7 200}	78 {8}	34 {3.5}	35
Zinc	7.14	31×10 ⁶	30~60	92 200 {9 400}	147 {15}	-	30~40
Copper	8.93	16.2×10 ⁶	50	123 000 {12 500}	196 {20}	69 {7}	15~20
Brass	8.5	19.1×10 ⁶	About 45	103 000	294~343 {30~35}	-	65~75
(Hardened)			85~130	{10 500}	363~539 {37~55}		15~50

Hardness of both heat-treated steels and martensite stainless steels are generally denoted by using the Rockwell Scale, but in this table, for the sake of comparison, they were converted to Brinnel hardness values.

Seoul Office

Hanwha Bldg. 7, 8th Floor Jangkyo-dong, Jung-ku, Seoul Korea

Domestic Business Dept.

Direct Supply Sales Team Tel. (02)729-3224~29 Fax.(02)729-3422

Automotive Sales Team Tel. (02)729-3252~60 Fax.(02)729-3310

Overseas Dept.

Overseas Sales Team 1 Tel. (02)729-3161~71 Fax.(02)729-3419

Overseas Sales Team 2 Tel. (02)729-3182~85 Fax.(02)729-3360/88

Technical Sales Team

Tel. (02729-3241~45, 62~66 Fax.(02)729-3310

Branches

Seoul Branch

Store No. A-5501 Choong-Ang Yu-Tong Sang-Ka Kuroku, Seoul Tel. (02)2619-0673 Fax.(02)2611-6075

Ahnsan Branch

Building A, Store No. 303 Ahnsan Yu-Tong Sang-Ka, Pyun-Ik 994-5 Wonkokdong, Ahnshan-si, Kyunggi Province Tel. (031)491-3247 Fax.(031)493-8436

Kwangju Branch

695-9 Jungheug-dong, Puk-ku, Kwangju-si Tel. (062)523-4417 Fax.(062)523-4903

Daejeon Branch

440-9 Ohjeong-dong, Daeduk-ku, Daejeon Tel. (042)623-3764 Fax.(042)623-3766

Pusan Branch

577-7 Goebup-dong, Sasang-ku, Pusan Tel. (051)328-9385 Fax.(051)324-0382

Daeku Branch

2-ka 17-2 Taepyung-ro, Jung-ku, Daeku Tel. (053)256-4066 Fax.(053)253-5229

Ulsan Branch

1285-11 Dal-dong, Nam-ku, Ulsan Factoris Tel. (052)260-6980 Fax.(052)276-8343

Factories

Changwon Factory 1

452-9 Nae-dong, Changwon-si, Kyung-Nam Province Tel. (055)280-8700 Fax.(055)280-8787

Changwon Factory 2

46 Woongnam-dong, Changwon-si, Kyung-Nam Province Tel. (055)280-8710 Fax.(055)262-1819

Changwon Factory 3

851-5 Oi-dong, Changwon-si, Kyung-Nam Province Tel. (055)260-8803 Fax.(055)260-8990

Jeonju Factory

3-ka 402 Palbok-dong, Deokjin-ku, Jeonju-si, Jeon-Nam Province Tel. (063)210-5511 Fax.(063)212-4686

R & D Center

851-5 Oi-dong, Changwon-si, Kyung-Nam Province Tel. (055)260-8803 Fax.(055)260-8990

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

Ball Bearing · Roller Bearing · Special Bearing

沈阳瑞思达轴承有限公司 SHENYANG TOTAL BEARING CO.,LTD. Tel: 024 22945833 22923833 24853899 Fax: 024 88729249 Mobile: 13940483518 15640413155 (微信)

Web: https://www.rstbearing.com.cn

L